1
|
Sovi S, Adomako K, Kyei B, Kena AW, Olympio OS, Aggrey SE. A comparative study of population structure and genetic diversity of commercial and indigenous chickens from different agro-ecological zones in Ghana using SilicoDArT and SNP markers. Gene 2024; 929:148823. [PMID: 39122230 DOI: 10.1016/j.gene.2024.148823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Chicken production, both in the local and commercial sectors, contributes significantly to human livelihood and food security. Precise use of diverse genetic resources is primary in breeding programs. The study analyzed the genetic diversity and population structure of commercial chickens and indigenous chicken ecotypes from three different agro-ecological zones (Semi-Deciduous Rainforest Zone, Guinea Savannah, and Coastal Savannah) using SilicoDArT and SNP markers, utilizing whole-genome sequencing and phenotypic data. Phenotypic data were collected from 72 indigenous chicken ecotypes across the three AEZs, and 32 commercial birds kept at the Kwame Nkrumah University of Science and Technology (KNUST). DNA samples used for sequencing were obtained from 88 chickens (62 indigenous chicken ecotypes and 26 commercial chickens). A total of 54,995 SilicoDArT and 85,396 SNPs markers were generated from DArTseq genotyping. After filtering, 44,784 SilicoDArT and 58,353 SNP were used for genetic diversity and population structure analysis. Both markers showed high reproducibility and call rate. Polymorphic information content (PIC) values ranged from 0.00 to 0.50, while ≥ 50 % showed PIC values more than the median. Furthermore, we obtained FST values, Nei's genetic distance, dendrogram analysis, and principal component analysis (PCA) of commercial and indigenous chickens. The FST and Nei's genetic distance showed that there is high genetic diversity between the commercial chickens and the indigenous chicken ecotypes. However, there was low genetic diversity among the indigenous chicken ecotypes. The PCA analysis indicated a clear separation between the commercial and indigenous chicken ecotypes, while no clear separation was observed between the indigenous chicken ecotypes. The phenotypic data and the dendrogram indicated that naked and frizzle genes do not markedly alter the genetics of indigenous and commercial birds, and their influence on economic traits may be solely determined by the prevailing environmental conditions. The results indicate that there is high genetic differentiation between commercial and indigenous chickens based on SilicoDArT and SNP markers. The indigenous chickens from the agro-ecological zones have low genetic diversity and might have a common origin. Naked neck and frizzle genes do not markedly alter the genetic performance of birds in terms of economic traits. Therefore, the superiority of birds carrying these genes in economic traits may be solely due to environmental variation.
Collapse
Affiliation(s)
- Selorm Sovi
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; Nutrigenomics Laboratory, Department of Poultry Science, University of Georgia, USA
| | - Kwaku Adomako
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Bismark Kyei
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Alexander Wireko Kena
- Department of Crop and Soil Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Oscar Simon Olympio
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel E Aggrey
- Nutrigenomics Laboratory, Department of Poultry Science, University of Georgia, USA
| |
Collapse
|
2
|
Pancoro A, Indriatmoko, Wijaya D, Karima E. Sea surface temperature and current-related parameters affecting local adaptation of scalloped spiny lobster population in Indonesia's archipelagic system. Sci Rep 2024; 14:18403. [PMID: 39117785 PMCID: PMC11310395 DOI: 10.1038/s41598-024-68923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The Scalloped Spiny lobster (Panulirus homarus, Linnaeus 1758) known as one of the commercially harvested Panilurid lobster. This species was distributed widely across continents. Indonesia, as one of the largest archipelagic systems in the world, was also distribution area of the Scalloped Spiny lobster. These facts have led to questions regarding spiny lobster harvest and culture management by considering population differentiation and habitat fragmentation on complex and distinct archipelagic islands. Our investigation was conducted using high-density SNPs datasets from several spiny lobsters harvested from five locations in Indonesia. We found strong differentiation among spiny lobster populations clustered into 3 sub-populations. Environment association analysis and Fst analysis revealed outlier loci significantly associated with Sea Surface Temperature variation and potentially correlated with Sea Current-related parameters. The evidence of a structured population of scalloped spiny lobsters in Indonesia can serve as a consideration in the management of spiny lobsters.
