1
|
Lainé CMS, AbdElgawad H, Beemster GTS. Cellular dynamics in the maize leaf growth zone during recovery from chilling depends on the leaf developmental stage. PLANT CELL REPORTS 2024; 43:38. [PMID: 38200224 DOI: 10.1007/s00299-023-03116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/16/2023] [Indexed: 01/12/2024]
Abstract
KEY MESSAGE A novel non-steady-state kinematic analysis shows differences in cell division and expansion determining a better recovery from a 3-day cold spell in emerged compared to non-emerged maize leaves. Zea mays is highly sensitive to chilling which frequently occurs during its seedling stage. Although the direct effect of chilling is well studied, the mechanisms determining the subsequent recovery are still unknown. Our goal is to determine the cellular basis of the leaf growth response to chilling and during recovery of leaves exposed before or after their emergence. We first studied the effect of a 3-day cold spell on leaf growth at the plant level. Then, we performed a kinematic analysis to analyse the dynamics of cell division and elongation during recovery of the 4th leaf after exposure to cold before or after emergence. Our results demonstrated cold more strongly reduced the final length of non-emerged than emerged leaves (- 13 vs. - 18%). This was not related to growth differences during cold, but a faster and more complete recovery of the growth of emerged leaves. This difference was due to a higher cell division rate on the 1st and a higher cell elongation rate on the 2nd day of recovery, respectively. The dynamics of cell division and expansion during recovery determines developmental stage-specific differences in cold tolerance of maize leaves.
Collapse
Affiliation(s)
- Cindy M S Lainé
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, Antwerp University, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
2
|
Liu M, Zhang S, Li W, Zhao X, Wang XQ. Identifying yield-related genes in maize based on ear trait plasticity. Genome Biol 2023; 24:94. [PMID: 37098597 PMCID: PMC10127483 DOI: 10.1186/s13059-023-02937-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 04/13/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to genotype. Exploring the genetic basis behind the phenotypic plasticity of ear traits in maize is critical to achieve climate-stable yields, particularly given the unpredictable effects of climate change. Performing genetic field studies in maize requires development of a fast, reliable, and automated system for phenotyping large numbers of samples. RESULTS Here, we develop MAIZTRO as an automated maize ear phenotyping platform for high-throughput measurements in the field. Using this platform, we analyze 15 common ear phenotypes and their phenotypic plasticity variation in 3819 transgenic maize inbred lines targeting 717 genes, along with the wild type lines of the same genetic background, in multiple field environments in two consecutive years. Kernel number is chosen as the primary target phenotype because it is a key trait for improving the grain yield and ensuring yield stability. We analyze the phenotypic plasticity of the transgenic lines in different environments and identify 34 candidate genes that may regulate the phenotypic plasticity of kernel number. CONCLUSIONS Our results suggest that as an integrated and efficient phenotyping platform for measuring maize ear traits, MAIZTRO can help to explore new traits that are important for improving and stabilizing the yield. This study indicates that genes and alleles related with ear trait plasticity can be identified using transgenic maize inbred populations.
Collapse
Affiliation(s)
- Minguo Liu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, 518000, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Shuaisong Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Zhao
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xi-Qing Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
- Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, 518000, China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Transcriptomic Analysis Reveals the Correlation between End-of-Day Far Red Light and Chilling Stress in Setaria viridis. Genes (Basel) 2022; 13:genes13091565. [PMID: 36140734 PMCID: PMC9498584 DOI: 10.3390/genes13091565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Low temperature and end-of-day far-red (EOD-FR) light signaling are two key factors limiting plant production and geographical location worldwide. However, the transcriptional dynamics of EOD-FR light conditions during chilling stress remain poorly understood. Here, we performed a comparative RNA-Seq-based approach to identify differentially expressed genes (DEGs) related to EOD-FR and chilling stress in Setaria viridis. A total of 7911, 324, and 13431 DEGs that responded to low temperature, EOD-FR and these two stresses were detected, respectively. Further DEGs analysis revealed that EOD-FR may enhance cold tolerance in plants by regulating the expression of genes related to cold tolerance. The result of weighted gene coexpression network analysis (WGCNA) using 13431 nonredundant DEGs exhibited 15 different gene network modules. Interestingly, a CO-like transcription factor named BBX2 was highly expressed under EOD-FR or chilling conditions. Furthermore, we could detect more expression levels when EOD-FR and chilling stress co-existed. Our dataset provides a valuable resource for the regulatory network involved in EOD-FR signaling and chilling tolerance in C4 plants.
