1
|
Chen B, Yuan C, Guo T, Liu J, Yang B, Lu Z. The molecular regulated mechanism of METTL3 and FTO in lipid metabolism of Hu sheep. Genomics 2024; 116:110945. [PMID: 39341298 DOI: 10.1016/j.ygeno.2024.110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Balanced lipid metabolism can improve the growth performance and meat quality of livestock. The m6A methylation-related genes METTL3 and FTO play important roles in animal lipid metabolism; however, the mechanism through which they regulate lipid metabolism in sheep is unclear. RESULTS We established lipid deposition models of hepatocytes and preadipocytes in Hu sheep. In the hepatocyte lipid deposition model, the genes expression levels of FABP4, Accα, ATGL and METTL3, METTL14, and FTO-were significantly up-regulated after lipid deposition (P < 0.05). Transcriptomic and metabolomic analyses showed that lipid deposition had a significant effect on MAPK, steroid biosynthesis, and glycerophospholipid metabolism pathway in hepatocytes. The m6A methylation level decreased but the difference was not significant after METTL3 interference, and the expression levels of FABP4 and ATGL increased significantly (P < 0.05); the m6A methylation level significantly increased following METTL3 overexpression, and LPL and ATGL expression levels significantly decreased (P < 0.05), indicating that overexpression of METTL3 inhibited the expression of lipid deposition-related genes in a m6A-dependent manner. The m6A methylation level was significantly increased, ATGL expression was significantly decreased (P < 0.05), and LPL, FABP4, and Accα expression was not significantly changed following FTO interference (P > 0.05); the m6A methylation level was significantly decreased after FTO overexpression, and LPL, FABP4, and ATGL expression was significantly increased (P < 0.05), indicating that FTO overexpression increased the expression of lipid deposition-related genes in a m6A-dependent manner. Transcriptomic and metabolomic analyses showed that m6A methylation modification mainly regulated lipid metabolism through triglyceride metabolism, adipocytokine signaling, MAPK signaling, and fat digestion and absorption in hepatocytes. In the lipid deposition model of preadipocytes, the regulation of gene expression is the same as that in hepatocytes. CONCLUSIONS METTL3 significantly inhibited the expression of lipid deposition-related genes, whereas FTO overexpression promoted lipid deposition. Our study provides a theoretical basis and reference for accurately regulating animal lipid deposition by mastering METTL3 and FTO genes to promote high-quality animal husbandry.
Collapse
Affiliation(s)
- Bowen Chen
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Bohui Yang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
| |
Collapse
|
2
|
Yang S, Deng H, Zhu J, Shi Y, Luo J, Chen T, Sun J, Zhang Y, Xi Q. Organic Trace Elements Improve the Eggshell Quality via Eggshell Formation Regulation during the Late Phase of the Laying Cycle. Animals (Basel) 2024; 14:1637. [PMID: 38891684 PMCID: PMC11170995 DOI: 10.3390/ani14111637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The quality of eggshells is critical to the egg production industry. The addition of trace elements has been shown to be involved in eggshell formation. Organic trace elements have been found to have higher biological availability than inorganic trace elements. However, the effects of organic trace elements additive doses on eggshell quality during the laying period of commercial laying hens required further investigation. This experiment aims to explore the potential mechanisms of different doses of organic trace elements replacing inorganic elements to remodel the eggshell quality of egg-laying hens during the laying period. A total of 360 healthy hens (Lohmann Pink, 45-week-old) were randomly divided into four treatments, with six replications per treatment and 15 birds per replication. The dietary treatments included a basal diet supplemented with inorganic iron, copper, zinc and manganese at commercial levels (CON), a basal diet supplemented with organic iron, copper, zinc and manganese at 20% commercial levels (LOT), a basal diet supplemented with organic iron, copper, zinc and manganese at 30% commercial levels (MOT), and a basal diet supplemented with organic iron, copper, zinc and manganese at 40% commercial levels (HOT). The trial lasted for 8 weeks. The results of the experiment showed that the replacement of organic trace elements did not significantly affect the production performance of laying hens (p > 0.05). Compared with inorganic trace elements, the MOT and HOT groups improved the structure of the eggshells, enhanced the hardness and thickness of the eggshells, increased the Haugh unit of the eggs, reduced the proportion of the mammillary layer in the eggshell, and increased the proportion of the palisade layer (p < 0.05). In addition, the MOT and HOT groups also increased the enzyme activity related to carbonate transport in the blood, the expression of uterine shell gland-related genes (CA2, OC116, and OCX32), and the calcium and phosphorus content in the eggshells (p < 0.05). We also found that the MOT group effectively reduced element discharge in the feces and enhanced the transportation of iron (p < 0.05). In conclusion, dietary supplementation with 30-40% organic micronutrients were able to improve eggshell quality in aged laying hens by modulating the activity of serum carbonate transport-related enzymes and the expression of eggshell deposition-related genes.
