1
|
Wang Y, Su C, Liu Q, Hao X, Han S, Doretto LB, Rosa IF, Yang Y, Shao C, Wang Q. Transcriptome Analysis Revealed the Early Heat Stress Response in the Brain of Chinese Tongue Sole ( Cynoglossus semilaevis). Animals (Basel) 2023; 14:84. [PMID: 38200815 PMCID: PMC10777917 DOI: 10.3390/ani14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
As a common influencing factor in the environment, temperature greatly influences the fish that live in the water all their life. The essential economic fish Chinese tongue sole (Cynoglossus semilaevis), a benthic fish, will experience both physiological and behavioral changes due to increases in temperature. The brain, as the central hub of fish and a crucial regulatory organ, is particularly sensitive to temperature changes and will be affected. However, previous research has mainly concentrated on the impact of temperature on the gonads of C. semilaevis. Instead, our study examines the brain using transcriptomics to investigate specific genes and pathways that can quickly respond to temperature changes. The fish were subjected to various periods of heat stress (1 h, 2 h, 3 h, and 5 h) before extracting the brain for transcriptome analysis. After conducting transcriptomic analyses, we identified distinct genes and pathways in males and females. The pathways were mainly related to cortisol synthesis and secretion, neuroactive ligand-receptor interactions, TGF beta signaling pathway, and JAK/STAT signaling pathway, while the genes included the HSP family, tshr, c-fos, c-jun, cxcr4, camk2b, and igf2. Our study offers valuable insights into the regulation mechanisms of the brain's response to temperature stress.
Collapse
Affiliation(s)
- Yue Wang
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China; (Y.W.); (Y.Y.)
| | - Chengcheng Su
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.S.); (Q.L.); (X.H.); (S.H.); (L.B.D.); (C.S.)
| | - Qian Liu
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.S.); (Q.L.); (X.H.); (S.H.); (L.B.D.); (C.S.)
| | - Xiancai Hao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.S.); (Q.L.); (X.H.); (S.H.); (L.B.D.); (C.S.)
| | - Shenglei Han
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.S.); (Q.L.); (X.H.); (S.H.); (L.B.D.); (C.S.)
| | - Lucas B. Doretto
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.S.); (Q.L.); (X.H.); (S.H.); (L.B.D.); (C.S.)
| | - Ivana F. Rosa
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 01049-010, Brazil;
| | - Yanjing Yang
- Tianjin Key Laboratory of Aqua-Ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China; (Y.W.); (Y.Y.)
| | - Changwei Shao
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.S.); (Q.L.); (X.H.); (S.H.); (L.B.D.); (C.S.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Qian Wang
- National Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (C.S.); (Q.L.); (X.H.); (S.H.); (L.B.D.); (C.S.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
2
|
Xu W, Mu R, Gegen T, Ran T, Wu Q, Wen D, Wang F, Chen Z. Transcriptome analysis of hypothalamus and pituitary tissues reveals genetic mechanisms associated with high egg production rates in Changshun green-shell laying hens. BMC Genomics 2023; 24:792. [PMID: 38124055 PMCID: PMC10734086 DOI: 10.1186/s12864-023-09895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Changshun green-shell laying hens are unique to the Guizhou Province, China, and have high egg quality but relatively low yield. Egg production traits are regulated by the hypothalamus-pituitary-ovary axis. However, the underlying mechanism remains unclear. Thus, we conducted RNA sequencing of hypothalamic and pituitary tissues from low- and high-yielding Changshun green-shell laying hens to identify critical pathways and candidate genes involved in controlling the egg production rate. RESULTS More than 39 million clean reads per sample were obtained, and more than 82% were mapped to the Gallus gallus genome. Further analysis identified 1,817 and 1,171 differentially expressed genes (DEGs) in the hypothalamus and pituitary, respectively. Nineteen DEGs were upregulated in both the hypothalamus and pituitary of high-yielding chickens. The functions of these DEGs were mainly associated with ion transport or signal transduction. Gene set enrichment analysis revealed that the pathways enriched in the hypothalamus were mainly associated with gonadotropin-releasing hormone (GnRH) secretion, neurotransmitter release, and circadian rhythms. The pathways enriched in the pituitary were mainly associated with GnRH secretion, energy metabolism, and signal transduction. Five and four DEGs in the hypothalamus and pituitary, respectively, were selected randomly for qRT-PCR analysis. The expression trends determined via qRT-PCR were consistent with the RNA-seq results. CONCLUSIONS The current study identified 19 DEGs upregulated in both the hypothalamus and pituitary gland, which could provide an important reference for further studies on the molecular mechanisms underlying egg production in Changshun green-shell laying hens. In addition, enrichment analysis showed that GnRH secretion and signal transduction, especially neurotransmitter release, play crucial roles in the regulation of egg production.