Collapse
Affiliation(s)
- Adi Pancoro
- School of Life Science and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia.
| | - Indriatmoko
- Research Institute for Fisheries Enhancement, Indonesian Ministry of Marine Affairs and Fisheries, Purwakarta, 51151, Indonesia
| | - Danu Wijaya
- Research Institute for Fisheries Enhancement, Indonesian Ministry of Marine Affairs and Fisheries, Purwakarta, 51151, Indonesia
| | - Elfina Karima
- School of Life Science and Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
3
|
Adomako K, Sovi S, Kyei B, Hamidu JA, Olympio OS, Aggrey SE. Phenotypic characterization and analysis of genetic diversity between commercial crossbred and indigenous chickens from three different agro-ecological zones using DArT-Seq technology. PLoS One 2024; 19:e0297643. [PMID: 38696379 PMCID: PMC11065228 DOI: 10.1371/journal.pone.0297643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/05/2024] [Indexed: 05/04/2024] Open
Abstract
Indigenous and were used to study genetic diversity and population structure analyses. Polymorphism information content (PIC) values ranged from 0.0 to 0.5, with 21,285 SNP markers (35%) being in the lowest PIC value range (0 to 0.15) while 13,511 (commercial chickens have developed unique adaptations to their environments, which may include nutrition, pathogens, and thermal stress. Besides, environmental pressures and artificial selection have generated significant genome-wide divergence in chickens, as those selection pressures contribute a considerable evolutionary force to phenotypic and genotypic differentiation. Herein, we determined genomic diversity of indigenous chickens from semi-deciduous rainforest (SDR), coastal savannah (CS) and Guinea savannah (GS) agro-ecological zones (AEZs) in Ghana and commercial crossbreds (CC) reared at the Kwame Nkrumah University of Science and Technology (KNUST). We generated SNP markers from 82 chickens (62 indigenous chicken ecotypes and 26 commercial crossbred ecotype) using DArT-Seq technology. A total of 85,396 SNP markers were generated and after filtering the data, 58,353 markers 21%) were in the highest PIC value range (0.45 to 0.50). The CC were more genetically diverse than the indigenous birds, with the highest expected heterozygosity value of 0.220. Between the commercial crossbreds population and the indigenous ecotypes, pairwise FST values were estimated to be 0.105 between CS, 0.096 between SDF, and 0.133 between GS. Furthermore, PCA analysis showed that the CC, SDF and GS chickens clustered together and are genetically distant from the commercial crossbred. We herein show that chickens from the AEZs studied can be considered as one population. However, due the abundance of agro-byproducts in the SDR compared to the CS and GS, chickens from the SDR AEZ had better growth compared to their counterparts. It is suggested that the genetic diversity within the local ecotypes could form the basis for genetic improvement.
Collapse
Affiliation(s)
- Kwaku Adomako
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Selorm Sovi
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Nutrigenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| | - Bismark Kyei
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jacob Alhassan Hamidu
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Oscar Simon Olympio
- Department of Animal Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel E. Aggrey
- Nutrigenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
4
|
Rojas-Araos F, Rojas-Hernández N, Cornejo-Guzmán S, Ernst B, Dewitte B, Parada C, Veliz D. Population genomic and biophysical modeling show different patterns of population connectivity in the spiny lobster Jasus frontalis inhabiting oceanic islands. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106253. [PMID: 37979403 DOI: 10.1016/j.marenvres.2023.106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/20/2023]
Abstract
Knowledge about connectivity between populations is essential for the fisheries management of commercial species. The lobster Jasus frontalis inhabits two oceanic island groups, the Juan Fernández Archipelago and the Desventuradas Islands, separated by 800 km. Since this species is primarily exploited in the Juan Fernández Archipelago, knowledge of the connectivity patterns among islands is foundational for species management. Here, we used variability at single-nucleotide polymorphisms (SNPs) and individual-based modeling (IBM) to estimate the genetic structure and connectivity between J. frontalis populations in these island groups. The variability at 9090 SNPs suggests two genetic populations, one in the Juan Fernández Archipelago and one in the Desventuradas Islands. Furthermore, IBM suggests an asymmetric connectivity pattern, with particles moving from the Juan Fernández Archipelago to the Desventuradas Islands but not vice versa. Since the IBM analysis suggests asymmetric larval movement between the islands, and the genetic analysis indicates isolation between the Juan Fernández Archipelago and the Desventuradas Islands, larval retention mechanisms such as small-scale oceanographic processes or behavior could hinder larval movement between islands. This study highlights the importance of using more than one methodology to estimate population connectivity.
