1
|
Saxena H, Negi H, Sharma B. Role of F-box E3-ubiquitin ligases in plant development and stress responses. PLANT CELL REPORTS 2023:10.1007/s00299-023-03023-8. [PMID: 37195503 DOI: 10.1007/s00299-023-03023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/27/2023] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE F-box E3-ubiquitin ligases regulate critical biological processes in plant development and stress responses. Future research could elucidate why and how plants have acquired a large number of F-box genes. The ubiquitin-proteasome system (UPS) is a predominant regulatory mechanism employed by plants to maintain the protein turnover in the cells and involves the interplay of three classes of enzymes, E1 (ubiquitin-activating), E2 (ubiquitin-conjugating), and E3 ligases. The diverse and most prominent protein family among eukaryotes, F-box proteins, are a vital component of the multi-subunit SCF (Skp1-Cullin 1-F-box) complex among E3 ligases. Several F-box proteins with multifarious functions in different plant systems have evolved rapidly over time within closely related species, but only a small part has been characterized. We need to advance our understanding of substrate-recognition regulation and the involvement of F-box proteins in biological processes and environmental adaptation. This review presents a background of E3 ligases with particular emphasis on the F-box proteins, their structural assembly, and their mechanism of action during substrate recognition. We discuss how the F-box proteins regulate and participate in the signaling mechanisms of plant development and environmental responses. We highlight an urgent need for research on the molecular basis of the F-box E3-ubiquitin ligases in plant physiology, systems biology, and biotechnology. Further, the developments and outlooks of the potential technologies targeting the E3-ubiquitin ligases for developing crop improvement strategies have been discussed.
Collapse
Affiliation(s)
- Harshita Saxena
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia Griffin Campus, 1109 Experiment Street, Griffin, GA, 30223, USA
| | - Harshita Negi
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Bhaskar Sharma
- School of Life and Environmental Sciences, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC, 3216, Australia.
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
Feng CH, Niu MX, Liu X, Bao Y, Liu S, Liu M, He F, Han S, Liu C, Wang HL, Yin W, Su Y, Xia X. Genome-Wide Analysis of the FBA Subfamily of the Poplar F-Box Gene Family and Its Role under Drought Stress. Int J Mol Sci 2023; 24:4823. [PMID: 36902250 PMCID: PMC10002531 DOI: 10.3390/ijms24054823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
F-box proteins are important components of eukaryotic SCF E3 ubiquitin ligase complexes, which specifically determine protein substrate proteasomal degradation during plant growth and development, as well as biotic and abiotic stress. It has been found that the FBA (F-box associated) protein family is one of the largest subgroups of the widely prevalent F-box family and plays significant roles in plant development and stress response. However, the FBA gene family in poplar has not been systematically studied to date. In this study, a total of 337 F-box candidate genes were discovered based on the fourth-generation genome resequencing of P. trichocarpa. The domain analysis and classification of candidate genes revealed that 74 of these candidate genes belong to the FBA protein family. The poplar F-box genes have undergone multiple gene replication events, particularly in the FBA subfamily, and their evolution can be attributed to genome-wide duplication (WGD) and tandem duplication (TD). In addition, we investigated the P. trichocarpa FBA subfamily using the PlantGenIE database and quantitative real-time PCR (qRT-PCR); the results showed that they are expressed in the cambium, phloem and mature tissues, but rarely expressed in young leaves and flowers. Moreover, they are also widely involved in the drought stress response. At last, we selected and cloned PtrFBA60 for physiological function analysis and found that it played an important role in coping with drought stress. Taken together, the family analysis of FBA genes in P. trichocarpa provides a new opportunity for the identification of P. trichocarpa candidate FBA genes and elucidation of their functions in growth, development and stress response, thus demonstrating their utility in the improvement of P. trichocarpa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yanyan Su
- Correspondence: (Y.S.); (X.X.); Tel.: +86-10-62336400 (X.X.)
