1
|
Yu H, Bhat JA, Li C, Zhao B, Bu M, Zhang Z, Guo T, Feng X. Identification of superior and rare haplotypes to optimize branch number in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:93. [PMID: 38570354 PMCID: PMC10991007 DOI: 10.1007/s00122-024-04596-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
KEY MESSAGE Using the integrated approach in the present study, we identified eleven significant SNPs, seven stable QTLs and 20 candidate genes associated with branch number in soybean. Branch number is a key yield-related quantitative trait that directly affects the number of pods and seeds per soybean plant. In this study, an integrated approach with a genome-wide association study (GWAS) and haplotype and candidate gene analyses was used to determine the detailed genetic basis of branch number across a diverse set of soybean accessions. The GWAS revealed a total of eleven SNPs significantly associated with branch number across three environments using the five GWAS models. Based on the consistency of the SNP detection in multiple GWAS models and environments, seven genomic regions within the physical distance of ± 202.4 kb were delineated as stable QTLs. Of these QTLs, six QTLs were novel, viz., qBN7, qBN13, qBN16, qBN18, qBN19 and qBN20, whereas the remaining one, viz., qBN12, has been previously reported. Moreover, 11 haplotype blocks, viz., Hap4, Hap7, Hap12, Hap13A, Hap13B, Hap16, Hap17, Hap18, Hap19A, Hap19B and Hap20, were identified on nine different chromosomes. Haplotype allele number across the identified haplotype blocks varies from two to five, and different branch number phenotype is regulated by these alleles ranging from the lowest to highest through intermediate branching. Furthermore, 20 genes were identified underlying the genomic region of ± 202.4 kb of the identified SNPs as putative candidates; and six of them showed significant differential expression patterns among the soybean cultivars possessing contrasting branch number, which might be the potential candidates regulating branch number in soybean. The findings of this study can assist the soybean breeding programs for developing cultivars with desirable branch numbers.
Collapse
Affiliation(s)
- Hui Yu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Zhejiang Lab, Hangzhou, 310012, China
| | | | - Candong Li
- Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, China
| | - Beifang Zhao
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Moran Bu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Zhirui Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Tai Guo
- Jiamusi Branch Academy of Heilongjiang Academy of Agricultural Sciences, Jiamusi, 154007, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- Zhejiang Lab, Hangzhou, 310012, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 101408, China.
| |
Collapse
|
2
|
Jiang W, Liu Y, Zhang C, Pan L, Wang W, Zhao C, Zhao T, Li Y. Identification of major QTLs for drought tolerance in soybean, together with a novel candidate gene, GmUAA6. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1852-1871. [PMID: 38226463 DOI: 10.1093/jxb/erad483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Drought tolerance is a complex trait in soybean that is controlled by polygenetic quantitative trait loci (QTLs). In this study, wilting score, days-to-wilting, leaf relative water content, and leaf relative conductivity were used to identify QTLs associated with drought tolerance in recombinant inbred lines derived from a cross between a drought-sensitive variety, Lin, and a drought-tolerant variety, Meng. A total of 33 drought-tolerance QTLs were detected. Of these 17 were major QTLs. In addition, 15 were novel drought-tolerance QTLs. The most predominant QTL was on chromosome 11. This was detected in at least three environments. The overlapped mapping interval of the four measured traits was 0.2 cM in genetic distance (about 220 kb in physical length). Glyma.11g143500 (designated as GmUAA6), which encodes a UDP-N-acetylglucosamine transporter, was identified as the most likely candidate gene. The allele of GmUAA6 from Lin (GmUAA6Lin) was associated with improved soybean drought tolerance. Overexpression of GmUAA6Lin in Arabidopsis and soybean hairy roots enhanced drought tolerance. Furthermore, a 3-bp insertion/deletion (InDel) in the coding sequence of GmUAA6 explained up to 49.9% of the phenotypic variation in drought tolerance-related traits, suggesting that this InDel might be used in future marker-assisted selection of drought-tolerant lines in soybean breeding programs.