Collapse
|
4
|
Understanding and Comprehensive Evaluation of Cold Resistance in the Seedlings of Multiple Maize Genotypes. PLANTS 2022; 11:plants11141881. [PMID: 35890515 PMCID: PMC9320912 DOI: 10.3390/plants11141881] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/02/2022]
Abstract
Maize is a cold-sensitive crop, and it exhibits severe retardation of growth and development when exposed to cold snaps during and right after seedling emergence. Although different agronomic, physiological, and molecular approaches have been tried to overcome the problems related to cold stress in recent years, the mechanisms causing cold resistance in maize are still unclear. Screening and breeding of varieties for cold resistance may be a sustainable option to boost maize production under low-temperature environments. Herein, seedlings of 39 different maize genotypes were treated under both 10 °C low temperature and 22 °C normal temperature conditions for 7 days, to assess the changes in seven growth parameters, two membrane characteristics, two reactive oxygen species (ROS) levels, and four antioxidant enzymes activities. The changes in ten photosynthetic performances, one osmotic substance accumulation, and three polyamines (PAs) metabolisms were also measured. Results indicated that significant differences among genotypes, temperature treatments, and their interactions were found in 29 studied traits, and cold–stressed seedlings were capable to enhance their cold resistance by maintaining high levels of membrane stability index (66.07%); antioxidant enzymes activities including the activity of superoxide dismutase (2.44 Unit g−1 protein), peroxidase (1.65 Unit g−1 protein), catalase (0.65 μM min−1 g−1 protein), and ascorbate peroxidase (5.45 μM min−1 g−1 protein); chlorophyll (Chl) content, i.e., Chl a (0.36 mg g−1 FW) and Chl b (0.40 mg g−1 FW); photosynthetic capacity such as net photosynthetic rate (5.52 μM m−2 s−1) and ribulose 1,5–biphosphate carboxylase activity (6.57 M m−2 s−1); PAs concentration, mainly putrescine (274.89 nM g−1 FW), spermidine (52.69 nM g−1 FW), and spermine (45.81 nM g−1 FW), particularly under extended cold stress. Importantly, 16 traits can be good indicators for screening of cold–resistant genotypes of maize. Gene expression analysis showed that GRMZM2G059991, GRMZM2G089982, GRMZM2G088212, GRMZM2G396553, GRMZM2G120578, and GRMZM2G396856 involved in antioxidant enzymes activity and PAs metabolism, and these genes may be used for genetic modification to improve maize cold resistance. Moreover, seven strong cold–resistant genotypes were identified, and they can be used as parents in maize breeding programs to develop new varieties.
Collapse
|
5
|
Burnett AC, Kromdijk J. Can we improve the chilling tolerance of maize photosynthesis through breeding? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3138-3156. [PMID: 35143635 PMCID: PMC9126739 DOI: 10.1093/jxb/erac045] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/02/2022] [Indexed: 05/11/2023]
Abstract
Chilling tolerance is necessary for crops to thrive in temperate regions where cold snaps and lower baseline temperatures place limits on life processes; this is particularly true for crops of tropical origin such as maize. Photosynthesis is often adversely affected by chilling stress, yet the maintenance of photosynthesis is essential for healthy growth and development, and most crucially for yield. In this review, we describe the physiological basis for enhancing chilling tolerance of photosynthesis in maize by examining nine key responses to chilling stress. We synthesize current knowledge of genetic variation for photosynthetic chilling tolerance in maize with respect to each of these traits and summarize the extent to which genetic mapping and candidate genes have been used to understand the genomic regions underpinning chilling tolerance. Finally, we provide perspectives on the future of breeding for photosynthetic chilling tolerance in maize. We advocate for holistic and high-throughput approaches to screen for chilling tolerance of photosynthesis in research and breeding programmes in order to develop resilient crops for the future.
