1
|
The sheep miRNAome: Characterization and distribution of miRNAs in 21 tissues. Gene X 2023; 851:146998. [DOI: 10.1016/j.gene.2022.146998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
|
2
|
Serum microRNAs targeting ACE2 and RAB14 genes distinguish asymptomatic from critical COVID-19 patients. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:76-87. [PMID: 35721225 PMCID: PMC9188110 DOI: 10.1016/j.omtn.2022.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/05/2022] [Indexed: 01/08/2023]
Abstract
Despite the extraordinary advances achieved to beat COVID-19 disease, many questions remain unsolved, including the mechanisms of action of SARS-CoV-2 and which factors determine why individuals respond so differently to the viral infection. Herein, we performed an in silico analysis to identify host microRNA targeting ACE2, TMPRSS2, and/or RAB14, all genes known to participate in viral entry and replication. Next, the levels of six microRNA candidates previously linked to viral and respiratory-related pathologies were measured in the serum of COVID-19-negative controls (n = 16), IgG-positive COVID-19 asymptomatic individuals (n = 16), and critical COVID-19 patients (n = 17). Four of the peripheral microRNAs analyzed (hsa-miR-32-5p, hsa-miR-98-3p, hsa-miR-423-3p, and hsa-miR-1246) were upregulated in COVID-19 critical patients compared with COVID-19-negative controls. Moreover, hsa-miR-32-5p and hsa-miR-1246 levels were also altered in critical versus asymptomatic individuals. Furthermore, these microRNA target genes were related to viral infection, inflammatory response, and coagulation-related processes. In conclusion, SARS-CoV-2 promotes the alteration of microRNAs targeting the expression of key proteins for viral entry and replication, and these changes are associated with disease severity. The microRNAs identified could be taken as potential biomarkers of COVID-19 progression as well as candidates for future therapeutic approaches against this disease.
Collapse
|
3
|
miRNA expression patterns in blood leukocytes and milk somatic cells of goats infected with small ruminant lentivirus (SRLV). Sci Rep 2022; 12:13239. [PMID: 35918371 PMCID: PMC9344810 DOI: 10.1038/s41598-022-17276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
The study aims to determine the selected miRNAs expression in milk somatic cells (MSC) and blood leukocytes (BL) of SRLV-seronegative (SRLV-SN) and SRLV-seropositive (SRLV-SP) goats. A functional in silico analysis of their target genes was also conducted. MiR-93-5p and miR-30e-5p were expressed only in BL, while miR-144 was expressed only in MSC, regardless of SRLV infection. In the SRLV-SP goats, higher miR-214-3p and miR-221-5p levels were found in the MSC than in the BL. Only miR-30e-5p was influenced by the lactation stage in BL in both groups, while only miR-93-5p was altered in BL of SRLV-SN goats. The target gene protein products exhibited contradictory functions, protecting the host from virus on the one hand and assisting viruses in their life cycle on the other. The differential expression of the miRNAs observed between the MSC and BL of SRLV-SP goats may suggest that the local immune response to the infection in the udder differs from the systemic response, and acts independently. Some miRNAs demonstrated different expression between lactation stages. It may be influenced by the metabolic burden occurring in early lactation and its peak. Some of the studied miRNAs may influence viral infection by regulating the expression of their target genes.
Collapse
|
4
|
Palakeel JJ, Ali M, Chaduvula P, Chhabra S, Lamsal Lamichhane S, Ramesh V, Opara CO, Khan FY, Kabiraj G, Kauser H, Mostafa JA. An Outlook on the Etiopathogenesis of Pulmonary Hypertension in HIV. Cureus 2022; 14:e27390. [PMID: 36046315 PMCID: PMC9418639 DOI: 10.7759/cureus.27390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
Although overall survival rates of patients infected with human immunodeficiency virus (HIV) have been significantly improved by antiretroviral therapy (ART), chronic comorbidities associated with HIV result in a worsening quality of life. Pulmonary arterial hypertension (PAH) is the most prevalent comorbidity associated with HIV infection. Despite low viremia and a non-replicative state maintained by ART, few people develop PAH. Previous data from animal models and human pulmonary microvascular endothelial cells (HPMVECs) suggests a constellation of events occurring during the propagation of HIV-associated PAH (HIV-PAH). However, these studies have not successfully isolated HIV virions, HIV-DNA, protein 24 antigen (p24), or HIV-RNA from the pulmonary endothelial cells (ECs). It provides an insight into an ongoing inflammatory process that could be attributed to viral proteins. Several studies have demonstrated the role of viral proteins on vascular remodeling. A composite of chronic inflammatory changes mediated by cytokines and growth factors along with several inciting risk factors such as Hepatitis C virus (HCV) co-infection, genetic factors, male predominance, illegal drug usage, and duration of HIV infection have led to molecular changes that result in an initial phase of apoptosis followed by the formation of apoptotic resistant hyperproliferative ECs with altered phenotype. This study aims to identify the risk factors and mechanisms behind HIV-PAH pathobiology at the host-pathogen interface at the intracellular level.