Collapse
Affiliation(s)
- Wenbin Xu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China.
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China.
| | - Tuya Gegen
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China
- Library, Qiannan Normal University for Nationalities, Duyun, 558000, China
| | - Tiantian Ran
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
| | - Qi Wu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China
| | - Di Wen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
| | - Fen Wang
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China
| | - Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Jianjiang Road 5, Duyun, 558000, China.
- Qiannan Key Laboratory of Applied Biotechnology for Livestock and Poultry, Duyun, 558000, China.
| |
Collapse
|
3
|
Zhou L, Liu F, Chen J, Yang R, Li J, Wang Z, Cai M. Comparative transcriptome analysis reveals sex bias in expression patterns of genes related to sex steroids and immunity in the skin of spinyhead croaker Collichthys lucidus. JOURNAL OF FISH BIOLOGY 2023. [PMID: 37054975 DOI: 10.1111/jfb.15405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Fish skin is the first barrier against external invasion, and also an important interface for communication between males and females during reproduction. Nonetheless, sexual dimorphism in the physiology of fish skins is still poorly understood. Herein, transcriptomes of skin were comparatively analysed between males and females in spinyhead croaker, Collichthys lucidus. Totally, 170 differentially expressed genes (DEG) were detected, including 79 female-biased genes and 91 male-biased genes. Gene ontology (GO) annotation items of the DEGs were mainly enriched in biological process items (86.2%), including regulation of biological processes, responses to chemical and biological stimuli, transport and secretion, movement, immune response, tissue development, etc. In KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis, the male-biased genes were enriched in pathways including those related to immunity such as the TNF signalling pathway and IL-17 signalling pathway, whereas the female-biased genes were enriched in pathways including those related to female steroids such as ovarian steroidogenesis and oestrogen signalling pathway. In addition, odf3 was found to be a male-specific expression gene, being a candidate marker for phenotypic sex. Thus, the sexual difference in gene expression in fish skin in spawning season was uncovered by transcriptome analysis for the first time, providing new insights into sexual dimorphism in the physiology and functions of fish skin.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Fujiang Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Junnan Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Ran Yang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Jinshou Li
- College of life science, Ningde Normal University, Ningde, China
| | - Zhiyong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| | - Mingyi Cai
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
| |
Collapse
|
4
|
Jiang S, Miao J, Wang L, Yao L, Pan L. Transcriptomic response to GnRH down regulation by RNA interference in clam Ruditapes philippinarum, suggest possible role in reproductive function. Comp Biochem Physiol A Mol Integr Physiol 2023; 277:111367. [PMID: 36608928 DOI: 10.1016/j.cbpa.2022.111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) plays a key role in the control of the reproductive axis in vertebrates, however, little is known about its function in reproductive endocrine regulation in molluscs. In the present study, RNA-seq was used to construct transcriptomes of Ruditapes philippinarum testis and ovaries of control and GnRH suppressed individuals using RNA interference. GnRH suppression caused 112 and 169 enriched KEGG pathways in testis and ovary, with 92 pathways in common in both comparisons. The most enriched KEGG pathways occurred in the "Oxidative phosphorylation", "Dorso-ventral axis formation", "Thyroid hormone synthesis" and "Oxytocin signaling pathway" etc. A total of 1838 genes in testis and 358 genes in ovaries were detected differentially expressed in GnRH suppressed clams. Among the differentially expressed genes, a suit of genes related to regulation of steroid hormones synthesis and gonadal development, were found in both ovary and testis with RNAi of GnRH. These results suggest that GnRH may play an important role in reproductive function in bivalves. This study provides a preliminary basis for studying the function and regulatory mechanism of GnRH in bivalves.