Collapse
Affiliation(s)
- Angela C Burnett
- Department of Plant Sciences, University of CambridgeCambridge, UK
| | | |
Collapse
|
6
|
Zhou P, Enders TA, Myers ZA, Magnusson E, Crisp PA, Noshay JM, Gomez-Cano F, Liang Z, Grotewold E, Greenham K, Springer NM. Prediction of conserved and variable heat and cold stress response in maize using cis-regulatory information. THE PLANT CELL 2022; 34:514-534. [PMID: 34735005 PMCID: PMC8773969 DOI: 10.1093/plcell/koab267] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/27/2021] [Indexed: 05/04/2023]
Abstract
Changes in gene expression are important for responses to abiotic stress. Transcriptome profiling of heat- or cold-stressed maize genotypes identifies many changes in transcript abundance. We used comparisons of expression responses in multiple genotypes to identify alleles with variable responses to heat or cold stress and to distinguish examples of cis- or trans-regulatory variation for stress-responsive expression changes. We used motifs enriched near the transcription start sites (TSSs) for thermal stress-responsive genes to develop predictive models of gene expression responses. Prediction accuracies can be improved by focusing only on motifs within unmethylated regions near the TSS and vary for genes with different dynamic responses to stress. Models trained on expression responses in a single genotype and promoter sequences provided lower performance when applied to other genotypes but this could be improved by using models trained on data from all three genotypes tested. The analysis of genes with cis-regulatory variation provides evidence for structural variants that result in presence/absence of transcription factor binding sites in creating variable responses. This study provides insights into cis-regulatory motifs for heat- and cold-responsive gene expression and defines a framework for developing models to predict expression responses across multiple genotypes.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Tara A Enders
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Zachary A Myers
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Erika Magnusson
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Peter A Crisp
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jaclyn M Noshay
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Fabio Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Zhikai Liang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Kathleen Greenham
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota 55108, USA
| |
Collapse
|
7
|
Blanc J, Kremling KAG, Buckler E, Josephs EB. Local adaptation contributes to gene expression divergence in maize. G3-GENES GENOMES GENETICS 2021; 11:6114460. [PMID: 33604670 PMCID: PMC8022924 DOI: 10.1093/g3journal/jkab004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 11/14/2022]
Abstract
Gene expression links genotypes to phenotypes, so identifying genes whose expression is shaped by selection will be important for understanding the traits and processes underlying local adaptation. However, detecting local adaptation for gene expression will require distinguishing between divergence due to selection and divergence due to genetic drift. Here, we adapt a QST−FST framework to detect local adaptation for transcriptome-wide gene expression levels in a population of diverse maize genotypes. We compare the number and types of selected genes across a wide range of maize populations and tissues, as well as selection on cold-response genes, drought-response genes, and coexpression clusters. We identify a number of genes whose expression levels are consistent with local adaptation and show that genes involved in stress response show enrichment for selection. Due to its history of intense selective breeding and domestication, maize evolution has long been of interest to researchers, and our study provides insight into the genes and processes important for in local adaptation of maize.
Collapse
Affiliation(s)
- Jennifer Blanc
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Karl A G Kremling
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Inari Agriculture, Cambridge, MA 02139, USA
| | - Edward Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA.,United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Emily B Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.,Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Zhan S, Griswold C, Lukens L. Zea mays RNA-seq estimated transcript abundances are strongly affected by read mapping bias. BMC Genomics 2021; 22:285. [PMID: 33874908 PMCID: PMC8056621 DOI: 10.1186/s12864-021-07577-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/30/2021] [Indexed: 11/27/2022] Open
Abstract
Background Genetic variation for gene expression is a source of phenotypic variation for natural and agricultural species. The common approach to map and to quantify gene expression from genetically distinct individuals is to assign their RNA-seq reads to a single reference genome. However, RNA-seq reads from alleles dissimilar to this reference genome may fail to map correctly, causing transcript levels to be underestimated. Presently, the extent of this mapping problem is not clear, particularly in highly diverse species. We investigated if mapping bias occurred and if chromosomal features associated with mapping bias. Zea mays presents a model species to assess these questions, given it has genotypically distinct and well-studied genetic lines. Results In Zea mays, the inbred B73 genome is the standard reference genome and template for RNA-seq read assignments. In the absence of mapping bias, B73 and a second inbred line, Mo17, would each have an approximately equal number of regulatory alleles that increase gene expression. Remarkably, Mo17 had 2–4 times fewer such positively acting alleles than did B73 when RNA-seq reads were aligned to the B73 reference genome. Reciprocally, over one-half of the B73 alleles that increased gene expression were not detected when reads were aligned to the Mo17 genome template. Genes at dissimilar chromosomal ends were strongly affected by mapping bias, and genes at more similar pericentromeric regions were less affected. Biased transcript estimates were higher in untranslated regions and lower in splice junctions. Bias occurred across software and alignment parameters. Conclusions Mapping bias very strongly affects gene transcript abundance estimates in maize, and bias varies across chromosomal features. Individual genome or transcriptome templates are likely necessary for accurate transcript estimation across genetically variable individuals in maize and other species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07577-3.