Collapse
|
5
|
Casas E, Falkenberg SM, Dassanayake RP, Register KB, Neill JD. MicroRNA profiles for different tissues from calves challenged with Mycoplasma bovis or challenged with Mycoplasma bovis and bovine viral diarrhea virus. PLoS One 2022; 17:e0271581. [PMID: 35862485 PMCID: PMC9302808 DOI: 10.1371/journal.pone.0271581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/03/2022] [Indexed: 11/18/2022] Open
Abstract
The objective was to determine differences in microRNAs (miRNAs) counts in several tissues of calves challenged with Mycoplasma bovis (M. bovis) or with M. bovis and bovine viral diarrhea virus (BVDV). Eight calves approximately 2 months of age were randomly assigned to three groups: Control (CT; n = 2), M. bovis (MB; n = 3), and Coinfection (CO; n = 3). On day 0, calves in CO were intranasally challenged with BVDV and calves in MB with M. bovis. On day 6, CO calves were challenged with M. bovis. Calves were euthanized 17 days post-challenge and serum (SER), white blood cells (WBC), liver (LIV), mesenteric (MLN) and tracheal-bronchial (TBLN) lymph nodes, spleen (SPL), and thymus (THY), were collected at necropsy. MiRNAs were extracted from each tissue from each calf. Significant (P< 0.01) differences in miRNAs expression were observed in SER, LIV, MLN, TBLN, SPL, and THY. There were no significant (P> 0.05) miRNAs in WBC. In SER, the CO group had levels of miR-1343-3p significantly higher than the CT and MB groups (P = 0.0071). In LIV and SPL, the CO group had the lowest counts for all significant miRNAs compared to CT and MB. In TBLN, the CT group had the highest counts of miRNAs, compared to MB and CO, in 14 of the 21 significant miRNAs. In THY, the CO group had the highest counts, in 4 of the 6 significant miRNAs compared to CT and MB. BVDV was associated with reduction of miRNAs in LIV, SPL, MLN, and TBLN, and M. bovis reduced counts of miRNAs in only TBLN. Measuring circulating miRNAs to assess disease condition or to develop intervention strategies to minimize respiratory diseases in cattle caused by BVDV or M. bovis will be of limited use unless an alternative approach is developed to use them as indicators of disease.