Collapse
Affiliation(s)
- Songfeng Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
- Guangdong Xingtengke Biotechnology Co., Ltd., Zhaoqing 526000, China
| | - Haibin Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Jiahao Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Yiru Shi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Ting Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Jiajie Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (S.Y.); (H.D.); (J.Z.); (Y.S.); (J.L.); (T.C.); (J.S.)
| |
Collapse
|
3
|
Sun T, Xiao C, Yang Z, Deng J, Yang X. Transcriptome profiling analysis of uterus during chicken laying periods. BMC Genomics 2023; 24:433. [PMID: 37537566 PMCID: PMC10398974 DOI: 10.1186/s12864-023-09521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
The avian eggshell is formed in the uterus. Changes in uterine function may have a significant effect on eggshell quality. To identify the vital genes impacting uterine functional maintenance in the chicken, uteri in three different periods (22W, 31W, 51W) were selected for RNA sequencing and bioinformatics analysis. In our study, 520, 706 and 736 differentially expressed genes (DEGs) were respectively detected in the W31 vs W22 group, W51 vs W31 group and W51 vs W22 group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated DEGs were enriched in the extracellular matrix, extracellular region part, extracellular region, extracellular matrix structural constituent, ECM receptor interaction, collagen-containing extracellular matrix and collagen trimer in the uterus (P < 0.05). Protein-protein interaction analysis revealed that FN1, LOX, THBS2, COL1A1, COL1A2, COL5A1, COL5A2, POSTN, MMP13, VANGL2, RAD54B, SPP1, SDC1, BTC, ANGPTL3 might be key candidate genes for uterine functional maintenance in chicken. This study discovered dominant genes and pathways which enhanced our knowledge of chicken uterine functional maintenance.
Collapse
Affiliation(s)
- Tiantian Sun
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Cong Xiao
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhuliang Yang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jixian Deng
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Chen B, Yuan C, Guo T, Liu J, Yang B, Lu Z. Molecular Mechanism of m6A Methylation Modification Genes METTL3 and FTO in Regulating Heat Stress in Sheep. Int J Mol Sci 2023; 24:11926. [PMID: 37569302 PMCID: PMC10419070 DOI: 10.3390/ijms241511926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Heat stress is an important environmental factor affecting livestock production worldwide. Primary hepatocytes and preadipocytes derived from Hu sheep were used to establish a heat stress model. Quantitative reverse transcriptase-PCR (qRT-PCR) analysis showed that heat induction significantly increased the expression levels of heat stress protein (HSP) genes and the N6-methyladenosine (m6A) methylation modification genes: methyltransferase-like protein 3 (METTL3), methyltransferase-like protein 14 (METTL14), and fat mass and obesity associated protein (FTO). Heat stress simultaneously promoted cell apoptosis. Transcriptome sequencing identified 3980 upregulated genes and 2420 downregulated genes related to heat stress. A pathway enrichment analysis of these genes revealed significant enrichment in fatty acid biosynthesis, degradation, and the PI3K-Akt and peroxisome proliferator-activated receptor (PPAR) signaling pathways. Overexpression of METTL3 in primary hepatocytes led to significant downregulation of HSP60, HSP70, and HSP110, and significantly increased mRNA m6A methylation; FTO interference generated the opposite results. Primary adipocytes showed similar results. Transcriptome analysis of cells under METTL3 (or FTO) inference and overexpression revealed differentially expressed genes enriched in the mitogen-activated protein kinase (MAPK) signaling pathways, as well as the PI3K-Akt and Ras signaling pathways. We speculate that METTL3 may increase the level of m6A methylation to inhibit fat deposition and/or inhibit the expression of HSP genes to enhance the body's resistance to heat stress, while the FTO gene generated the opposite molecular mechanism. This study provides a scientific basis and theoretical support for sheep feeding and management practices during heat stress.
Collapse
Affiliation(s)
- Bowen Chen
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Bohui Yang
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (B.C.); (C.Y.); (T.G.); (J.L.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
5
|
Effects of Selenium Yeast on Egg Quality, Plasma Antioxidants, Selenium Deposition and Eggshell Formation in Aged Laying Hens. Animals (Basel) 2023; 13:ani13050902. [PMID: 36899759 PMCID: PMC10000209 DOI: 10.3390/ani13050902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Internal egg and eggshell quality are often deteriorated in aging laying hens, which causes huge economic losses in the poultry industry. Selenium yeast (SY), as an organic food additive, is utilized to enhance laying performance and egg quality. To extend the egg production cycle, effects of selenium yeast supplementation on egg quality, plasma antioxidants and selenium deposition in aged laying hens were evaluated. In this study, five hundred and twenty-five 76-week-old Jing Hong laying hens were fed a selenium-deficient (SD) diet for 6 weeks. After Se depletion, the hens were randomly divided into seven treatments, which included an SD diet, and dietary supplementation of SY and sodium selenite (SS) at 0.15, 0.30, and 0.45 mg/kg to investigate the effect on egg quality, plasma antioxidant capacity, and selenium content in reproductive organs. After 12 weeks of feeding, dietary SY supplementation resulted in higher eggshell strength (SY0.45) (p < 0.05) and lower shell translucence. Moreover, organs Se levels and plasma antioxidant capacity (T-AOC, T-SOD, and GSH-Px activity) were significantly higher with Se supplementation (p < 0.05). Transcriptomic analysis identified some key candidate genes including cell migration inducing hyaluronidase 1 (CEMIP), ovalbumin (OVAL), solute carrier family 6 member 17 (SLC6A17), proopiomelanocortin (POMC), and proenkephalin (PENK), and potential molecular processes (eggshell mineralization, ion transport, and eggshell formation) involved in selenium yeast's effects on eggshell formation. In conclusion, SY has beneficial functions for eggshell and we recommend the supplementation of 0.45 mg/kg SY to alleviate the decrease in eggshell quality in aged laying hens.