Collapse
Affiliation(s)
- Felipe Rojas-Araos
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Noemi Rojas-Hernández
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | - Billy Ernst
- Centro Milenio de Ecología y Manejo Sustentable (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile; Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
| | - Boris Dewitte
- Centro Milenio de Ecología y Manejo Sustentable (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; Université de Toulouse III, CERFACS/CNRS, Toulouse, France
| | - Carolina Parada
- Departamento de Geofísica, Universidad de Concepción, Concepción, Chile; Centro Milenio de Ecología y Manejo Sustentable (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.
| | - David Veliz
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile; Centro Milenio de Ecología y Manejo Sustentable (ESMOI), Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.
| |
Collapse
|
5
|
Farhadi A, Jeffs AG, Lavery SD. Genome-wide SNPs in the spiny lobster Panulirus homarus reveal a hybrid origin for its subspecies. BMC Genomics 2022; 23:750. [DOI: 10.1186/s12864-022-08984-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Evolutionary divergence and speciation often occur at a slower rate in the marine realm due to the higher potential for long-distance reproductive interaction through larval dispersal. One common evolutionary pattern in the Indo-Pacific, is divergence of populations and species at the peripheries of widely-distributed organisms. However, the evolutionary and demographic histories of such divergence are yet to be well understood. Here we address these issues by coupling genome-wide SNP data with mitochondrial DNA sequences to test the patterns of genetic divergence and possible secondary contact among geographically distant populations of the highly valuable spiny lobster Panulirus homarus species complex, distributed widely through the Indo-Pacific, from South Africa to the Marquesas Islands.
Result
After stringent filtering, 2020 SNPs were used for population genetic and demographic analyses, revealing strong regional structure (FST = 0.148, P < 0001), superficially in accordance with previous analyses. However, detailed demographic analyses supported a much more complex evolutionary history of these populations, including a hybrid origin of a North-West Indian Ocean (NWIO) population, which has previously been discriminated morphologically, but not genetically. The best-supported demographic models suggested that the current genetic relationships among populations were due to a complex series of past divergences followed by asymmetric migration in more recent times.
Conclusion
Overall, this study suggests that alternating periods of marine divergence and gene flow have driven the current genetic patterns observed in this lobster and may help explain the observed wider patterns of marine species diversity in the Indo-Pacific.