Collapse
Affiliation(s)
- Wei Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Yandang Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Chi Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Lang Pan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tuanjie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| | - Yan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybeans (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu 210014, China
| |
Collapse
|
3
|
Haidar S, Lackey S, Charette M, Yoosefzadeh-Najafabadi M, Gahagan AC, Hotte T, Belzile F, Rajcan I, Golshani A, Morrison MJ, Cober ER, Samanfar B. Genome-wide analysis of cold imbibition stress in soybean, Glycine max. FRONTIERS IN PLANT SCIENCE 2023; 14:1221644. [PMID: 37670866 PMCID: PMC10476531 DOI: 10.3389/fpls.2023.1221644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/17/2023] [Indexed: 09/07/2023]
Abstract
In Canada, the length of the frost-free season necessitates planting crops as early as possible to ensure that the plants have enough time to reach full maturity before they are harvested. Early planting carries inherent risks of cold water imbibition (specifically less than 4°C) affecting seed germination. A marker dataset developed for a previously identified Canadian soybean GWAS panel was leveraged to investigate the effect of cold water imbibition on germination. Seed from a panel of 137 soybean elite cultivars, grown in the field at Ottawa, ON, over three years, were placed on filter paper in petri dishes and allowed to imbibe water for 16 hours at either 4°C or 20°C prior to being transferred to a constant 20°C. Observations on seed germination, defined as the presence of a 1 cm radicle, were done from day two to seven. A three-parameter exponential rise to a maximum equation (3PERM) was fitted to estimate germination, time to the one-half maximum germination, and germination uniformity for each cultivar. Genotype-by-sequencing was used to identify SNPs in 137 soybean lines, and using genome-wide association studies (GWAS - rMVP R package, with GLM, MLM, and FarmCPU as methods), haplotype block analysis, and assumed linkage blocks of ±100 kbp, a threshold for significance was established using the qvalue package in R, and five significant SNPs were identified on chromosomes 1, 3, 4, 6, and 13 for maximum germination after cold water imbibition. Percent of phenotypic variance explained (PVE) and allele substitution effect (ASE) eliminated two of the five candidate SNPs, leaving three QTL regions on chromosomes 3, 6, and 13 (Chr3-3419152, Chr6-5098454, and Chr13-29649544). Based on the gene ontology (GO) enrichment analysis, 14 candidate genes whose function is predicted to include germination and cold tolerance related pathways were identified as candidate genes. The identified QTLs can be used to select future soybean cultivars tolerant to cold water imbibition and mitigate risks associated with early soybean planting.
Collapse
Affiliation(s)
- Siwar Haidar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Simon Lackey
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Martin Charette
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | | | - A. Claire Gahagan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Thomas Hotte
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Francois Belzile
- Department of Phytology, Institut de Biologie Intégrative et des Systèmes (IBIS), Université de Laval, Quebec City, QC, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Ashkan Golshani
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Malcolm J. Morrison
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
4
|
Rao PJM, Pallavi M, Bharathi Y, Priya PB, Sujatha P, Prabhavathi K. Insights into mechanisms of seed longevity in soybean: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1206318. [PMID: 37546268 PMCID: PMC10400919 DOI: 10.3389/fpls.2023.1206318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
Soybean, a crop of international importance, is challenged with the problem of seed longevity mainly due to its genetic composition and associated environmental cues. Soybean's fragile seed coat coupled with poor DNA integrity, ribosomal dysfunction, lipid peroxidation and poor antioxidant system constitute the rationale for fast deterioration. Variability among the genotypes for sensitivity to field weathering contributed to their differential seed longevity. Proportion and density of seed coat, glassy state of cells, calcium and lignin content, pore number, space between seed coat and cotyledon are some seed related traits that are strongly correlated to longevity. Further, efficient antioxidant system, surplus protective proteins, effective nucleotide and protein repair systems and free radical scavenging mechanisms also contributed to the storage potential of soybean seeds. Identification of molecular markers and QTLs associated with these mechanisms will pave way for enhanced selection efficiency for seed longevity in soybean breeding programs. This review reflects on the morphological, biochemical and molecular bases of seed longevity along with pointers on harvest, processing and storage strategies for extending vigour and viability in soybean.