Collapse
|
6
|
Chang Y, Zhang X, Murchie AIH, Chen D. Transcriptome profiling in response to Kanamycin B reveals its wider non-antibiotic cellular function in Escherichia coli. Front Microbiol 2022; 13:937827. [DOI: 10.3389/fmicb.2022.937827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Aminoglycosides are not only antibiotics but also have wider and diverse non-antibiotic cellular functions. To elucidate the understanding of non-antibiotic cellular functions, here we report transcriptome-profiling analysis of Escherichia coli in the absence or presence of 0.5 and 1 μM of Kanamycin B, concentrations that are neither lethal nor inhibit growth, and identified the differentially expressed genes (DEGs) at two given concentrations of Kanamycin B. Functional classification of the DEGs revealed that they were mainly related to microbial metabolism including two-component systems, biofilm formation, oxidative phosphorylation and nitrogen metabolism in diverse environments. We further showed that Kanamycin B and other aminoglycosides can induce reporter gene expression through the 5′ UTR of napF gene or narK gene (both identified as DEG) and Kanamycin B can directly bind to the RNA. The results provide new insights into a better understanding of the wider aminoglycosides cellular function in E. coli rather than its known antibiotics function.
Collapse
|
7
|
Du X, Cui Z, Ning Z, Deng X, Amevor FK, Shu G, Wang X, Zhang Z, Tian Y, Zhu Q, Wang Y, Li D, Zhang Y, Zhao X. Circadian miR-218-5p targets gene CA2 to regulate uterine carbonic anhydrase activity during egg shell calcification. Poult Sci 2022; 101:102158. [PMID: 36167021 PMCID: PMC9513254 DOI: 10.1016/j.psj.2022.102158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/29/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in regulating the circadian clock. In our previous work, miR-218-5p was found to be a circadian miRNA in the chicken uterus, but its role in the eggshell formation process was not clear. In the present study, we found that the expression levels of miR-218-5p and two 2 predicted target genes carbonic anhydrase 2 (CA2) and neuronal PAS domain protein 2 (NPAS2) were oscillated in the chicken uterus. The results of dual-luciferase reporter gene assays in the present study demonstrated that miR-218-5p directly targeted the 3' untranslated regions of CA2 and NPAS2. miR-218-5p showed an opposite expression profile to CA2 within a 24 h cycle in the chicken uterus. Moreover, over-expression of miR-218-5p reduced the mRNA and protein expression of CA2, while miR-218-5p knockdown increased CA2 mRNA and protein expression. Overexpression of CA2 also significantly increased the activity of carbonic anhydrase Ⅱ (P < 0.05), whereas knockdown of CA2 decreased the activity of carbonic anhydrase Ⅱ. miR-218-5p influenced carbonic anhydrase activity via regulating the expression of CA2. These results demonstrated that clock-controlled miR-218-5p regulates carbonic anhydrase activity in the chicken uterus by targeting CA2 during eggshell formation.
Collapse
Affiliation(s)
- Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Xiaoqi Wang
- Agriculture and Animal Husbandry Comprehensive Service Center, Tibet Autonomous Region, P. R. China
| | - Zhichao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agricultural and Rural Affairs, College of Animal and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, P. R., Chengdu, China.
| |
Collapse
|
8
|
Wu Y, Sun Y, Zhang H, Xiao H, Pan A, Shen J, Pu Y, Liang Z, Du J, Pi J. Multiomic analysis revealed the regulatory role of the KRT14 gene in eggshell quality. Front Genet 2022; 13:927670. [PMID: 36212119 PMCID: PMC9536113 DOI: 10.3389/fgene.2022.927670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Eggshell strength and thickness are critical factors in reducing the egg breaking rate and preventing economic losses. The calcite biomineralization process is very important for eggshell quality. Therefore, we employed transcriptional sequencing and proteomics to investigate the differences between the uteruses of laying hens with high- and low-breaking-strength shells. Results: A total of 1,028 differentially expressed genes (DEGs) and 270 differentially expressed proteins (DEPs) were identified. The analysis results of GO terms and KEGG pathways showed that most of the DEGs and DEPs were enriched in vital pathways related to processes such as calcium metabolism, hormone and amino acid biosynthesis, and cell proliferation and apoptosis. Several DEGs and DEPs that were coexpressed at mRNA and protein levels were verified. KRT14 (keratin-14) is a candidate gene (protein) obtained by multiple omics analysis due to the fold difference of KRT14 being the largest. After the overexpression of KRT14 in uterine epithelial cells, the expressions of OC116 (ovocleididin-116), CALB1 (calbindin 1), and BST1 (ADP-ribosyl cyclase 2) were found to be increased significantly, while the expression of OC17 (ovocleididin-17) was found to be decreased significantly. Conclusion: In summary, this study confirms that during normal calcification, there are differences in ion transport between the uterus of hens producing high-breaking-strength eggshells and those producing low-breaking-strength eggshells, which may help elucidate the eggshell calcification process. The KRT14 gene may promote calcium metabolism and deposition of calcium carbonate in eggshells.