Collapse
Affiliation(s)
- Shanshan Jiang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Lu Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Linlin Yao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
5
|
Xie X, Liao X, Xu Z, Liang W, Su Y, Lin L, Xie J, Lin W. Transcriptome analysis of the muscle of fast- and slow-growing phoenix barb (Spinibarbus denticulatus denticulatus). JOURNAL OF FISH BIOLOGY 2023; 102:504-515. [PMID: 36437626 DOI: 10.1111/jfb.15280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Growth rate is a commercial trait in aquaculture that is influenced by multiple factors, among which genetic composition plays a fundamental role in the growth rate of species. The phoenix barb (Spinibarbus denticulatus denticulatus) is a widely distributed freshwater fish species in South China. Although S. d. denticulatus is reared in South China, the molecular mechanisms underlying the growth rate of the species remain unclear. Here, the authors performed transcriptome analysis of muscle tissues from fast-growing (FG) and slow-growing (SG) S. d. denticulatus at 90, 150, and 300 days after hatch (DAH) to elucidate its growth mechanism. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that differentially expressed genes (DEGs) between the two groups were enriched in pathways related to muscle growth, glycolysis, and energy and lipid metabolism. Nonetheless, a higher number of DEGs were identified in the FG vs. SG groups at 90 and 300 DAH compared with 150 DAH. DEGs identified at 90 DAH were mainly enriched in the GH/IGF axis, PI3K-Akt signalling pathway, AMPK signalling pathway and lipid metabolism highly expressed in FG individuals. DEGs identified at 300 DAH were mainly enriched in PI3K-Akt signalling pathway, glycolysis/gluconeogenesis, gene translation and lipid metabolism. In addition, some genes were expressed during the early growth stage in FG individuals but expressed during the late stage in SG individuals, indicating considerable variations in the expression profiles of growth-related genes at different developmental stages. Overall, these findings contribute to the understanding of the growth mechanism of S. d. denticulatus, which would be useful for the propagation of fast-growing breeds.
Collapse
Affiliation(s)
- Xi Xie
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xianping Liao
- Fishery Research Institute of Zhaoqing, Zhaoqing, China
| | - Zhengsheng Xu
- Fishery Research Institute of Zhaoqing, Zhaoqing, China
| | - Wenlang Liang
- Fishery Research Institute of Zhaoqing, Zhaoqing, China
| | - Yilin Su
- Fishery Research Institute of Zhaoqing, Zhaoqing, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Science Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jungang Xie
- Fishery Research Institute of Zhaoqing, Zhaoqing, China
| | - Weiqiang Lin
- Fishery Research Institute of Zhaoqing, Zhaoqing, China
| |
Collapse
|
6
|
Li X, Liu S, Qi D, Qi H, Wang Y, Zhao K, Tian F. Genome-wide identification and expression of the peroxisome proliferator-activated receptor gene family in the Tibetan highland fish Gymnocypris przewalskii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1685-1699. [PMID: 36469183 DOI: 10.1007/s10695-022-01152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR) plays an important role in the regulation of lipid metabolism and has been widely identified in diverse species. Gymnocypris przewalskii is a native fish of the Qinghai Tibetan Plateau that survives in a chronically cold environment. In the current study, we conducted genome-wide identification of PPAR genes, revealing the existence of seven PPARs in the G. przewalskii genome. Collinearity was observed between two copies of PPARαb and PPARγ in G. przewalskii, suggesting that the additional copy might be gained through whole genome duplication. Both phylogenetic and multiple sequence alignment analyses indicated that PPARs in G. przewalskii were conserved with teleosts. The cold treatment (10 °C and 4 °C) led to the developmental delay of G. przewalskii embryos. Continuous expression of PPARs was observed during the embryonic development of G. przewalskii under normal and cold conditions, with significantly different transcriptional patterns. These results indicated that PPARs participated in the embryonic development of G. przewalskii, and were involved in the cold response during development. The current study proposed a potential role of PPARs in the cold response in the embryonic development of G. przewalskii, which shed light on understanding cold adaptation in Tibetan highland fish.
Collapse
Affiliation(s)
- Xiaohuan Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sijia Liu
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Xining, Qinghai, China
| | - Yang Wang
- Qinghai Provincial Key Laboratory of Breeding and Protection of Gymnocypris Przewalskii, Xining, Qinghai, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China.
| | - Fei Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, No. 23 Xinning Road, Xining, 810001, Qinghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
The genome-wide identification and adaptive evolution of slc9 genes in Leuciscus waleckii under extremely alkaline conditions. Gene 2022; 840:146769. [PMID: 35907566 DOI: 10.1016/j.gene.2022.146769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/24/2022] [Indexed: 11/23/2022]
Abstract
The solute carrier family 9 (slc9) genes, especially slc9a isoform coding proteins contribute to electroneutral countertransport of H+ for Na+ across the plasmalemmal and organellar membranes, intracellular pH and cellular volume regulation as well as the electrolyte, acid-base, and fluid volume homeostasis at the systemic level. These functional properties determine a potential basis for organisms to challenge stressful conditions. However, these well-done researches have been reported more in mammals. Thus, in this study, a total of eleven slc9 genes were identified from the latest version genome of L. waleckii, a cyprinid fish that could tolerate extremely alkaline environments (pH 9.6). The evolutionary footprint of slc9 genes was uncovered via the analysis of copy numbers, gene structure, motif composition, chromosome location and phylogenetic relationship. More importantly, there were two SNPs located on 5' UTR and three non-synonymous mutations in the coding region of the slc9a3.2 gene by comparing freshwater with alkaline water populations attached to resequencing technology. Slc9a3.2 gene was a statistically significant low expression in gill tissue with extremely alkaline pressure. Generally, slc9 gene family in L. waleckii was highly conserved. Several important SNPs with high Fst values were identified where non-synonymous mutations occurred between freshwater and alkaline water populations, and they may play an important role in specific functional differentiation. Slc9 genes had clear tissue expression preferences and were involved in abiotic stress response, indicating their roles in physiological function and strong self-regulating capacity. Our insight into the genetic variations that take place in the individual genes under extreme conditions could provide a feasible example for studying specific molecular mechanisms based on genomic data with increasing environmental stress.