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Comparative Transcriptome Analysis Reveals Hormone Signal Transduction and Sucrose Metabolism Related Genes Involved in the Regulation of Anther Dehiscence in Photo-Thermo-Sensitive Genic Male Sterile Wheat. Biomolecules 2022; 12:biom12081149. [PMID: 36009044 PMCID: PMC9406143 DOI: 10.3390/biom12081149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 01/12/2023] Open
Abstract
Anther dehiscence is an important process to release pollen and then is a critical event in pollination. In the wheat photo-thermo-sensitive genic male sterility (PTGMS) line, pollen cannot release from anther since the anther cannot dehisce during anther dehiscence stage in a sterile condition. In this study, we carried out RNA-sequencing to analyze the transcriptome of one wheat PTGMS line BS366 during anther dehiscence under fertile and sterile conditions to explore the mechanism. We identified 6306 differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA) and KEGG analysis showed that DEGs were mainly related to “hormone signal transduction pathway” and “starch and sucrose metabolism”. We identified 35 and 23 DEGs related hormone signal transduction and sucrose metabolism, respectively. Compared with conventional wheat Jing411, there were some changes in the contents of hormones, including JA, IAA, BR, ABA and GA3, and sucrose, during three anther dehiscence stages in the sterile condition in BS366. We performed qRT-PCR to verify the expression levels of some critical DEGs of the hormone signaling pathway and the starch and sucrose metabolism pathway. The results showed disparate expression patterns of the critical DEGs of the hormone signaling pathway and the starch and sucrose metabolism pathway in different conditions, suggesting these genes may be involved in the regulation of the anther dehiscence in BS366. Finally, we conducted a hypothesis model to reveal the regulation pathway of hormones and sucrose on anther dehiscence. The information provided new clues to the molecular mechanisms of anther dehiscence in wheat and improved wheat hybrid breeding.
Collapse
|
4
|
Genome wide Identification and Characterization of Wheat GH9 Genes Reveals Their Roles in Pollen Development and Anther Dehiscence. Int J Mol Sci 2022; 23:ijms23116324. [PMID: 35683004 PMCID: PMC9181332 DOI: 10.3390/ijms23116324] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/10/2022] Open
Abstract
Glycoside hydrolase family 9 (GH9) is a key member of the hydrolase family in the process of cellulose synthesis and hydrolysis, playing important roles in plant growth and development. In this study, we investigated the phenotypic characteristics and gene expression involved in pollen fertility conversion and anther dehiscence from a genomewide level. In total, 74 wheat GH9 genes (TaGH9s) were identified, which were classified into Class A, Class B and Class C and unevenly distributed on chromosomes. We also investigated the gene duplication and reveled that fragments and tandem repeats contributed to the amplification of TaGH9s. TaGH9s had abundant hormone-responsive elements and light-responsive elements, involving JA–ABA crosstalk to regulate anther development. Ten TaGH9s, which highly expressed stamen tissue, were selected to further validate their function in pollen fertility conversion and anther dehiscence. Based on the cell phenotype and the results of the scanning electron microscope at the anther dehiscence period, we found that seven TaGH9s may target miRNAs, including some known miRNAs (miR164 and miR398), regulate the level of cellulose by light and phytohormone and play important roles in pollen fertility and anther dehiscence. Finally, we proposed a hypothesis model to reveal the regulation pathway of TaGH9 on fertility conversion and anther dehiscence. Our study provides valuable insights into the GH9 family in explaining the male sterility mechanism of the wheat photo-thermo-sensitive genetic male sterile (PTGMS) line and generates useful male sterile resources for improving wheat hybrid breeding.