Collapse
|
6
|
Farquharson KA, McLennan EA, Cheng Y, Alexander L, Fox S, Lee AV, Belov K, Hogg CJ. Restoring faith in conservation action: Maintaining wild genetic diversity through the Tasmanian devil insurance program. iScience 2022; 25:104474. [PMID: 35754729 PMCID: PMC9218385 DOI: 10.1016/j.isci.2022.104474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/06/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022] Open
Abstract
Conservation breeding programs aim to maintain 90% wild genetic diversity, but rarely assess functional diversity. Here, we compare both genome-wide and functional diversity (in over 500 genes) of Tasmanian devils (Sarcophilus harrisii) within the insurance metapopulation and across the species’ range (64,519 km2). Populations have declined by 80% since 1996 due to a contagious cancer, devil facial tumor disease (DFTD). However, predicted local extinctions have not occurred. Recent suggestions of selection for “resistance” alleles in the wild precipitated concerns that insurance population devils may be unsuitable for translocations. Using 830 wild samples collected at 31 locations between 2012 and 2021, and 553 insurance metapopulation devils, we show that the insurance metapopulation is representative of current wild genetic diversity. Allele frequencies at DFTD-associated loci were not substantially different between captive and wild devils. Methods presented here are valuable for others investigating evolutionary potential in threatened species, particularly ones under significant selective pressures. Developed target capture to assess functional diversity at over 500 genes Fine-scale structure exists in the genetically depauperate Tasmanian devil Insurance metapopulation is representative of wild genetic diversity Allele frequencies at disease-associated loci were similar in captivity to the wild
Collapse
Affiliation(s)
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Lauren Alexander
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Samantha Fox
- Save the Tasmanian Devil Program, NRE Tasmania, Hobart, Tas 7001, Australia.,Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA
| | - Andrew V Lee
- Save the Tasmanian Devil Program, NRE Tasmania, Hobart, Tas 7001, Australia.,Toledo Zoo, 2605 Broadway, Toledo, OH 43609, USA
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.,San Diego Zoo Wildlife Alliance, PO BOX 120551, San Diego, CA 92112, USA
| |
Collapse
|
7
|
Wang Q, Liu Y, Yan L, Chen L, Li B. Genome-Wide SNP Discovery and Population Genetic Analysis of Mesocentrotus nudus in China Seas. Front Genet 2021; 12:717764. [PMID: 34490044 PMCID: PMC8416983 DOI: 10.3389/fgene.2021.717764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Mesocentrotus nudus is an important commercially aquatic species because of its high edible and medicinal values. However, wild stocks have dramatically decreased in recent decades. Understanding the population structure and genetic diversity can provide vital information for genetic conservation and improvement. In the present study, the genotyping-by-sequencing (GBS) approach was adopted to identify the genome-wide single-nucleotide polymorphisms (SNPs) from a collection of 80 individuals consisting of five geographical populations (16 individuals from each population), covering the natural habitats of M. nudus in China seas. An average of 0.96-Gb clean reads per sample were sequenced, and a total of 51,738 biallelic SNPs were identified. Based on these SNPs, diversity index analysis showed that all populations have a similar pattern with positive Fis (0.136) and low Ne (724.3). Low genetic differentiation and high genetic connectivity among five geographical populations were detected by pairwise Fst, principal component analysis (PCA), admixture, and phylogenetic analysis. Besides, two YWL individuals originating from an isolated ancestor may imply that there is a genetically differentiated population in the adjacent sea. Overall, the results showed that GBS is an effective method to detect genome-wide SNPs for M. nudus and suggested that the protective measures and the investigation with larger spatial scale and sample size for M. nudus should be carried out in the future.
Collapse
Affiliation(s)
- Quanchao Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ying Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lang Yan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Linlin Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Baoquan Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
8
|
Neves JMM, Nolen ZJ, Fabré NN, Mott T, Pereira RJ. Genomic methods reveal independent demographic histories despite strong morphological conservatism in fish species. Heredity (Edinb) 2021; 127:323-333. [PMID: 34226671 PMCID: PMC8405619 DOI: 10.1038/s41437-021-00455-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Human overexploitation of natural resources has placed conservation and management as one of the most pressing challenges in modern societies, especially in regards to highly vulnerable marine ecosystems. In this context, cryptic species are particularly challenging to conserve because they are hard to distinguish based on morphology alone, and thus it is often unclear how many species coexist in sympatry, what are their phylogenetic relationships and their demographic history. We answer these questions using morphologically similar species of the genus Mugil that are sympatric in the largest coastal Marine Protected Area in the Tropical Southwestern Atlantic marine province. Using a sub-representation of the genome, we show that individuals are assigned to five highly differentiated genetic clusters that are coincident with five mitochondrial lineages, but discordant with morphological information, supporting the existence of five species with conserved morphology in this region. A lack of admixed individuals is consistent with strong genetic isolation between sympatric species, but the most likely species tree suggests that in one case speciation has occurred in the presence of interspecific gene flow. Patterns of genetic diversity within species suggest that effective population sizes differ up to two-fold, probably reflecting differences in the magnitude of population expansions since species formation. Together, our results show that strong morphologic conservatism in marine environments can lead to species that are difficult to distinguish morphologically but that are characterized by an independent evolutionary history, and thus that deserve species-specific management strategies.