Collapse
Affiliation(s)
- Yan Wu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Wuhan, China
| | - Yanyan Sun
- Institute of Animal Sciences of CAAS, Beijing, China
| | - Hao Zhang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Hongwei Xiao
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Ailuan Pan
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jie Shen
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Yuejin Pu
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Zhenhua Liang
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jinping Du
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
- *Correspondence: Jinsong Pi,
| |
Collapse
|
9
|
Dong Y, Zhang K, Han M, Miao Z, Liu C, Li J. Low Level of Dietary Organic Trace Minerals Improved Egg Quality and Modulated the Status of Eggshell Gland and Intestinal Microflora of Laying Hens During the Late Production Stage. Front Vet Sci 2022; 9:920418. [PMID: 35847638 PMCID: PMC9278061 DOI: 10.3389/fvets.2022.920418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/03/2022] [Indexed: 11/14/2022] Open
Abstract
This study aimed to investigate the effects of dietary organic trace minerals on egg quality and intestinal microflora of laying hens during the late production stage. In total, 1,080 Jinghong-1 laying hens aged 57 weeks were randomly assigned to five treatment groups: CON, basal diet containing about 6, 29, 49, and 308 mg·kg−1 of Cu, Mn, Zn, and Fe; IT100, basal diet supplemented with 10, 80, 80, and 60 mg·kg−1 of Cu, Mn, Zn, and Fe (each as inorganic sulfates), respectively; OT20, basal diet supplemented with 2, 16, 16, and 12 mg·kg−1 of Cu, Mn, Zn, and Fe (each as organic trace minerals chelated with lysine and methionine in the ratio of 2:1 amino acid: organic trace minerals), respectively; OT30, basal diet supplemented with 3, 24, 24, and 18 mg·kg−1 of organic Cu, Mn, Zn, and Fe, respectively; and OT50, basal diet supplemented with 5, 40, 40, and 30 mg·kg−1 of organic Cu, Mn, Zn, and Fe, respectively. Overall, OT20, OT30, and OT50 had equal or higher potential to promote Cu, Mn, Zn, and Fe deposition in egg yolks compared with IT100. In addition, OT50 enhanced the eggshell breaking strength and the antioxidant status of the eggshell gland. Cecal microbiota, including Barnesiellaceae and Clostridia, were significantly decreased in IT100- and OT50-treated hens compared with the CON group. Clostridia UCG-014 was negatively correlated with eggshell weight and OCX-32. In conclusion, reduced supplementation of organic trace minerals can improve the eggshell quality and trace mineral deposition, possibly by modulating genes involved in the eggshell formation in the eggshell gland and by controling of the potentially harmful bacteria Barnesiellaceae and Clostridiales in the cecum. Inorganic trace minerals may be effectively replaced by low level of complex organic trace minerals in laying hens during the late production stage.
Collapse
Affiliation(s)
- Yuanyang Dong
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Keke Zhang
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Miaomiao Han
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Zhiqiang Miao
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Ci Liu
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Jianhui Li
- Department of Livestock Production, College of Animal Science, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
10
|
Xiong X, Zhou M, Zhu X, Tan Y, Wang Z, Gong J, Xu J, Wen Y, Liu J, Tu X, Rao Y. RNA Sequencing of the Pituitary Gland and Association Analyses Reveal PRKG2 as a Candidate Gene for Growth and Carcass Traits in Chinese Ningdu Yellow Chickens. Front Vet Sci 2022; 9:892024. [PMID: 35782572 PMCID: PMC9244401 DOI: 10.3389/fvets.2022.892024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022] Open
Abstract
Growth and carcass traits are of great economic importance to the chicken industry. The candidate genes and mutations associated with growth and carcass traits can be utilized to improve chicken growth. Therefore, the identification of these genes and mutations is greatly importance. In this study, a total of 17 traits related to growth and carcass were measured in 399 Chinese Ningdu yellow chickens. RNA sequencing (RNA-seq) was performed to detect candidate genes using 12 pituitary gland samples (six per group), which exhibited extreme growth and carcass phenotypes: either a high live weight and carcass weight (H group) or a low live weight and carcass weight (L group). A differential expression analysis, utilizing RNA-seq, between the H and L groups identified 428 differentially expressed genes (DEGs), including 110 up-regulated genes and 318 down-regulated genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the identified genes showed a significant enrichment of 158 GO terms and two KEGG pathways, including response to stimulus and neuroactive ligand-receptor interaction, respectively. Furthermore, RNA-seq data, qRT–PCR, and quantitative trait transcript (QTT) analysis results suggest that the PRKG2 gene is an important candidate gene for growth and carcass traits of Chinese Ningdu yellow chickens. More specifically, association analyses of a single nucleotide polymorphism (SNP) in PRKG2 and growth and carcass traits showed that the SNP rs16400745 was significantly associated with 12 growth and carcass traits (P < 0.05), such as carcass weight (P = 9.68E-06), eviscerated weight (P = 3.04E-05), and semi-eviscerated weight (P = 2.14E-04). Collectively, these results provide novel insights into the genetic basis of growth in Chinese Ningdu yellow chickens and the SNP rs16400745 reported here could be incorporated into the selection programs involving this breed.
Collapse
Affiliation(s)
- Xinwei Xiong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
- *Correspondence: Xinwei Xiong
| | - Min Zhou
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Xuenong Zhu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Yuwen Tan
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Zhangfeng Wang
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Jishang Gong
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Jiguo Xu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Yafang Wen
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Jianxiang Liu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Xutang Tu
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
| | - Yousheng Rao
- Institute of Biological Technology, Nanchang Normal University, Nanchang, China
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang, China
- Yousheng Rao
| |
Collapse
|
11
|
Nimisha K, Srikanth K, Velayutham D, Nandan D, Sankaralingam S, Nagarajan M. Comparative liver transcriptome analysis of duck reveals potential genes associated with egg production. Mol Biol Rep 2022; 49:5963-5972. [PMID: 35476172 DOI: 10.1007/s11033-022-07380-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/30/2022] [Accepted: 03/16/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Molecular studies on egg production in ducks were mostly focused on brain and ovaries as they are directly involved in egg production. Liver plays a vital role in cellular lipid metabolism. It also plays a decisive role in reproductive organ development, including yolk generation in laying ducks at sexual maturity. However, the precise molecular mechanism involved in the liver-blood-ovary axis in ducks remains elusive. METHODS AND RESULTS In this study, we analysed the liver transcriptome of laying (LA), immature (IM) and broody (BR) ducks using RNA sequencing to understand the role of genes expressed in the liver. The comparative transcriptome analysis revealed 82 DEGs between LA and IM ducks, 47 DEGs between LA and BR ducks and 51 DEGs between IM and BR ducks. GO analysis of DEGs, showed that DEGs were mainly involved in cellular anatomical entity, intracellular, metabolic process, and binding. Furthermore, pathway analysis indicated the important role of Wnt signaling pathway in egg formation and embryo development. Our study showed several candidate genes including vitellogenin-1, vitellogenin-2, riboflavin binding protein, G protein subunit gamma 4, and fatty acid binding protein 3 that are potentially related to egg production in ducks. CONCLUSIONS The study provides valuable information on the genes responsible for egg production and thus, pave the way for further investigation on the molecular mechanisms of egg production in duck.