Collapse
Affiliation(s)
- Eduardo Casas
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
- * E-mail:
| | - Shollie M. Falkenberg
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
| | - Rohana P. Dassanayake
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
| | - Karen B. Register
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
| | - John D. Neill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, Iowa, United States of America
| |
Collapse
|
6
|
Pławińska-Czarnak J, Majewska A, Zarzyńska J, Bogdan J, Kaba J, Anusz K, Bagnicka E. Gene Expression Profile in Peripheral Blood Nuclear Cells of Small Ruminant Lentivirus-Seropositive and Seronegative Dairy Goats in Their First Lactation. Animals (Basel) 2021; 11:ani11040940. [PMID: 33810360 PMCID: PMC8066113 DOI: 10.3390/ani11040940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Caprine arthritis encephalitis, caused by small ruminant lentivirus (SRLV), is a disease that develops with various signs in adult goats, e.g., arthritis, mastitis, and progressive weight loss, while in goat kids, the disease presents with only neuropathy and extremely rarely. The disease results in reduced milk production and economic losses in herds of goats. Previously described changes in single gene expression do not fully explain all the processes occurring in the infected goats. Therefore, the present study describes the first use of a transcriptomic array designed specifically for goats in Poland. Its aim was to investigate the gene expression profiles of peripheral blood nuclear cells from SRLV-seropositive and SRLV-seronegative goats using a custom-made Capra hircus gene expression array. Just four genes out of ~50,000 were found to have differential expression; moreover, changes in their expression suggest an active inflammatory mechanism in SRLV-seropositive goats at the early stage of SRLV infection. Abstract The immune response to a viral antigen causes inflammatory cell infiltration to the tissue, which creates a suitable environment for the replication of the virus in macrophages, and the recruitment of more monocytes to the site of infection, or latently infected monocytes. The aim of the study was to analyze the transcriptomic profile of peripheral blood nuclear cells isolated from SRLV-seropositive and SRLV-negative goats at the peak of their first lactation. SRLV-seropositive goats were probably infected via colostrum. Custom transcriptomic microarrays for goats were designed and developed, namely the Capra hircus gene expression array, which features ~50,000 unique transcripts per microarray. Only four genes were differentially expressed, with up-regulated expression of the GIMAP2, SSC5D and SETX genes, and down-regulated expression of the GPR37 gene in SRLV-seropositive vs. SRLV-seronegative goats. However, in an RT-qPCR analysis, the result for the SETX gene was not confirmed. The differences in the expressions of the studied genes indicate an active inflammatory process in the SRLV-seropositive goats at the early stage of infection.
Collapse
Affiliation(s)
- Joanna Pławińska-Czarnak
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.Z.); (J.B.); (K.A.)
- Correspondence:
| | - Alicja Majewska
- Department of Physiology Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Joanna Zarzyńska
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.Z.); (J.B.); (K.A.)
| | - Janusz Bogdan
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.Z.); (J.B.); (K.A.)
| | - Jarosław Kaba
- Division of Epidemiology and Veterinary Management, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (J.Z.); (J.B.); (K.A.)
| | - Emilia Bagnicka
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postepu 36A, Jastrzebiec, 05-552 Magdalenka, Poland;
| |
Collapse
|
7
|
miRNA Regulatory Functions in Farm Animal Diseases, and Biomarker Potentials for Effective Therapies. Int J Mol Sci 2021; 22:ijms22063080. [PMID: 33802936 PMCID: PMC8002598 DOI: 10.3390/ijms22063080] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous RNAs that regulate gene expression post-transcriptionally by targeting either the 3′ untranslated or coding regions of genes. They have been reported to play key roles in a wide range of biological processes. The recent remarkable developments of transcriptomics technologies, especially next-generation sequencing technologies and advanced bioinformatics tools, allow more in-depth exploration of messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs), including miRNAs. These technologies have offered great opportunities for a deeper exploration of miRNA involvement in farm animal diseases, as well as livestock productivity and welfare. In this review, we provide an overview of the current knowledge of miRNA roles in major farm animal diseases with a particular focus on diseases of economic importance. In addition, we discuss the steps and future perspectives of using miRNAs as biomarkers and molecular therapy for livestock disease management as well as the challenges and opportunities for understanding the regulatory mechanisms of miRNAs related to disease pathogenesis.
Collapse
|
8
|
Miretti S, Lecchi C, Ceciliani F, Baratta M. MicroRNAs as Biomarkers for Animal Health and Welfare in Livestock. Front Vet Sci 2020; 7:578193. [PMID: 33392281 PMCID: PMC7775535 DOI: 10.3389/fvets.2020.578193] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved non-coding RNA molecules that orchestrate a wide range of biological processes through the post-transcriptional regulation of gene expression. An intriguing aspect in identifying these molecules as biomarkers is derived from their role in cell-to-cell communication, their active secretion from cells into the extracellular environment, their high stability in body fluids, and their ease of collection. All these features confer on miRNAs the potential to become a non-invasive tool to score animal welfare. There is growing interest in the importance of miRNAs as biomarkers for assessing the welfare of livestock during metabolic, environmental, and management stress, particularly in ruminants, pigs, and poultry. This review provides an overview of the current knowledge regarding the potential use of tissue and/or circulating miRNAs as biomarkers for the assessment of the health and welfare status in these livestock species.
Collapse
Affiliation(s)
- Silvia Miretti
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Cristina Lecchi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Fabrizio Ceciliani
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| |
Collapse
|