Collapse
Affiliation(s)
- Jessika M M Neves
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil.
| | - Zachary J Nolen
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, Planegg-Martinsried, Germany
- Department of Biology, Lund University, Lund, Sweden
| | - Nidia N Fabré
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Tamí Mott
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, Alagoas, Brazil
| | - Ricardo J Pereira
- Division of Evolutionary Biology, Faculty of Biology II, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2, Planegg-Martinsried, Germany.
| |
Collapse
|
9
|
Singh SP, Groeneveld JC, Willows‐Munro S. Genetic structure and life history are key factors in species distribution models of spiny lobsters. Ecol Evol 2020; 10:14394-14410. [PMID: 33391723 PMCID: PMC7771135 DOI: 10.1002/ece3.7043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 11/06/2022] Open
Abstract
AIM We incorporated genetic structure and life history phase in species distribution models (SDMs) constructed for a widespread spiny lobster, to reveal local adaptations specific to individual subspecies and predict future range shifts under the RCP 8.5 climate change scenario. LOCATION Indo-West Pacific. METHODS MaxEnt was used to construct present-day SDMs for the spiny lobster Panulirus homarus and individually for the three genetically distinct subspecies of which it comprises. SDMs incorporated both sea surface and benthic (seafloor) climate layers to recreate discrete influences of these habitats during the drifting larval and benthic juvenile and adult life history phases. Principle component analysis (PCA) was used to infer environmental variables to which individual subspecies were adapted. SDM projections of present-day habitat suitability were compared with predictions for the year 2,100, under the RCP 8.5 climate change scenario. RESULTS In the PCA, salinity best explained P. h. megasculptus habitat suitability, compared with current velocity in P. h. rubellus and sea surface temperature in P. h. homarus. Drifting and benthic life history phases were adapted to different combinations of sea surface and benthic environmental variables considered. Highly suitable habitats for benthic phases were spatially enveloped within more extensive sea surface habitats suitable for drifting larvae. SDMs predicted that present-day highly suitable habitats for P. homarus will decrease by the year 2,100. MAIN CONCLUSIONS Incorporating genetic structure in SDMs showed that individual spiny lobster subspecies had unique adaptations, which could not be resolved in species-level models. The use of sea surface and benthic climate layers revealed the relative importance of environmental variables during drifting and benthic life history phases. SDMs that included genetic structure and life history were more informative in predictive models of climate change effects.