Collapse
Affiliation(s)
- Koodali Nimisha
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, 671316, Kasaragod, Kerala, India
| | - Krishnamoorthy Srikanth
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, 14853, Ithaca, NY, United States
| | | | - Dharam Nandan
- AgriGenome Labs Pvt. Ltd, 682042, Kochi, Kerala, India
| | - Shanmugam Sankaralingam
- Department of Poultry Science, College of Veterinary and Animal Sciences, 680 651, Mannuthy, Thrissur, Kerala, India
| | - Muniyandi Nagarajan
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, 671316, Kasaragod, Kerala, India.
| |
Collapse
|
12
|
Zhang Z, Du X, Lai S, Shu G, Zhu Q, Tian Y, Li D, Wang Y, Yang J, Zhang Y, Zhao X. A transcriptome analysis for 24-hour continuous sampled uterus reveals circadian regulation of the key pathways involved in eggshell formation of chicken. Poult Sci 2021; 101:101531. [PMID: 34823187 PMCID: PMC8628016 DOI: 10.1016/j.psj.2021.101531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022] Open
Abstract
Circadian timing system controlled the rhythmic events, for example, ovulation and oviposition in chickens. However, how biological clock mediates eggshell formation remains obscure. Here, A 24-h mRNA transcriptome analysis was carried out in the uterus of 18 chickens with similar oviposition time points to identify the rhythmic genes and to reveal critical genes and biological pathways involved in the eggshell biomineralization. JTK_CYCLE analysis and real-time PCR revealed a total of 1,793 genes from the sequencing database with 23,513 genes (FPKM>1) were rhythmic genes regulating the rhythmic system and the expression of typical clock genes Per2, Cry1, Bmal1, Clock, Per3, and Rev-erbβ were rhythmically expressed, which suggested that endogenous clock in uterus might control the eggshell mineralization. Time of peak expression of the rhythmic genes was analyzed based on their acrophase. The main phases clustered at the periods from Zeitgeber time 0 (ZT0) to ZT4 (6:00–10:00) and from ZT10 to ZT14 (16:00-20:00). The rhythmic genes were annotated to the following Gene Ontology terms rhythmic process, lyase, ATP binding, cell membrane component. KEGG pathway enrichment analysis revealed the top 15 rhythmic genes were involved in vital biological pathways, including syndecan (1, 2, 3)-mediated signaling, post-translational regulation of adheres junction stability and disassembly, FoxO family signaling, TGF-β receptor and transport of small molecular pathways. 166 of total 1,235 genes (13.4%) were defined as rhythmic transfer factors (TFs) and they were investigated expression time distribution of cis-elements of circadian clock system D-box, E-box, B-site, and Y-Box within 24 h. Results indicated that rhythmic TFs at each phase are potential drivers of their circadian transcription activities. Compared with the control, the expression abundances of ion transport elements SCNN1G, CA2, SPP1, and ATP1B1 were significantly decreased after the interference of Bmal1 gene in synchronized uterine tubular gland cells. Clock genes changed their expression along with the eggshell formation, indicating that there is circadian clock in the uterus of chicken and it regulates the expression of eggshell formation genes.
Collapse
Affiliation(s)
- Zhichao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, PR China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, PR China
| | - Shuang Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, PR China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, PR China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, PR China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, PR China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, PR China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, PR China
| | - Jiandong Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, PR China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, PR China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan Province, PR China.
| |
Collapse
|
13
|
Chen X, He Z, Li X, Song J, Huang M, Shi X, Li X, Li J, Xu G, Zheng J. Cuticle deposition duration in the uterus is correlated with eggshell cuticle quality in White Leghorn laying hens. Sci Rep 2021; 11:22100. [PMID: 34764400 PMCID: PMC8586345 DOI: 10.1038/s41598-021-01718-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022] Open
Abstract
The cuticle formed in the uterus is the outermost layer as the first defense line of eggshell against microbial invasions in most avian species, and analyzing its genetic regulation and influencing factors are of great importance to egg biosecurity in poultry production worldwide. The current study compared the uterine transcriptome and proteome of laying hens producing eggs with good and poor cuticle quality (GC and PC, the top and tail of the cuticle quality distribution), and identified several genes involved with eggshell cuticle quality (ESCQ). Overall, transcriptomic analysis identified 53 differentially expressed genes (DEGs) between PC versus GC group hens, among which 25 were up-regulated and 28 were down-regulated. No differences were found in the uterine proteome. Several DEGs, including PTGDS, PLCG2, ADM and PRLR related to uterine functions and reproductive hormones, were validated by qPCR analysis. Egg quality measurements between GC and PC hens showed GC hens had longer laying interval between two consecutive ovipositions (25.64 ± 1.23 vs 24.94 ± 1.12 h) and thicker eggshell thickness (352.01 ± 23.04 vs 316.20 ± 30.58 μm) (P < 0.05). Apart from eggshell traits, other egg quality traits didn't differ. The result demonstrated eggshell and cuticle deposition duration in the uterus is one of the major factors affecting ESCQ in laying hens. PTGDS, PLCG2, ADM and PRLR genes were discovered and might play crucial roles in cuticle deposition by regulating the uterine muscular activities and secretion function. The findings in the present study provide new insights into the genetic regulation of cuticle deposition in laying hens and establish a foundation for further investigations.