Collapse
|
5
|
Bai J, Wang Y, Liu Z, Guo H, Zhang F, Guo L, Yuan S, Duan W, Li Y, Tan Z, Zhao C, Zhang L. Global survey of alternative splicing and gene modules associated with fertility regulation in a thermosensitive genic male sterile wheat. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2157-2174. [PMID: 34849734 DOI: 10.1093/jxb/erab516] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Thermosensitive genic male sterile (TGMS) wheat lines are the core of two-line hybrid systems. Understanding the mechanism that regulates male sterility in TGMS wheat lines is helpful for promoting wheat breeding. Several studies have obtained information regarding the mechanisms associated with male sterility at the transcriptional level, but it is not clear how the post-transcriptional process of alternative splicing might contribute to controlling male sterility. In this study, we performed genome-wide analyses of alternative splicing during the meiosis stage in TGMS line BS366 using PacBio and RNA-Seq hybrid sequencing. Cytological observations indicated that cytoskeleton assembly in pollen cells, calcium deposition in pollen and tapetal cells, and vesicle transport in tapetal cells were deficient in BS366. According to our cytological findings, 49 differentially spliced genes were isolated. Moreover, 25 long non-coding RNA targets and three bHLH transcription factors were identified. Weighted gene co-expression network analysis detected four candidate differentially spliced genes that had strong co-relation with the seed setting percentage, which is the direct representation of male sterility in BS366. In this study, we obtained comprehensive data regarding the alternative splicing-mediated regulation of male sterility in TGMS wheat. The candidates identified may provide the molecular basis for an improved understanding of male sterility.
Collapse
Affiliation(s)
- Jianfang Bai
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Yukun Wang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, NARA 630-0192, Japan
| | - Zihan Liu
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Haoyu Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Fengting Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Liping Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Shaohua Yuan
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Wenjing Duan
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
- College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yanmei Li
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Zhaoguo Tan
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Changping Zhao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| | - Liping Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing 10097, China
| |
Collapse
|
6
|
Sun T, Meng Y, Cen G, Feng A, Su W, Chen Y, You C, Que Y, Su Y. Genome-wide identification and expression analysis of the coronatine-insensitive 1 (COI1) gene family in response to biotic and abiotic stresses in Saccharum. BMC Genomics 2022; 23:38. [PMID: 34998383 PMCID: PMC8742417 DOI: 10.1186/s12864-021-08255-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Background The coronatine insensitive 1 (COI1) gene is the core member of jasmonate signaling pathway, which is closely related to plant biotic and abiotic resistance. However, there have been no reports on COI1 in sugarcane (Sacharum spp.). Hence, systematically investigating the characteristics of the COI1 multigene family in sugarcane can provide a means to study and manipulate the jasmonic acid signaling pathway. Results A total of 156 COI1 proteins were obtained from the genomes of 19 land plants, while none were obtained from five algae species. A phylogenetic tree demonstrated that these COI1 proteins were classified into four groups, while 31 proteins of SsCOI1 from Saccharum spontaneum, SbCOI1 from Sorghum bicolor, and ShCOI1 from Saccharum spp. hybrid cultivar R570 clustered into three groups. Synteny analysis and duplication patterns revealed that COI1 genes expanded through various genome replication events and could have experienced strong purifying selective pressure during evolution in S. spontaneum, S. bicolor, and R570. An investigation of cis-acting elements suggests that COI1 genes may be involved in plant growth and development and response to various stresses. Expression analysis implied that 21 SsCOI1 genes were constitutively expressed, and had positive responses to drought, cold, and Sporisorium scitamineum stresses with different expression patterns. Among them, seven SsCOI1 haplotype genes may play different roles in response to methyl jasmonate. Furthermore, the ShCOI1–4, ShCOI1–5, and ShCOI1–6 genes were cloned from Saccharum spp. hybrid cultivar ROC22. Real-time quantitative PCR (RT-qPCR) analysis demonstrated that these three ShCOI1 genes had divergent expression profiles in response to salicylic acid, abscisic acid, polyethylene glycol, cold, and S. scitamineum. Conclusions These results suggest that COI1 genes may act in sugarcane growth, development, and response to various stresses via different regulatory mechanisms, which laying a foundation for the functional identification of the sugarcane COI1 gene. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08255-0.