Collapse
Affiliation(s)
- Shuhua Zhan
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | - Cortland Griswold
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lewis Lukens
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
9
|
Ko DK, Brandizzi F. A temporal hierarchy underpins the transcription factor-DNA interactome of the maize UPR. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:254-270. [PMID: 33098715 PMCID: PMC7942231 DOI: 10.1111/tpj.15044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 05/10/2023]
Abstract
Adverse environmental conditions reduce crop productivity and often increase the load of unfolded or misfolded proteins in the endoplasmic reticulum (ER). This potentially lethal condition, known as ER stress, is buffered by the unfolded protein response (UPR), a set of signaling pathways designed to either recover ER functionality or ignite programmed cell death. Despite the biological significance of the UPR to the life of the organism, the regulatory transcriptional landscape underpinning ER stress management is largely unmapped, especially in crops. To fill this significant knowledge gap, we performed a large-scale systems-level analysis of the protein-DNA interaction (PDI) network in maize (Zea mays). Using 23 promoter fragments of six UPR marker genes in a high-throughput enhanced yeast one-hybrid assay, we identified a highly interconnected network of 262 transcription factors (TFs) associated with significant biological traits and 831 PDIs underlying the UPR. We established a temporal hierarchy of TF binding to gene promoters within the same family as well as across different families of TFs. Cistrome analysis revealed the dynamic activities of a variety of cis-regulatory elements (CREs) in ER stress-responsive gene promoters. By integrating the cistrome results into a TF network analysis, we mapped a subnetwork of TFs associated with a CRE that may contribute to UPR management. Finally, we validated the role of a predicted network hub gene using the Arabidopsis system. The PDIs, TF networks, and CREs identified in our work are foundational resources for understanding transcription-regulatory mechanisms in the stress responses and crop improvement.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
- Correspondence:
| |
Collapse
|
10
|
Li S, Yang W, Guo J, Li X, Lin J, Zhu X. Changes in photosynthesis and respiratory metabolism of maize seedlings growing under low temperature stress may be regulated by arbuscular mycorrhizal fungi. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:1-10. [PMID: 32505784 DOI: 10.1016/j.plaphy.2020.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal fungi as an important soil microbe have been demonstrated to mitigate the harmful effects of stress on plants. However, little is known about the molecular mechanisms underlying the AM symbiotic response to low temperature. Here, differentially expressed genes (DEGs) in the maize seedlings were identified after inoculating AMF under low temperature conditions. A total of 10,400 DEGs were obtained among four treatments, including non-inoculated AMF under ambient temperature (NMA), inoculated AMF under ambient temperature (MA), non-inoculated with low temperature stress (NML), and inoculated with low temperature stress (ML). The relative expression of 858 genes increased and that of 497 genes decreased in AM plants under low temperature stress. 24 DEGs were identified related to photosynthesis and respiratory metabolism. Among these DEGs, 10 genes were upregulated, and 14 genes were downregulated. The results show that inoculating AMF might decrease the production and transmission of electrons under low temperature, and the cyclic electron flow process in chloroplasts was stimulated to protect plants against low temperature. The fungi also influenced transmission of electrons and production of phosphoric acid in mitochondria in response to low temperature. CO2 assimilation capacity was affected and the tricarboxylic acid cycle was promoted by the adjustments in the glycolysis, pentose phosphate pathway, gamma-aminobutyric acid shunt pathway, and glyoxylic acid cycle to produce more adenosine triphosphate and raw materials for other metabolic pathways under low temperature. These findings provide new insight into low temperature tolerance induced by AMF, and help identify genes for further investigation and functional analyses.