Collapse
Affiliation(s)
- Xia Chen
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhaoxiang He
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xingzheng Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agriculture Sciences, Shenzhen, 440307, China
| | - Jianlou Song
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingyi Huang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Shi
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xianyu Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junying Li
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Guiyun Xu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiangxia Zheng
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Khogali MK, Wen K, Jauregui D, Liu L, Zhao M, Gong D, Geng T. Uterine structure and function contributes to the formation of the sandpaper-shelled eggs in laying hens. Anim Reprod Sci 2021; 232:106826. [PMID: 34403835 DOI: 10.1016/j.anireprosci.2021.106826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022]
Abstract
The avian eggshell is formed in the uterus, and eggshell quality usually decreases markedly in the late phase of hen laying cycles. Production of sandpaper-shelled eggs (SE), a category of eggs with relatively less eggshell quality, causes a great economic loss. Underlying mechanisms of SE formation, however, remain unclear. For the present study, it was hypothesized that alterations in uterine structure and function contribute to SE formation. To test this hypothesis, uterine samples were collected from 450-day-old hens that produced normal eggs (NE) and SE (based on 2-week-long assessments, n = 10) for histomorphological and transcriptome analyses. Compared with the NE group, uteri of the SE group were apparently atrophied. Furthermore, a total of 211 differentially expressed genes (DEGs) were identified in the uteri of hens of the two groups. These DEGs were clustered into 145 gene ontology terms (FDR < 0.05) and enriched in 12 KEGG pathways (P < 0.10), which are primarily related to organ morphogenesis and development, cell growth, differentiation and death, ion transport, endocrine and cell communication, immune response, and corticotropin-releasing hormones. In particular, corticotropin may be an important factor in SE formation because of effects on ion transport. Furthermore, as indicated by lesser abundances of relevant mRNA transcripts, the lesser expression of genes related to ion transport and matrix proteins also contribute to SE production because of effects on eggshell formation. In conclusion, results from this study revealed there were structural and functional differences in the hen uterus in NE and SE groups.
Collapse
Affiliation(s)
- Mawahib K Khogali
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Department of Poultry Production, Faculty of Animal Production, University of Khartoum, Khartoum, 13314, Sudan
| | - Kang Wen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Diego Jauregui
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu Province, PR China.
| |
Collapse
|
15
|
Feng J, Zhang HJ, Wu SG, Qi GH, Wang J. Uterine transcriptome analysis reveals mRNA expression changes associated with the ultrastructure differences of eggshell in young and aged laying hens. BMC Genomics 2020; 21:770. [PMID: 33167850 PMCID: PMC7654033 DOI: 10.1186/s12864-020-07177-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Background Lower eggshell quality in the late laying period leads to economic loss. It is a major threat to the quality and safety of egg products. Age-related variations in ultrastructure were thought to induce this deterioration. Eggshell formation is a highly complex process under precise regulation of genes and biological pathways in uterus of laying hens. Herein, we evaluated the physical, mechanical and ultrastructure properties of eggshell and conducted RNA sequencing to learn the transcriptomic differences in uterus between laying hens in the peak (young hens) and late phase (aged hens) of production. Results The declined breaking strength and fracture toughness of eggshell were observed in aged hen group compared to those in young hen group, accompanied with ultrastructure variations including the increased thickness of mammillary layer and the decreased incidence of early fusion. During the initial stage of eggshell formation, a total of 183 differentially expressed genes (DEGs; 125 upregulated and 58 downregulated) were identified in uterus of laying hens in the late phase in relative to those at peak production. The DEGs annotated to Gene Ontology terms related to antigen processing and presentation were downregulated in aged hens compared to young hens. The contents of proinflammatory cytokine IL-1β in uterus were higher in aged hens relative to those in young hens. Besides, the genes of some matrix proteins potentially involved in eggshell mineralization, such as ovalbumin, versican and glypican 3, were also differentially expressed between two groups. Conclusions Altered gene expression of matrix proteins along with the compromised immune function in uterus of laying hens in the late phase of production may conduce to age-related impairments of eggshell ultrastructure and mechanical properties. The current study enhances our understanding of the age-related deteriorations in eggshell ultrastructure and provides potential targets for improvement of eggshell quality in the late laying period. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12864-020-07177-7.