Collapse
Affiliation(s)
| | - Johan C. Groeneveld
- Oceanographic Research InstituteDurbanSouth Africa
- School of Life SciencesUniversity of KwaZulu‐NatalPietermaritzburgSouth Africa
| | - Sandi Willows‐Munro
- School of Life SciencesUniversity of KwaZulu‐NatalPietermaritzburgSouth Africa
| |
Collapse
|
10
|
Vu NTT, Zenger KR, Guppy JL, Sellars MJ, Silva CNS, Kjeldsen SR, Jerry DR. Fine-scale population structure and evidence for local adaptation in Australian giant black tiger shrimp (Penaeus monodon) using SNP analysis. BMC Genomics 2020; 21:669. [PMID: 32993495 PMCID: PMC7526253 DOI: 10.1186/s12864-020-07084-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Restrictions to gene flow, genetic drift, and divergent selection associated with different environments are significant drivers of genetic differentiation. The black tiger shrimp (Penaeus monodon), is widely distributed throughout the Indian and Pacific Oceans including along the western, northern and eastern coastline of Australia, where it is an important aquaculture and fishery species. Understanding the genetic structure and the influence of environmental factors leading to adaptive differences among populations of this species is important for farm genetic improvement programs and sustainable fisheries management. RESULTS Based on 278 individuals obtained from seven geographically disparate Australian locations, 10,624 high-quality SNP loci were used to characterize genetic diversity, population structure, genetic connectivity, and adaptive divergence. Significant population structure and differentiation were revealed among wild populations (average FST = 0.001-0.107; p < 0.05). Eighty-nine putatively outlier SNPs were identified to be potentially associated with environmental variables by using both population differentiation (BayeScan and PCAdapt) and environmental association (redundancy analysis and latent factor mixed model) analysis methods. Clear population structure with similar spatial patterns were observed in both neutral and outlier markers with three genetically distinct groups identified (north Queensland, Northern Territory, and Western Australia). Redundancy, partial redundancy, and multiple regression on distance matrices analyses revealed that both geographical distance and environmental factors interact to generate the structure observed across Australian P. monodon populations. CONCLUSION This study provides new insights on genetic population structure of Australian P. monodon in the face of environmental changes, which can be used to advance sustainable fisheries management and aquaculture breeding programs.
Collapse
Affiliation(s)
- Nga T T Vu
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia. .,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| | - Kyall R Zenger
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Jarrod L Guppy
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Melony J Sellars
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,CSIRO Agriculture & Food, Integrated Sustainable Aquaculture Production Program, Queensland Bioscience Precinct, St Lucia, 4067, Australia.,Present address: Genics Pty Ltd, Level 5, Gehrmann Building. 60 Research Road, St Lucia, QLD, 4067, Australia
| | - Catarina N S Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Shannon R Kjeldsen
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Dean R Jerry
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,Tropical Futures Institute, James Cook University, Singapore, Singapore
| |
Collapse
|
11
|
Dadjo C, Nyende AB, Yao N, Kiplangat N, Assogbadjo AE. Genome-wide genetic diversity and population structure of Garcinia kola (Heckel) in Benin using DArT-Seq technology. PLoS One 2020; 15:e0238984. [PMID: 32966312 PMCID: PMC7511007 DOI: 10.1371/journal.pone.0238984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 08/27/2020] [Indexed: 11/18/2022] Open
Abstract
Garcinia kola (Heckel) is a versatile tree indigenous to West and Central Africa. All parts of the tree have value in traditional medicine. Natural populations of the species have declined over the years due to overexploitation. Assessment of genetic diversity and population structure of G. kola is important for its management and conservation. The present study investigates the genetic diversity and population structure of G. kola populations in Benin using ultra-high-throughput diversity array technology (DArT) single nucleotide polymorphism (SNP) markers. From the 102 accessions sampled, two were excluded from the final dataset owing to poor genotyping coverage. A total of 43,736 SNPs were reported, of which 12,585 were used for analyses after screening with quality control parameters including Minor allele frequency (≥ 0.05), call rate (≥ 80%), reproducibility (≥ 95%), and polymorphic information content (≥ 1%). Analysis revealed low genetic diversity with expected heterozygosity per population ranging from 0.196 to 0.228. Pairwise F-statistics (FST) revealed low levels of genetic differentiation between populations while an Analysis of molecular variance (AMOVA) indicated that the majority of variation (97.86%) was within populations. Population structure analysis through clustering and discriminant analysis on principal component revealed two admixed clusters, implying little genetic structure. However, the model-based maximum likelihood in Admixture indicated only one genetic cluster. The present study indicated low genetic diversity of G. kola, and interventions are needed to be tailored towards its conservation.