Collapse
|
8
|
Comparative transcriptomics in the hypothalamic-pituitary-gonad axis of mammals and poultry. Genomics 2022; 114:110396. [DOI: 10.1016/j.ygeno.2022.110396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
|
9
|
Smythe TA, Su G, Bergman Å, Letcher RJ. Metabolic transformation of environmentally-relevant brominated flame retardants in Fauna: A review. ENVIRONMENT INTERNATIONAL 2022; 161:107097. [PMID: 35134713 DOI: 10.1016/j.envint.2022.107097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Over the past few decades, production trends of the flame retardant (FR) industry, and specifically for brominated FRs (BFRs), is for the replacement of banned and regulated compounds with more highly brominated, higher molecular weight compounds including oligomeric and polymeric compounds. Chemical, biological, and environmental stability of BFRs has received some attention over the years but knowledge is currently lacking in the transformation potential and metabolism of replacement emerging or novel BFRs (E/NBFRs). For articles published since 2015, a systematic search strategy reviewed the existing literature on the direct (e.g., in vitro or in vivo) non-human BFR metabolism in fauna (animals). Of the 51 papers reviewed, and of the 75 known environmental BFRs, PBDEs were by far the most widely studied, followed by HBCDDs and TBBPA. Experimental protocols between studies showed large disparities in exposure or incubation times, age, sex, depuration periods, and of the absence of active controls used in in vitro experiments. Species selection emphasized non-standard test animals and/or field-collected animals making comparisons difficult. For in vitro studies, confounding variables were generally not taken into consideration (e.g., season and time of day of collection, pollution point-sources or human settlements). As of 2021 there remains essentially no information on the fate and metabolic pathways or kinetics for 30 of the 75 environmentally relevant E/BFRs. Regardless, there are clear species-specific and BFR-specific differences in metabolism and metabolite formation (e.g. BDE congeners and HBCDD isomers). Future in vitro and in vivo metabolism/biotransformation research on E/NBFRs is required to better understand their bioaccumulation and fate in exposed organisms. Also, studies should be conducted on well characterized lab (e.g., laboratory rodents, zebrafish) and commonly collected wildlife species used as captive models (crucian carp, Japanese quail, zebra finches and polar bears).
Collapse
Affiliation(s)
- Tristan A Smythe
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Guanyong Su
- School of Environmental Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Åke Bergman
- Department of Analytical Chemistry and Environmental Science, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Directorate, Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada; Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
10
|
Zhong Z, Ao L, Wang Y, Wang S, Zhao L, Ma S, Jiang Y. Comparison of differential expression genes in ovaries and testes of Pearlscale angelfish Centropyge vrolikii based on RNA-Seq analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1565-1583. [PMID: 34415453 DOI: 10.1007/s10695-021-00977-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Pearlscale angelfish Centropyge vrolikii is a kind of protogynous hermaphrodite fish with a natural sexual reversion. Under appropriate social conditions, a female fish can transform into a male fish spontaneously. It is an important prerequisite for artificial breeding to understand the process of its gonadal development and sexual reversion. Gonadal development is regulated by many sex-related genes. In this study, we used unreferenced RNA-Seq technology to sequence the ovary at the perinucleolus stage (OII), ovary at the yolk vesicle stage (OIV),IV and testis (T), respectively; screened the gonadal differential expression genes (DEGs); and analyzed the expression of these genes in different developmental stages of ovary and different sex gonads. The results showed that a total of 142,589 all-unigene samples were assembled, and gene annotation was performed by COG, GO, KEGG, KOG, Pfam, Swissprot, eggNOG, and NR functional database. Comparative analysis revealed that there were 1919 genes that were up-regulated and 1289 genes were down-regulated in comparison to OIV vs OII, while there were 3653 genes that were up-regulated and 2874 genes were down-regulated in comparison of OIV vs T, there were 3345 genes that were up-regulated and 2995 genes were down-regulated in comparison of the OII vs the T. At the same time, the results verified by RT-qPCR were consistent with the variation trend of transcriptome data. Among the results, amh, sox9b, dmrt1, dmrt2, cyp11a, cyp17a, and cyp19a were significantly expressed in the testes, while sox3, sox4, sox11, sox17, and hsd3b7 were significantly expressed in the ovaries. And, the expression of the amh, sox9b, dmrt2, and dmrt1 were low in the OII and OIV, while significantly increased during the ovotestis in the hermaphroditic period (OT), and finally reached the highest level in pure testis after sex reversal. The expression of sox3, sox4, hsd3b7, sox11, and sox17 was significantly reduced during the hermaphroditic period (OT). These results suggested that these genes may play an important role in the process of sex reversal. This study is helpful to further understand the molecular regulation mechanism of gonadal development and sexual reversion in Pearlscale angelfish and also provide important clues for future studies.