Collapse
Affiliation(s)
- Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yintian Meng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Guangli Cen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Aoyin Feng
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Weihua Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yanling Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
7
|
Tomato COI gene family identification and expression under abiotic and phytohormone stress. J Genet 2021. [DOI: 10.1007/s12041-021-01331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Duan WJ, Liu ZH, Bai JF, Yuan SH, Li YM, Lu FK, Zhang TB, Sun JH, Zhang FT, Zhao CP, Zhang LP. Comprehensive analysis of formin gene family highlights candidate genes related to pollen cytoskeleton and male fertility in wheat (Triticum aestivum L.). BMC Genomics 2021; 22:570. [PMID: 34303338 PMCID: PMC8305537 DOI: 10.1186/s12864-021-07878-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/01/2021] [Indexed: 11/19/2022] Open
Abstract
Background Formin, a highly conserved multi-domain protein, interacts with microfilaments and microtubules. Although specifically expressed formin genes in anthers are potentially significant in research on male sterility and hybrid wheat breeding, similar reports in wheat, especially in thermo-sensitive genic male sterile (TGMS) wheat, remain elusive. Results Herein, we systematically characterized the formin genes in TGMS wheat line BS366 named TaFormins (TaFHs) and predicted their functions in inducing stress response. In total, 25 TaFH genes were uncovered, majorly localized in 2A, 2B, and 2D chromosomes. According to the neighbor-joining (NJ) method, all TaFH proteins from wheat and other plants clustered in 6 sub-groups (A-F). The modeled 3D structures of TaFH1-A/B, TaFH2-A/B, TaFH3-A/B and TaFH3-B/D were validated. And different numbers of stress and hormone-responsive regulatory elements in their 1500 base pair promoter regions were contained in the TaFH genes copies. TaFHs had specific temporal and spatial expression characteristics, whereby TaFH1, TaFH4, and TaFH5 were expressed highly in the stamen of BS366. Besides, the accumulation of TaFHs was remarkably lower in a low-temperature sterile condition (Nanyang) than fertile condition (Beijing), particularly at the early stamen development stage. The pollen cytoskeleton of BS366 was abnormal in the three stages under sterile and fertile environments. Furthermore, under different stress levels, TaFHs expression could be induced by drought, salt, abscisic acid (ABA), salicylic acid (SA), methyl jasmonate (MeJA), indole-3-acetic acid (IAA), polyethylene glycol (PEG), and low temperature. Some miRNAs, including miR167, miR1120, and miR172, interacts with TaFH genes; thus, we constructed an interaction network between microRNAs, TaFHs, phytohormone responses, and distribution of cytoskeleton to reveal the regulatory association between upstream genes of TaFH family members and sterile. Conclusions Collectively, this comprehensive analysis provides novel insights into TaFHs and miRNA resources for wheat breeding. These findings are, therefore, valuable in understanding the mechanism of TGMS fertility conversion in wheat. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07878-7.
Collapse
Affiliation(s)
- Wen-Jing Duan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 100097, China.,College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Zi-Han Liu
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 100097, China
| | - Jian-Fang Bai
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 100097, China
| | - Shao-Hua Yuan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 100097, China
| | - Yan-Mei Li
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 100097, China
| | - Feng-Kun Lu
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 100097, China.,College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Tian-Bao Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 100097, China
| | - Jia-Hui Sun
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 100097, China
| | - Feng-Ting Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 100097, China.
| | - Chang-Ping Zhao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 100097, China.
| | - Li-Ping Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 100097, China.
| |
Collapse
|
9
|
Muhae-Ud-Din G, Chen D, Liu T, Chen W, Gao L. Methyljasmonate and salicylic acid contribute to the control of Tilletia controversa Kühn, causal agent of wheat dwarf bunt. Sci Rep 2020; 10:19175. [PMID: 33154472 PMCID: PMC7645591 DOI: 10.1038/s41598-020-76210-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/15/2020] [Indexed: 11/23/2022] Open
Abstract
Tilletia controversa Kühn (TCK) is the causal agent of dwarf bunt of wheat, a destructive disease in wheat-growing regions of the world. The role of Meja, SA and Meja + SA were characterized for their control of TCK into roots, coleoptiles and anthers. The response of the defence genes PR-10a, Catalase, COI1-1, COII-2 and HRin1 was upregulated by Meja, SA and Meja + SA treatments, but Meja induced high level of expression compared to SA and Meja + SA at 1, 2, and 3 weeks in roots and coleoptiles, respectively. The severity of TCK effects in roots was greater at 1 week, but it decreased at 2 weeks in all treatments. We also investigated TCK hyphae proliferation into coleoptiles at 3 weeks and into anthers to determine whether hyphae move from the roots to the upper parts of the plants. The results showed that no hyphae were present in the coleoptiles and anthers of Meja-, SA- and Meja + SA-treated plants, while the hyphae were located on epidermal and sub-epidermal cells of anthers. In addition, the severity of hyphae increased with the passage of time as anthers matured. Bunted seeds were observed in the non-treated inoculated plants, while no disease symptoms were observed in the resistance of inducer treatments and control plants. Plant height was reduced after TCK infection compared to that of the treated inoculated and non-inoculated treatments. Together, these results suggested that Meja and SA display a distinct role in activation of defence genes in the roots and coleoptiles and that they eliminate the fungal pathogen movement to upper parts of the plants with the passage of time as the anthers mature.