Collapse
Affiliation(s)
- Colombe Dadjo
- Institute of Basic Sciences, Technology and Innovation, Pan African University, Nairobi, Kenya
- Laboratory of Applied Ecology, Faculty Agronomic Sciences, University of Abomey-Calavi, Cotonou, Rep. Benin
- * E-mail:
| | - Aggrey B. Nyende
- Institute of Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Nasser Yao
- Bioscience Eastern and Central Africa, International Livestock Research Institute, Nairobi, Kenya
| | - Ngeno Kiplangat
- Animal Breeding and Genomics Group, Department of Animal Science, Egerton University, Egerton, Kenya
| | - Achille E. Assogbadjo
- Laboratory of Applied Ecology, Faculty Agronomic Sciences, University of Abomey-Calavi, Cotonou, Rep. Benin
| |
Collapse
|
12
|
Dorant Y, Cayuela H, Wellband K, Laporte M, Rougemont Q, Mérot C, Normandeau E, Rochette R, Bernatchez L. Copy number variants outperform SNPs to reveal genotype–temperature association in a marine species. Mol Ecol 2020; 29:4765-4782. [DOI: 10.1111/mec.15565] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yann Dorant
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Hugo Cayuela
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Kyle Wellband
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Martin Laporte
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Quentin Rougemont
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Claire Mérot
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Rémy Rochette
- Department of Biology University of New Brunswick Saint John NB Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| |
Collapse
|
13
|
Yang Q, Umina PA, Rašić G, Bell N, Fang J, Lord A, Hoffmann AA. Origin of resistance to pyrethroids in the redlegged earth mite (Halotydeus destructor) in Australia: repeated local evolution and migration. PEST MANAGEMENT SCIENCE 2020; 76:509-519. [PMID: 31259466 DOI: 10.1002/ps.5538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Halotydeus destructor is a major pest of crops and pastures across southern parts of Australia. This invasive mite has been chemically controlled for over 50 years, but resistance to synthetic pyrethroids and organophosphates is developing. Understanding processes behind the emerging resistance is important for effective management efforts. We undertook a ddRAD pool-sequencing approach to analyse genome-wide single nucleotide polymorphism variation in H. destructor population samples at two scales: local resistance across a set of fields, and regional resistance across their Australian range, along with toxicology bioassays to screen for pyrethroid resistance. RESULTS Spatial patterns of genomic variation and resistance at a local scale indicated that genetic similarity among samples was more closely correlated with distance along roads and fence-lines than with straight-line geographic distance. This pattern was particularly strong in resistant samples, which were also more related than susceptible samples, suggesting local spread of resistance within an area after it emerged. By contrast, regional data suggest resistance has emerged repeatedly within parts of Australia. Our de novo annotation of the H. destructor draft genome sequence and Bayesian analysis identified several candidate loci strongly associated with population-level resistance to pyrethroids, located in genomic regions that code for transmembrane transport and signalling proteins that have previously been linked to insecticide resistance in other arthropods. CONCLUSION Our findings highlight multiple independent evolutionary events leading to resistance in H. destructor, and demonstrate the utility and cost-effectiveness of a cross-population, genome-wide association study to reveal processes underlying adaptive evolution in a non-model invasive species. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiong Yang
- Pest and Environmental Adaptation Research Group, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Paul A Umina
- Pest and Environmental Adaptation Research Group, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Sustainable Agriculture, cesar, Parkville, VIC, Australia
| | - Gordana Rašić
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Nicholas Bell
- Pest and Environmental Adaptation Research Group, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Alan Lord
- Department of Primary Industries and Regional Development, Government of Western Australia, South Perth, WA, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
14
|
Gouin N, Bertin A, Espinosa MI, Snow DD, Ali JM, Kolok AS. Pesticide contamination drives adaptive genetic variation in the endemic mayfly Andesiops torrens within a semi-arid agricultural watershed of Chile. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113099. [PMID: 31600702 DOI: 10.1016/j.envpol.2019.113099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/01/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Agrichemical contamination can provoke evolutionary responses in freshwater populations. It is a particularly relevant issue in semi-arid regions due to the sensitivity of endemic species to pollutants and to interactions with temperature stress. This paper investigates the presence of pesticides in rivers within a semi-arid agricultural watershed of Chile, testing for their effects on population genetic characteristics of the endemic mayfly Andesiops torrens (Insecta, Ephemeroptera). Pesticides were detected in sediment samples in ten out of the 30 sites analyzed throughout the upper part of the Limarí watershed. To study the evolutionary impact of such contamination on A. torrens, we used a genome-wide approach and analyzed 2056 single nucleotide polymorphisms (SNPs) loci in 551 individuals from all sites. Genetic differentiation was weak between populations, suggesting high gene flow across the study area. While we did not find evidence of pesticide effects on genetic diversity nor on population differentiation, the allele frequency of three outlier SNP loci correlated significantly with pesticide occurrence. Interrogation of genomic resources indicates that two of these SNPs are located within functional genes that encode for the low-density lipoprotein receptor-related protein 2 and Dumpy, both potentially involved in insect cuticle resistance processes. Such genomic signatures of local adaptation are indicative of past adverse effects of pesticide exposure on the locally adapted populations. Our results reveal that A. torrens is sensitive to pesticide exposure, but that a high gene flow may confer resilience to contamination. This research supports the contention that A. torrens is an ideal model organism to study evolutionary responses induced by pesticides on non-target, endemic species.