Collapse
Affiliation(s)
- Zhaowei Zhong
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Lulu Ao
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China
| | - Shuhong Wang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China
| | - Liping Zhao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Senwei Ma
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China.
| |
Collapse
|
11
|
Li X, Wu J, Xiao X, Rong Y, Yang H, Li J, Zhou Q, Zhou W, Shi J, Qi H, Du H. Characterization and complexity of transcriptome in Gymnocypris przewalskii using single-molecule long-read sequencing and RNA-seq. DNA Res 2021; 28:6275749. [PMID: 33989386 PMCID: PMC8320875 DOI: 10.1093/dnares/dsab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/11/2021] [Indexed: 11/30/2022] Open
Abstract
The Tibetan Schizothoracinae fish Gymnocypris przewalskii has the ability to adapt to the extreme plateau environment, making it an ideal biological material for evolutionary biology research. However, the lack of well-annotated reference genomes has limited the study of the molecular genetics of G. przewalskii. To characterize its transcriptome features, we first used long-read sequencing technology in combination with RNA-seq for transcriptomic analysis. A total of 159,053 full-length (FL) transcripts were captured by Iso-Seq, having a mean length of 3,445 bp with N50 value of 4,348. Of all FL transcripts, 145,169 were well-annotated in the public database and 134,537 contained complete open reading frames. There were 4,149 pairs of alternative splicing events, of which three randomly selected were defined by RT–PCR and sequencing, and 13,293 long non-coding RNAs detected, based on all-vs.-all BLAST. A total of 118,185 perfect simple sequence repeats were identified from FL transcripts. The FL transcriptome might provide basis for further research of G. przewalskii.
Collapse
Affiliation(s)
- Xindan Li
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.,College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jinming Wu
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Xinping Xiao
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Yifeng Rong
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.,College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Haile Yang
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Junyi Li
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Qiong Zhou
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China
| | - Weiguo Zhou
- The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, Xining, Qinghai 810016, China
| | - Jianquan Shi
- The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, Xining, Qinghai 810016, China
| | - Hongfang Qi
- The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, Xining, Qinghai 810016, China
| | - Hao Du
- Key Laboratory of freshwater biodiversity conservation, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Wuhan, Hubei 430223, China.,College of Marine Science, Shanghai Ocean University, Shanghai 201306, China.,The Rescue and Rehabilitation Center of Naked Carps in Lake Qinghai, Xining, Qinghai 810016, China
| |
Collapse
|
12
|
Gene coexpression networks reveal molecular interactions underlying cichlid jaw modularity. BMC Ecol Evol 2021; 21:62. [PMID: 33888061 PMCID: PMC8061045 DOI: 10.1186/s12862-021-01787-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background The oral and pharyngeal jaw of cichlid fishes are a classic example of evolutionary modularity as their functional decoupling boosted trophic diversification and contributed to the success of cichlid adaptive radiations. Most studies until now have focused on the functional, morphological, or genetic aspects of cichlid jaw modularity. Here we extend this concept to include transcriptional modularity by sequencing whole transcriptomes of the two jaws and comparing their gene coexpression networks. Results We show that transcriptional decoupling of gene expression underlies the functional decoupling of cichlid oral and pharyngeal jaw apparatus and the two units are evolving independently in recently diverged cichlid species from Lake Tanganyika. Oral and pharyngeal jaw coexpression networks reflect the common origin of the jaw regulatory program as there is high preservation of gene coexpression modules between the two sets of jaws. However, there is substantial rewiring of genetic architecture within those modules. We define a global jaw coexpression network and highlight jaw-specific and species-specific modules within it. Furthermore, we annotate a comprehensive in silico gene regulatory network linking the Wnt and AHR signalling pathways to jaw morphogenesis and response to environmental cues, respectively. Components of these pathways are significantly differentially expressed between the oral and pharyngeal jaw apparatus. Conclusion This study describes the concerted expression of many genes in cichlid oral and pharyngeal jaw apparatus at the onset of the independent life of cichlid fishes. Our findings suggest that – on the basis of an ancestral gill arch network—transcriptional rewiring may have driven the modular evolution of the oral and pharyngeal jaws, highlighting the evolutionary significance of gene network reuse. The gene coexpression and in silico regulatory networks presented here are intended as resource for future studies on the genetics of vertebrate jaw morphogenesis and trophic adaptation. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01787-9.