Collapse
Affiliation(s)
- Jia Feng
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hai-Jun Zhang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shu-Geng Wu
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guang-Hai Qi
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jing Wang
- Laboratory of Quality & Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of the Ministry of Agriculture & Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
16
|
Lu L, Xu X, Du X, Zeng T, Yang T, Chen Y, Tao Z, Zhong S, Wen J, Zhou C. Transcriptome analyses to reveal the dynamic change mechanism of pigeon magnum during one egg-laying cycle. Mol Reprod Dev 2020; 87:1141-1151. [PMID: 33084116 DOI: 10.1002/mrd.23428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 09/12/2020] [Indexed: 12/14/2022]
Abstract
We analyzed the transcriptome of pigeon magnum in three stages (C1: pre-ovulation, C2: post-ovulation, C3: 5-6 days after ovulation) to elucidate the molecular and cellular events associated with morphological changes during the laying cycle. We observed that C1 was highly developed, apoptosis rate was highest in C2, and C3 attained the smallest size. Through RNA-sequencing, we obtained 54,764,938 (97.2%) high-quality clean reads that aligned to 20,767 genes. Gene expression profile analysis showed the greatest difference between C1 and C3; 3966 differentially expressed genes (DEGs) were identified, of which 2250 genes were upregulated and 1716 genes were downregulated in C1. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that protein processing and transport activities were prominent in C1, and upregulated genes included those related to signal recognition particle (SRP), signal recognition particle receptor (SRPR), translocon, GRP78, RRBP1, TRAP, TRAM1, and OST. Egg white protein-related gene expression was highest, with OVALY being the most highly expressed. In C2, apoptosis-related gene expression was higher than in C1, and fatty acid metabolism was active, which may be correlated with magnum tissue regression. Collagen- and laminin-related gene expression was prominent in C1 and C3, indicating roles in egg white protein generation and magnum reconstruction. PR gene expression was highest and exhibited drastic change in the three groups, indicating that PR and its regulation may be involved in changes in magnum morphology and function. Through the identification and functional analysis of DEGs and other crucial genes, this may contribute to understand the egg white protein production, magnum tissue regression, and magnum regeneration mechanisms.
Collapse
Affiliation(s)
- Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, China
| | - Xiaoqin Xu
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| | - Xue Du
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, China
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, China
| | - Tingbang Yang
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| | - Yao Chen
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| | - Zhengrong Tao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, China
| | - Shengliang Zhong
- PingYang XingLiang Pigeon Farming Co. Ltd., Wenzhou, Zhejiang, China
| | - Jihui Wen
- PingYang AoFeng Pigeon Farming Co. Ltd., Wenzhou, Zhejiang, China
| | - Caiquan Zhou
- Institute of Ecology, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
17
|
Khan S, Chousalkar KK. Transcriptome profiling analysis of caeca in chicks challenged with Salmonella Typhimurium reveals differential expression of genes involved in host mucosal immune response. Appl Microbiol Biotechnol 2020; 104:9327-9342. [PMID: 32960293 DOI: 10.1007/s00253-020-10887-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/19/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022]
Abstract
Temporal regulation of global gene expression in the caeca of chickens infected with Salmonella Typhimurium has not been investigated previously. In this study, we performed the transcriptome analysis of the caeca of Salmonella Typhimurium challenged chicks to understand the regulation of the mucosal immune system in a temporal manner. The Salmonella infection resulted in the activation of the caecal immune system by the upregulation of the differentially expressed genes (DEGs; false discovery rate (FDR) < 0.05; log2 fold change > 1) involved in biological pathways such as Toll-like receptor signaling pathway, Salmonella infection, cytokine-cytokine receptor interaction, phagosome, apoptosis and intestinal immune network for IgA production. The activation of biological pathways such as RIG-I-like receptor signaling pathway, ErbB signaling pathway and cellular senescence showed a time-dependent response of the host immune system. A 49% increase in the DEGs on day 7 compared with day 3 post-infection (p.i.) suggested a time-dependent role of multiple genes such as AvBD1, AvBD2, AvBD7, IL2, IL10, IL21, SIVA1, CD5, CD14 and GPR142 in the regulation of the immune system. Nested network analysis of the individual biological pathways showed that IL6 played a significant role in the immune system regulation by activating the pathways, including Toll-like receptor signaling pathway, Salmonella infection, intestinal immune network for IgA production and C-type lectin receptor signaling pathway. The downregulated DEGs (FDR < 0.05; log2 fold change < -1) showed that Salmonella challenge affected the functions of pathways, such as tryptophan metabolism, retinol metabolism, folate biosynthesis and pentose and glucoronate interconversions, suggesting the disruption of cellular mechanisms involved in nutrient synthesis, absorption and metabolism. Overall, the immune response was temporally regulated through the activation of Toll-like signaling receptor pathway, cytokine-cytokine interactions and Salmonella infection, where IL6 played a significant role in the modulation of caecal immune system against Salmonella Typhimurium. KEY POINTS: • The immune response to Salmonella Typhimurium challenge was temporally regulated in the caeca of chickens. • Many newly identified genes have been shown to be involved in the activation of the immune system. • Toll-like receptors and interleukins played a key role in immune system regulation.
Collapse
Affiliation(s)
- Samiullah Khan
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia
| | - Kapil K Chousalkar
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, 5371, Australia.
| |
Collapse
|
18
|
Poyatos Pertiñez S, Wilson PW, Icken W, Cavero D, Bain MM, Jones AC, Dunn IC. Transcriptome analysis of the uterus of hens laying eggs differing in cuticle deposition. BMC Genomics 2020; 21:516. [PMID: 32718314 PMCID: PMC7385972 DOI: 10.1186/s12864-020-06882-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/06/2020] [Indexed: 01/20/2023] Open
Abstract
Background Avian eggs have a proteinaceous cuticle. The quantity of cuticle varies and the deposition of a good cuticle in the uterus (Shell-gland) prevents transmission of bacteria to the egg contents. Results To understand cuticle deposition, uterus transcriptomes were compared between hens with i) naturally good and poor cuticle and, ii) where manipulation of the hypothalamo-pituitary-gonadal-oviduct axis produced eggs with or without cuticle. The highest expressed genes encoded eggshell matrix and cuticle proteins, e.g. MEPE (OC-116), BPIFB3 (OVX-36), RARRES1 (OVX-32), WAP (OVX-25), and genes for mitochondrial oxidative phosphorylation, active transport and energy metabolism. Expression of a number of these genes differed between hens laying eggs with or without cuticle. There was also a high expression of clock genes. PER2, CRY2, CRY1, CLOCK and BMAL1 were differentially expressed when cuticle deposition was prevented, and they also changed throughout the egg formation cycle. This suggests an endogenous clock in the uterus may be a component of cuticle deposition control. Cuticle proteins are glycosylated and glycosaminoglycan binding genes had a lower expression when cuticle proteins were deposited on the egg. The immediate early genes, JUN and FOS, were expressed less when the cuticle had not been deposited and changed over the egg formation cycle, suggesting they are important in oviposition and cuticle deposition. The uterus transcriptome of hens with good and poor cuticle deposition did not differ. Conclusions We have gained insights into the factors that can affect the production of the cuticle especially clock genes and immediate early genes. We have demonstrated that these genes change their expression over the period of eggshell formation supporting their importance. The lack of differences in expression between the uterus of hens laying eggs with the best and worse cuticle suggest the genetic basis of the trait may lie outside the oviduct.