Collapse
Affiliation(s)
- Nicolas Gouin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán, 1305, La Serena, Chile; Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile; Centro de Estudios Avanzados Zonas en Áridas, Raúl Bitrán, 1305, La Serena, Chile.
| | - Angéline Bertin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán, 1305, La Serena, Chile.
| | - Mara I Espinosa
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán, 1305, La Serena, Chile.
| | - Daniel D Snow
- Nebraska Water Center, University of Nebraska-Lincoln, Lincoln, NE, 68583-0844, United States.
| | - Jonathan M Ali
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Alan S Kolok
- Idaho Water Resources Research Institute, University of Idaho, Moscow, ID, 83844-3002, United States.
| |
Collapse
|
15
|
Dang BT, Rahman MA, Tran SQ, Glenner H. Genome-wide SNP analyses reveal population structure of Portunus pelagicus along Vietnam coastline. PLoS One 2019; 14:e0224473. [PMID: 31689298 PMCID: PMC6830773 DOI: 10.1371/journal.pone.0224473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 10/15/2019] [Indexed: 11/19/2022] Open
Abstract
The blue swimming crab (Portunus pelagicus Linnaeus, 1758) is one of the commercially exploited crab fishery resources in Vietnam. This is the first study to provide a broad survey of genetic diversity, population structure and migration patterns of P. pelagicus along the Vietnamese coastline. The crab samples were collected from northern, central and southern Vietnam. Here, we used a panel of single nucleotide polymorphisms (SNPs) generated from restriction site-associated DNA sequencing (RADseq). After removing 32 outlier loci, 306 putatively neutral SNPs from 96 individuals were used to assess fine-scale population structure of blue swimming crab. The mean observed heterozygosity (Ho) and expected heterozygosity (He) per locus was 0.196 and 0.223, respectively. Pairwise Fst and hierarchical AMOVA supported significant differentiation of central and northern from southern populations (P<0.01). Population structure analyses revealed that P. pelagicus in the south is a separate fisheries unit from the north and center. Contemporary migration patterns supported high migration between northern and central populations and restricted genetic exchange within the southern population. In contrast, historic gene flow provides strong evidence for single panmictic population. The results are useful for understanding current status of P. pelagicus in the wild under an environment changing due to natural and anthropogenic stresses, with implications for fisheries management.
Collapse
Affiliation(s)
- Binh Thuy Dang
- Department of Biology, Institute for Biotechnology and Environment, Nha Trang University, Nha Trang City, Vietnam
| | - Muhammad Arifur Rahman
- Department of Biology, Institute for Biotechnology and Environment, Nha Trang University, Nha Trang City, Vietnam
- Department of Graduate Studies, Nha Trang University, Nha Trang City, Vietnam
| | - Sang Quang Tran
- Department of Biology, Institute for Biotechnology and Environment, Nha Trang University, Nha Trang City, Vietnam
| | - Henrik Glenner
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|