Collapse
|
13
|
Song J, McDowell JR. Comparative transcriptomics of spotted seatrout ( Cynoscion nebulosus) populations to cold and heat stress. Ecol Evol 2021; 11:1352-1367. [PMID: 33598136 PMCID: PMC7863673 DOI: 10.1002/ece3.7138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Resilience to climate change depends on a species' adaptive potential and phenotypic plasticity. The latter can enhance survival of individual organisms during short periods of extreme environmental perturbations, allowing genetic adaptation to take place over generations. Along the U.S. East Coast, estuarine-dependent spotted seatrout (Cynoscion nebulosus) populations span a steep temperature gradient that provides an ideal opportunity to explore the molecular basis of phenotypic plasticity. Genetically distinct spotted seatrout sampled from a northern and a southern population were exposed to acute cold and heat stress (5 biological replicates in each treatment and control group), and their transcriptomic responses were compared using RNA-sequencing (RNA-seq). The southern population showed a larger transcriptomic response to acute cold stress, whereas the northern population showed a larger transcriptomic response to acute heat stress compared with their respective population controls. Shared transcripts showing significant differences in expression levels were predominantly enriched in pathways that included metabolism, transcriptional regulation, and immune response. In response to heat stress, only the northern population significantly upregulated genes in the apoptosis pathway, which could suggest greater vulnerability to future heat waves in this population as compared to the southern population. Genes showing population-specific patterns of expression, including hpt, acot, hspa5, and hsc71, are candidates for future studies aiming to monitor intraspecific differences in temperature stress responses in spotted seatrout. Our findings contribute to the current understanding of phenotypic plasticity and provide a basis for predicting the response of a eurythermal fish species to future extreme temperatures.
Collapse
Affiliation(s)
- Jingwei Song
- Virginia Institute of Marine Science (VIMS)College of William and MaryGloucester PointVAUSA
| | - Jan R. McDowell
- Virginia Institute of Marine Science (VIMS)College of William and MaryGloucester PointVAUSA
| |
Collapse
|
14
|
Chaube R, Sharma S, Senthilkumaran B, Bhat SG, Joy KP. Expression profile of kisspeptin2 and gonadotropin-releasing hormone2 mRNA during photo-thermal and melatonin treatments in the female air-breathing catfish Heteropneustes fossilis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2403-2419. [PMID: 33030711 DOI: 10.1007/s10695-020-00888-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
In seasonally breeding vertebrates, extrinsic factors like photoperiod and temperature are major determinants, controlling the annual reproductive cycle. In teleosts, kisspeptin, which occurs in two molecular forms: kisspeptin1 (Kiss1) and kisspetin2 (Kiss2), has been reported to alter gonadotropin (Lh and Fsh) secretion but its effect on gonadotropin-releasing hormone (Gnrh) secretion is not unequivocally proved. In the catfish Heteropneustes fossilis, we isolated and characterized kiss2 and gnrh2 cDNAs and the present work reports effects of altered photo-thermal conditions and melatonin (MT, a pineal hormone) on their expressions in the brain. The exposure of the catfish to long photoperiod (LP, 16 h light) at normal temperature (NT) or high temperature (HT, 28 °C) at normal photoperiod (NP) for 14 or 28 days stimulated both kiss2 and gnrh2 expression in both gonad resting and preparatory phases with the combination of LP + HT eliciting maximal effects. Short photoperiod (SP, 8 h light) under NT or HT altered the gene expression according to the reproductive phase and temperature. MT that mediates photo-thermal signals to the brain inhibited brain kiss2 and gnrh2 gene expression in the NP + HT, LP + NT, and SP + NT groups. The altered photo-thermal conditions elicited changes in steroidogenic pathway as evident from changes in plasma E2, progesterone, and testosterone levels. The results show that brain kiss2-gnrh2 signaling is involved in photo-thermal-mediated mechanisms controlling reproduction.