Collapse
Affiliation(s)
- Sandra Poyatos Pertiñez
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, Scotland, UK.
| | - Peter W Wilson
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, Scotland, UK
| | | | | | - Maureen M Bain
- College of Medical, Veterinary and Life Sciences (MVLS), IBAHCM, University of Glasgow, Glasgow, Scotland, UK
| | - Anita C Jones
- School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, Scotland, UK
| | - Ian C Dunn
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, Scotland, UK
| |
Collapse
|
19
|
Ma Q, Bu D, Zhang J, Wu Y, Pei D. The Transcriptome Landscape of Walnut Interspecies Hybrid ( Juglans hindsii × Juglans regia) and Regulation of Cambial Activity in Relation to Grafting. Front Genet 2019; 10:577. [PMID: 31293615 PMCID: PMC6598599 DOI: 10.3389/fgene.2019.00577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
Walnuts (Juglans, Juglandaceae) are known throughout the world as economically important trees that provide fat, protein, vitamins, and minerals as a food source, and produce high-quality timber. We have amended the purpose section to say "However," the omics resources are limited, which hampered the elucidation of molecular mechanisms resulting in their economically important traits (such as yield, fertility alternation, oil synthesis, and wood formation). To enrich the omics database of walnut, there is great need for analyses of its genomic and transcriptomic characteristics. In this study, we reported for the first time of the transcriptome landscape of six important organs or tissues in walnut interspecies hybrid using next-generation sequencing technology. Over 338 million clean reads were obtained. This yielded 74,072 unigenes with an average length of 782.71 bp. To develop an understanding of gene functions and regulatory pathways, 66,355 of the unigenes were identified as homologs of annotated genes and classified into three general categories with 61 functional subcategories. 2,288 out of 2,549 unmapped unigenes had at least one BLAST hit against the public databases. A total of 1,237 transcription factor-encoding genes (TFs) and 2,297 tissue-specific unigenes were identified. Interestingly, in the new shoot between an adult seedling and a grafted tree, the expression of 9,494 unigenes were significantly different, among which 4,388 were up-regulated and 5,106 were down-regulated. Of these, 195, 177, 232, 75, 114, and 68 unigenes were related to transcription factors, cell wall, defense response, transport, plant hormone biosynthesis, and other cambial activity-related functions, respectively. The obtained sequences and putative functional data constitute a resource for future functional analyses in walnut and other woody plants. These findings will be useful in further studies addressing the molecular mechanisms underlying grafting-related cambial activity.
Collapse
Affiliation(s)
- Qingguo Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Dechao Bu
- Key Laboratory of Intelligent Information Processing, Advanced Computing Research Laboratory, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Junpei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yang Wu
- Key Laboratory of Intelligent Information Processing, Advanced Computing Research Laboratory, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Dong Pei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
20
|
Transcriptomic Analysis Provides Novel Insights into Heat Stress Responses in Sheep. Animals (Basel) 2019; 9:ani9060387. [PMID: 31238576 PMCID: PMC6617286 DOI: 10.3390/ani9060387] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The general increase in global temperatures has meant that heat stress has become an increasingly significant problem for sheep. This has both direct and indirect impact on their physiological functions, productivity, and health of sheep. Sheep generally live in high-temperature environments; however, the genes and pathways that play regulatory roles in the heat stress responses of sheep remain unclear. In this study, we applied RNA-Seq technology to analyze liver tissues of sheep from heat-stressed and control groups, and screened genes and pathways related to sheep heat stress. This work provides a theoretical foundation for the breeding and production of heat-resistant sheep. Abstract With the intensified and large-scale development of sheep husbandry and global warming, sheep heat stress has become an increasingly important issue. However, little is known about the molecular mechanisms related to sheep responses to heat stress. In this study, transcriptomic analysis of liver tissues of sheep in the presence and absence of heat stress was conducted, with the goal of identifying genes and pathways related to regulation when under such stress. After a comparison with the sheep reference genome, 440,226,436 clean reads were obtained from eight libraries. A p-value ≤ 0.05 and fold change ≥ 2 were taken as thresholds for categorizing differentially expressed genes, of which 1137 were identified. The accuracy and reliability of the RNA-Seq results were confirmed by qRT-PCR. The identified differentially expressed genes were significantly associated with 419 GO terms and 51 KEGG pathways, which suggested their participation in biological processes such as response to stress, immunoreaction, and fat metabolism. This study’s results provide a comprehensive overview of sheep heat stress-induced transcriptional expression patterns, laying a foundation for further analysis of the molecular mechanisms of sheep heat stress.
Collapse
|