Collapse
Affiliation(s)
- Ghulam Muhae-Ud-Din
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Delai Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.,College of Plant Protection, Gansu Agricultural University, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
10
|
Liu R, Wang J, Xiao M, Gao X, Chen J, Dai Y. AaCOI1, Encoding a CORONATINE INSENSITIVE 1-Like Protein of Artemisia annua L., Is Involved in Development, Defense, and Anthocyanin Synthesis. Genes (Basel) 2020; 11:genes11020221. [PMID: 32093127 PMCID: PMC7074131 DOI: 10.3390/genes11020221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 02/08/2023] Open
Abstract
Artemisia annua is an important medicinal plant producing the majority of the antimalarial compound artemisinin. Jasmonates are potent inducers of artemisinin accumulation in Artemisisa annua plants. As the receptor of jasmonates, the F-box protein COI1 is critical to the JA signaling required for plant development, defense, and metabolic homeostasis. AaCOI1 from Artemisia annua, homologous to Arabidopsis AtCOI1, encodes a F-box protein located in the nuclei. Expressional profiles of the AaCOI1 in the root, stem, leaves, and inflorescence was investigated. The mRNA abundance of AaCOI1 was the highest in inflorescence, followed by in the leaves. Upon mechanical wounding or MeJA treatment, expression of AaCOI1 was upregulated after 6 h. When ectopically expressed, driven by the native promoter from Arabidopsis thaliana, AaCOI1 could partially complement the JA sensitivity and defense responses, but fully complemented the fertility, and the JA-induced anthocyanin accumulation in a coi1-16 loss-of-function mutant. Our study identifies the paralog of AtCOI1 in Artemisia annua, and revealed its implications in development, hormone signaling, defense, and metabolism. The results provide insight into JA perception in Artemisia annua, and pave the way for novel molecular breeding strategies in the canonical herbs to manipulate the anabolism of pharmaceutic compounds on the phytohormonal level.
Collapse
Affiliation(s)
- Rong Liu
- Key Laboratory of Plant Development and Environment Adaption, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (J.W.)
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Jinbiao Wang
- Key Laboratory of Plant Development and Environment Adaption, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (J.W.)
| | - Mu Xiao
- Key Laboratory of Plant Development and Environment Adaption, School of Life Sciences, Shandong University, Qingdao 266237, China; (R.L.); (J.W.)
- Correspondence:
| | - Xiewang Gao
- Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China;
| | - Jin Chen
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.C.); (Y.D.)
| | - Yanjiao Dai
- Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.C.); (Y.D.)