Collapse
Affiliation(s)
- R Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - S Sharma
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - B Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - S G Bhat
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, 682022, India
| | - K P Joy
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, 682022, India.
| |
Collapse
|
15
|
Bakhtiarizadeh MR, Alamouti AA. RNA-Seq based genetic variant discovery provides new insights into controlling fat deposition in the tail of sheep. Sci Rep 2020; 10:13525. [PMID: 32782325 PMCID: PMC7419499 DOI: 10.1038/s41598-020-70527-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023] Open
Abstract
Genetic basis of fat deposition in sheep tail have not been completely elucidated yet. Understanding the genetic mechanisms controlling fat-tail size can improve breeding strategies to modulate fat deposition. RNA sequencing has made it possible to discover genetic variants that may underlie various phenotypic differences. Hence, to identify genetic variants that are important for describing different fat-tail phenotypes in sheep, RNA sequencing was used for single nucleotide polymorphism (SNP) calling in two Iranian sheep breeds (Lori-Bakhtiari, fat-tailed; n = 4, vs Zel, thin-tailed; n = 4). Using a stringent pipeline, a total of 112,344 known SNPs were genotyped, of which 30,550 and 42,906 SNPs were shared by at least two Lori-Bakhtiari and Zel, respectively. Comparing these SNPs showed 2,774 (including 209 missense and 25 deleterious SNPs) and 10,470 (including 1,054 missense and 116 deleterious SNPs) breed-specific SNPs in Lori-Bakhtiari and Zel sheep, respectively. Potential breed-specific SNPs were detected by considering those located in QTL regions associated with fatness or reported as important candidates in previous similar studies. Of the breed-specific SNPs, 724 and 2,905 were located in the QTL regions. Functional enrichment analysis of the affected genes revealed several enriched gene ontologies and KEGG pathways related to fat metabolism. Based on the results, several affected genes were proposed to be strongly linked with fat deposition such as DGAT2, ACSL1, ACACA, ADIPOQ, ACLY, FASN, CPT2, SCD, ADCY6, PER3, CSF1R, SLC22A4, GFPT1, CDS2, BMP6, ACSS2, ELOVL6, HOXA10 and FABP4. Moreover, several SNPs were found in the candidate genes related to fatty acid oxidation introducing them as promising candidates responsible for lower fat content in tail of Zel. Our findings provided new insights into the genetic mechanisms of fat deposition in sheep, which can serve to designing appropriate breeding programs.
Collapse
Affiliation(s)
| | - Ali A Alamouti
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| |
Collapse
|
16
|
Luo H, Liu H, Zhang J, Hu B, Zhou C, Xiang M, Yang Y, Zhou M, Jing T, Li Z, Zhou X, Lv G, He W, Zeng B, Xiao S, Li Q, Ye H. Full-length transcript sequencing accelerates the transcriptome research of Gymnocypris namensis, an iconic fish of the Tibetan Plateau. Sci Rep 2020; 10:9668. [PMID: 32541658 PMCID: PMC7296019 DOI: 10.1038/s41598-020-66582-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/25/2020] [Indexed: 12/11/2022] Open
Abstract
Gymnocypris namensis, the only commercial fish in Namtso Lake of Tibet in China, is rated as nearly threatened species in the Red List of China's Vertebrates. As one of the highest-altitude schizothorax fish in China, G. namensis has strong adaptability to the plateau harsh environment. Although being an indigenous economic fish with high value in research, the biological characterization, genetic diversity, and plateau adaptability of G. namensis are still unclear. Here, we used Pacific Biosciences single molecular real time long read sequencing technology to generate full-length transcripts of G. namensis. Sequences clustering analysis and error correction with Illumina-produced short reads to obtain 319,044 polished isoforms. After removing redundant reads, 125,396 non-redundant isoforms were obtained. Among all transcripts, 103,286 were annotated to public databases. Natural selection has acted on 42 genes for G. namensis, which were enriched on the functions of mismatch repair and Glutathione metabolism. Total 89,736 open reading frames, 95,947 microsatellites, and 21,360 long non-coding RNAs were identified across all transcripts. This is the first study of transcriptome in G. namensis by using PacBio Iso-seq. The acquisition of full-length transcript isoforms might accelerate the transcriptome research of G. namensis and provide basis for further research.