Collapse
|
5
|
T V N, S R, R L R. Evaluation of diverse soybean genotypes for seed longevity and its association with seed coat colour. Sci Rep 2023; 13:4313. [PMID: 36922554 PMCID: PMC10017797 DOI: 10.1038/s41598-023-31071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Sixty genotypes with different seed coat colour and seed sizes were evaluated for seed longevity under both natural and accelerated ageing over seasons. The genotypes were grown during rabi, 2018, and summer, 2021, and freshly harvested seeds were used. For natural ageing, seeds were stored in a cloth bag in ambient condition and were removed at bimonthly intervals till 20 months. Accelerated ageing was carried out as per International Seed Testing Association (ISTA) guidelines. The germination percentage after natural and accelerated ageing over two seasons was determined. The correlation between two seasons of accelerated ageing and month-wise natural ageing was highly significant. The principal component analysis (PCA) using seed longevity grouped the majority of black genotypes into a separate cluster. Higher seed longevity was associated with black seed coat colour and small seed size. Microsatellite marker-based clustering also produced a separate cluster for majority of black genotypes and grouped the genotypes into a large number of clusters suggesting high diversity in the plant material. Two black seed coat colour genotypes, ACC No.369 and ACC No.39 consistently showed higher longevity under natural and both the years of accelerated ageing and serve as a source of alleles for higher seed longevity in soybean.
Collapse
Affiliation(s)
- Naflath T V
- Department of Seed Science and Technology, College of Agriculture, UAS, GKVK, Bangalore, Karnataka, 560 065, India
| | - Rajendraprasad S
- Department of Seed Science and Technology, College of Agriculture, UAS, GKVK, Bangalore, Karnataka, 560 065, India
| | - Ravikumar R L
- Department of Plant Biotechnology, College of Agriculture, UAS, GKVK, Bangalore, Karnataka, 560 065, India.
| |
Collapse
|
6
|
T. V. N, S. RP, R. L. R. Population structure and genetic diversity characterization of soybean for seed longevity. PLoS One 2022; 17:e0278631. [PMID: 36472991 PMCID: PMC9725150 DOI: 10.1371/journal.pone.0278631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Seed longevity is an important trait in the context of germplasm conservation and economics of seed production. The identification of populations with high level of genetic variability for seed longevity and associated traits will become a valuable resource for superior alleles for seed longevity. In this study, Genotyping-by-sequencing (GBS)-single nucleotide polymorphism (SNP) approach, simple sequence repeats (SSR) markers and agro-morphological traits have been explored to investigate the diversity and population structure of assembled 96 genotypes. The GBS technique performed on 96 genotypes of soybean (Glycine max (L.) Merrill) resulted in 37,897 SNPs on sequences aligned to the reference genome sequence. The average genome coverage was 6.81X with a mapping rate of 99.56% covering the entire genome. Totally, 29,955 high quality SNPs were identified after stringent filtering and most of them were detected in non-coding regions. The 96 genotypes were phenotyped for eight quantitative and ten qualitative traits by growing in field by following augmented design. The STRUCTURE (Bayesian-model based algorithm), UPGMA (Un-weighed Pair Group Method with Arithmetic mean) and principal component analysis (PCA) approaches using SSR, SNP as well as quantitative and qualitative traits revealed population structure and diversity in assembled population. The Bayesian-model based STRUCTURE using SNP markers could effectively identify clusters with higher seed longevity associated with seed coat colour and size which were subsequently validated by UPGMA and PCA based on SSR and agro-morphological traits. The results of STRUCTURE, PCA and UPGMA cluster analysis showed high degree of similarity and provided complementary data that helped to identify genotypes with higher longevity. Six black colour genotypes, viz., Local black soybean, Kalitur, ACC Nos. 39, 109, 101 and 37 showed higher seed longevity during accelerated ageing. Higher coefficient of variability observed for plant height, number of pods per plant, seed yield per plant, 100 seed weight and seed longevity confirms the diversity in assembled population and its suitability for quantitative trait loci (QTL) mapping.
Collapse
Affiliation(s)
- Naflath T. V.
- Department of Seed Science and Technology, College of Agriculture, UAS, GKVK, Bangalore, Karnataka, India
| | - Rajendra Prasad S.
- Department of Seed Science and Technology, College of Agriculture, UAS, GKVK, Bangalore, Karnataka, India
| | - Ravikumar R. L.