| |
Collapse
|
11
|
Bai JF, Wang YK, Guo LP, Guo XM, Guo HY, Yuan SH, Duan WJ, Liu Z, Zhao CP, Zhang FT, Zhang LP. Genomic identification and characterization of MYC family genes in wheat (Triticum aestivum L.). BMC Genomics 2019; 20:1032. [PMID: 31888472 PMCID: PMC6937671 DOI: 10.1186/s12864-019-6373-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Background MYC transcriptional factors are members of the bHLH (basic helix-loop-helix) superfamily, and play important roles in plant growth and development. Recent studies have revealed that some MYCs are involved in the crosstalk between Jasmonic acid regulatory pathway and light signaling in Arabidopsis, but such kinds of studies are rare in wheat, especially in photo-thermo-sensitive genic male sterile (PTGMS) wheat line. Results 27 non-redundant MYC gene copies, which belonged to 11 TaMYC genes, were identified in the whole genome of wheat (Chinese Spring). These gene copies were distributed on 13 different chromosomes, respectively. Based on the results of phylogenetic analysis, 27 TaMYC gene copies were clustered into group I, group III, and group IV. The identified TaMYC genes copies contained different numbers of light, stress, and hormone-responsive regulatory elements in their 1500 base pair promoter regions. Besides, we found that TaMYC3 was expressed highly in stem, TaMYC5 and TaMYC9 were expressed specially in glume, and the rest of TaMYC genes were expressed in all tissues (root, stem, leaf, pistil, stamen, and glume) of the PTGMS line BS366. Moreover, we found that TaMYC3, TaMYC7, TaMYC9, and TaMYC10 were highly sensitive to methyl jasmonate (MeJA), and other TaMYC genes responded at different levels. Furthermore, we confirmed the expression profiles of TaMYC family members under different light quality and plant hormone stimuli, and abiotic stresses. Finally, we predicted the wheat microRNAs that could interact with TaMYC family members, and built up a network to show their integrative relationships. Conclusions This study analyzed the size and composition of the MYC gene family in wheat, and investigated stress-responsive and light quality induced expression profiles of each TaMYC gene in the PTGMS wheat line BS366. In conclusion, we obtained lots of important information of TaMYC family, and the results of this study was supposed to contribute novel insights and gene and microRNA resources for wheat breeding, especially for the improvement of PTGMS wheat lines.
Collapse
Affiliation(s)
- Jian-Fang Bai
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Yu-Kun Wang
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan
| | - Li-Ping Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.,School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Xiao-Ming Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Hao-Yu Guo
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Shao-Hua Yuan
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Wen-Jing Duan
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Zihan Liu
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Chang-Ping Zhao
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.
| | - Feng-Ting Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China
| | - Li-Ping Zhang
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China. .,The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing, 10097, China.
| |
Collapse
|
12
|
Pigolev AV, Miroshnichenko DN, Pushin AS, Terentyev VV, Boutanayev AM, Dolgov SV, Savchenko TV. Overexpression of Arabidopsis OPR3 in Hexaploid Wheat ( Triticum aestivum L.) Alters Plant Development and Freezing Tolerance. Int J Mol Sci 2018; 19:E3989. [PMID: 30544968 PMCID: PMC6320827 DOI: 10.3390/ijms19123989] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 01/09/2023] Open
Abstract
Jasmonates are plant hormones that are involved in the regulation of different aspects of plant life, wherein their functions and molecular mechanisms of action in wheat are still poorly studied. With the aim of gaining more insights into the role of jasmonic acid (JA) in wheat growth, development, and responses to environmental stresses, we have generated transgenic bread wheat plants overexpressing Arabidopsis 12-OXOPHYTODIENOATE REDUCTASE 3 (AtOPR3), one of the key genes of the JA biosynthesis pathway. Analysis of transgenic plants showed that AtOPR3 overexpression affects wheat development, including germination, growth, flowering time, senescence, and alters tolerance to environmental stresses. Transgenic wheat plants with high AtOPR3 expression levels have increased basal levels of JA, and up-regulated expression of ALLENE OXIDE SYNTHASE, a jasmonate biosynthesis pathway gene that is known to be regulated by a positive feedback loop that maintains and boosts JA levels. Transgenic wheat plants with high AtOPR3 expression levels are characterized by delayed germination, slower growth, late flowering and senescence, and improved tolerance to short-term freezing. The work demonstrates that genetic modification of the jasmonate pathway is a suitable tool for the modulation of developmental traits and stress responses in wheat.
Collapse
Affiliation(s)
- Alexey V Pigolev
- Institute of Basic Biological Problems RAS, Pushchino 142290, Russia.
| | - Dmitry N Miroshnichenko
- Institute of Basic Biological Problems RAS, Pushchino 142290, Russia.
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino 142290, Russia.
| | - Alexander S Pushin
- Institute of Basic Biological Problems RAS, Pushchino 142290, Russia.
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino 142290, Russia.
| | | | | | - Sergey V Dolgov
- Branch of Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, Pushchino 142290, Russia.
| | | |
Collapse
|