Collapse
Affiliation(s)
- Shuxin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, PR China
| | - Wenying Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, PR China
| | - Junhong Guo
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, PR China
| | - Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, PR China
| | - Jixiang Lin
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, PR China; College of Landscape Architecture, Northeast Forestry University, Harbin, PR China.
| | - Xiancan Zhu
- College of Life Sciences, Anhui Normal University, Wuhu, PR China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, PR China.
| |
Collapse
|
11
|
Aydinoglu F. Elucidating the regulatory roles of microRNAs in maize (Zea mays L.) leaf growth response to chilling stress. PLANTA 2020; 251:38. [PMID: 31907623 DOI: 10.1007/s00425-019-03331-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/18/2019] [Indexed: 05/18/2023]
Abstract
MAIN CONCLUSION: miRNAs control leaf size of maize crop during chilling stress tolerance by regulating developmentally important transcriptional factors and sustaining redox homeostasis of cells. Chilling temperature (0-15 °C) is a major constraint for the cultivation of maize (Zea mays) which inhibits the early growth of maize leading to reduction in leaf size. Growth and development take place in meristem, elongation, and mature zones that are linearly located along the leaf base to tip. To prevent shortening of leaf caused by chilling, this study aims to elucidate the regulatory roles of microRNA (miRNA) genes in the controlling process switching between growth and developmental stages. In this respect, hybrid maize ADA313 seedlings were treated to the chilling temperature which caused 26% and 29% reduction in the final leaf length and a decline in cell production of the fourth leaf. The flow cytometry data integrated with the expression analysis of cell cycle genes indicated that the reason for the decline was a failure proceeding from G2/M rather than G1/S. Through an miRNome analysis of 321 known maize miRNAs, 24, 6, and 20 miRNAs were assigned to putative meristem, elongation, and mature zones, respectively according to their chilling response. To gain deeper insight into decreased cell production, in silico, target prediction analysis was performed for meristem specific miRNAs. Among the miRNAs, miR160, miR319, miR395, miR396, miR408, miR528, and miR1432 were selected for confirming the potential of negative regulation with their predicted targets by qRT-PCR. These findings indicated evidence for improvement of growth and yield under chilling stress of the maize.
Collapse
Affiliation(s)
- Fatma Aydinoglu
- Molecular Biology and Genetics Department, Gebze Technical University, Kocaeli, Turkey.
| |
Collapse
|
12
|
Sowiński P, Fronk J, Jończyk M, Grzybowski M, Kowalec P, Sobkowiak A. Maize Response to Low Temperatures at the Gene Expression Level: A Critical Survey of Transcriptomic Studies. FRONTIERS IN PLANT SCIENCE 2020; 11:576941. [PMID: 33133117 PMCID: PMC7550719 DOI: 10.3389/fpls.2020.576941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/09/2020] [Indexed: 05/19/2023]
Abstract
Maize is a cold-sensitive plant whose physiological reactions to sub-optimal temperatures are well understood, but their molecular foundations are only beginning to be deciphered. In an attempt to identify key genes involved in these reactions, we surveyed several independent transcriptomic studies addressing the response of juvenile maize to moderate or severe cold. Among the tens of thousands of genes found to change expression upon cold treatment less than 500 were reported in more than one study, indicating an astonishing variability of the expression changes, likely depending on the experimental design and plant material used. Nearly all these "common" genes were specific to either moderate or to severe cold and formed distinct interaction networks, indicating fundamentally different responses. Moreover, down-regulation of gene expression dominated strongly in moderate cold and up-regulation prevailed in severe cold. Very few of these genes have ever been mentioned in the literature as cold-stress-related, indicating that most response pathways remain poorly known at the molecular level. We posit that the genes identified by the present analysis are attractive candidates for further functional studies and their arrangement in complex interaction networks indicates that a re-interpretation of the present state of knowledge on the maize cold-response is justified.
Collapse
Affiliation(s)
- Paweł Sowiński
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
- *Correspondence: Paweł Sowiński,
| | - Jan Fronk
- Department of Molecular Biology, Faculty of Biology, Institute of Biochemistry, University of Warsaw, Warszawa, Poland
| | - Maciej Jończyk
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
| | - Marcin Grzybowski
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
| | - Piotr Kowalec
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
| | - Alicja Sobkowiak
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, Warszawa, Poland
| |
Collapse
|