Collapse
Affiliation(s)
- Hui Luo
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Haiping Liu
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Jie Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Bingjie Hu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Chaowei Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Mengbin Xiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Yuejing Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Mingrui Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Tingsen Jing
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Zhe Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
| | - Xinghua Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Guangjun Lv
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Wenping He
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China
| | - Benhe Zeng
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000, China
| | - Shijun Xiao
- Department of Computer Science, Wuhan University of Technology, Wuhan, 430070, China.
| | - Qinglu Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China.
| | - Hua Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University College of Animal Sciences, Chongqing, 402460, China.
- Key Laboratory of Aquatic Science of Chongqing, 400175, Chongqing, China.
| |
Collapse
|
17
|
Wang Q, Liu K, Feng B, Zhang Z, Wang R, Tang L, Li W, Li Q, Piferrer F, Shao C. Transcriptome of Gonads From High Temperature Induced Sex Reversal During Sex Determination and Differentiation in Chinese Tongue Sole, Cynoglossus semilaevis. Front Genet 2019; 10:1128. [PMID: 31824559 PMCID: PMC6882949 DOI: 10.3389/fgene.2019.01128] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023] Open
Abstract
The sex of Chinese tongue sole (Cynoglossus semilaevis) is determined by both genetic sex determination (GSD) and environmental sex determination (ESD), making it an ideal model to study the relationship between sex-determination and temperature. In the present study, transcriptomes of undifferentiated gonads from genetic females and males, as well as differentiated gonads from males, females, and pseudomales under high and normal temperature treatments were generated for comparative transcriptomic analysis. A mean of 68.24 M high-quality clean reads was obtained for each library. Differentially expressed genes (DEGs) between different sexes and environmental treatments were identified, revealing that the heat shock protein gene family was involved in the high temperature induced sex reversal. The Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were enriched in pseudomale and genetic female comparison included neuroactive ligand-receptor interaction, cortisol synthesis and secretion, and steroid hormone biosynthesis. Furthermore, weighted gene co-expression network analyses were conducted on all samples, and two modules were positive correlated with pseudomale under high temperature. An illustrated protein-protein interaction map of the module identified a hub gene, hsc70. These findings provide insights into the genetic network that is involved in sex determination and sexual differentiation, and improve our understanding of genes involved in sex reversal under high temperature.
Collapse
Affiliation(s)
- Qian Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Kaiqiang Liu
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Bo Feng
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhihua Zhang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Renkai Wang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lili Tang
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Wensheng Li
- Laizhou Mingbo Aquatic Co., Ltd., Laizhou, China
| | - Qiye Li
- BGI-Shenzhen, Shenzhen, China
| | - Francesc Piferrer
- Institut de Ciències del Mar (ICM), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
18
|
Chen SA, Hou J, Yao N, Xie C, Li D. Comparative transcriptome analysis of Triplophysa yarkandensis in response to salinity and alkalinity stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100629. [PMID: 31706977 DOI: 10.1016/j.cbd.2019.100629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022]
Abstract
Triplophysa yarkandensis, a fish belonging to the family Nemacheilidae, is distributed in the Tarim River, China, immediately north of the Qinghai-Tibet Plateau. Due to increasing salinity and alkalinity in the Tarim River, the habitats of T. yarkandensis have been seriously altered. To identify the genes and pathways that are important for responding to salinity and alkalinity stress, the gill transcriptomes of fish living under different salinity and alkalinity conditions were obtained using RNA sequencing. A total of 1,123,448,964 clean reads were obtained and assembled into 177,271 unigenes, with an average length of 1703 bp. Around 13,526 unigenes showed differential expression when comparing different salinity concentrations with the controls, 6967 of which were upregulated and 6559 were downregulated. When comparing different alkalinity concentrations with the controls, there were 17,475 unigenes that showed differential expression, of which 10,457 were upregulated and 7018 were downregulated. Only 146 unigenes were both differentially expressed in salinity and alkalinity groups compared to the control. The results of KEGG enrichment showed that there were five upregulated and 12 downregulated pathways in fish subject to salinity treatment. For fish exposed to alkalinity treatment, 15 pathways were upregulated and 13 downregulated. There were four upregulated and four downregulated pathways that were shared by fish subject to salinity and alkalinity treatments. To our knowledge, this is the first study on the T. yarkandensis transcriptome; the information presented here will provide further understanding of the fish's response to salinity and alkalinity stress, as well as further insight into the T. yarkandensis genome.
Collapse
Affiliation(s)
- Sheng-Ao Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; College of Animal Science, Tarim University, Alar 843300, China
| | - Jilun Hou
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Beijing 100141, China; Beidaihe Central Experimental Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Na Yao
- College of Animal Science, Tarim University, Alar 843300, China
| | - Congxin Xie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|