- Department of Plant Biotechnology, College of Agriculture, UAS, GKVK, Bangalore, Karnataka, India
- * E-mail:
| |
Collapse
|
7
|
Tian R, Kong Y, Shao Z, Zhang H, Li X, Zhang C. Discovery of genetic loci and causal genes for seed germination via deep re-sequencing in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:45. [PMID: 37313514 PMCID: PMC10248669 DOI: 10.1007/s11032-022-01316-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
High seed germination is crucial for mechanical sowing, seedling establishment, growth potential, multiple resistances, and the formation of yield and quality. However, few genetic loci and candidate genes conferring seed germination were explored in soybean at present. In view of this, a natural population containing 199 accessions was assessed for the germination potential (GP) and germination rate (GR) and also was re-sequenced at the average sequencing depth of 18.4 × for each accession. In total, 5,665,469 SNPs were obtained for association analysis, and 470 SNPs in 55 loci on 18 chromosomes were identified to associate with seed germination. Of them, 85 SNPs on chromosomes 1, 10, and 14 were associated with mean value and BLUP value for GP and GR, simultaneously. Moreover, 324 SNPs (68.9% of the total) in four loci were located on chromosome 14 for seed germination, of which 11 SNPs were located in the exons, 30 in introns, 17 in 5'UTR or 3'UTR, and 46 in upstream or downstream. Based on these, 131 candidate genes flanking the associated SNPs were analyzed for gene annotation, SNP mutation, and RNA expression, and three causal genes, Glyma.14G069800 (RNA-binding protein), Glyma.14G071400 (bZIP transcription factor), and Glyma.17G033200 (nucleic acid-binding protein), were screened out and might be responsible for the seed germination. The closely associated SNPs and causal genes provided an important resource and dissecting of genetic basis for seed germination improvement in soybean. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01316-6.
Collapse
Affiliation(s)
- Rui Tian
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071000 Hebei Province China
| | - Youbin Kong
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071000 Hebei Province China
| | - Zhenqi Shao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071000 Hebei Province China
| | - Hua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071000 Hebei Province China
| | - Xihuan Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071000 Hebei Province China
| | - Caiying Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Lekai South Street 2596, Baoding City, 071000 Hebei Province China
| |
Collapse
|
8
|
Lin YX, Xu HJ, Yin GK, Zhou YC, Lu XX, Xin X. Dynamic Changes in Membrane Lipid Metabolism and Antioxidant Defense During Soybean ( Glycine max L. Merr.) Seed Aging. FRONTIERS IN PLANT SCIENCE 2022; 13:908949. [PMID: 35812982 PMCID: PMC9263854 DOI: 10.3389/fpls.2022.908949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Seed viability depends upon the maintenance of functional lipids; however, how membrane lipid components dynamically change during the seed aging process remains obscure. Seed storage is accompanied by the oxidation of membrane lipids and loss of seed viability. Understanding membrane lipid changes and their effect on the cell membrane during seed aging can contribute to revealing the mechanism of seed longevity. In this study, the potential relationship between oxidative stress and membrane lipid metabolism was evaluated by using a non-targeted lipidomics approach during artificial aging of Glycine max L. Merr. Zhongdou No. 27 seeds. We determined changes in reactive oxygen species, malondialdehyde content, and membrane permeability and assessed antioxidant system activity. We found that decreased non-enzymatic antioxidant contents and catalase activity might lead to reactive oxygen species accumulation, resulting in higher electrolyte leakage and lipid peroxidation. The significantly decreased phospholipids and increased glycerolipids and lysophospholipids suggested that hydrolysis of phospholipids to form glycerolipids and lysophospholipids could be the primary pathway of membrane metabolism during seed aging. Moreover, the ratio of phosphatidylcholine to phosphatidylethanolamine, double bond index, and acyl chain length of phospholipids were found to jointly regulate membrane function. In addition, the observed changes in lipid metabolism suggest novel potential hallmarks of soybean seed aging, such as diacylglycerol 36:4; phosphatidylcholine 34:2, 36:2, and 36:4; and phosphatidylethanolamine 34:2. This knowledge can be of great significance for elucidating the molecular mechanism underlying seed aging and germplasm conservation.
Collapse
Affiliation(s)
- Yi-xin Lin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Hai-jin Xu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Guang-kun Yin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan-chang Zhou
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Xin-xiong Lu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xia Xin
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Yao S, Wang G, Wang X. Effects of Phospholipase Dε Overexpression on Soybean Response to Nitrogen and Nodulation. FRONTIERS IN PLANT SCIENCE 2022; 13:852923. [PMID: 35599864 PMCID: PMC9121066 DOI: 10.3389/fpls.2022.852923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen is a key macronutrient to plant growth. We found previously that increased expression of phospholipase Dε (PLDε), which hydrolyzes phospholipids into phosphatidic acid (PA), enhanced plant growth under nitrogen deficiency in Brassicaceae species Arabidopsis and canola. The present study investigated the effect of AtPLDε-overexpression (OE) on soybean (Glycine max), a species capable of symbiotic nitrogen fixation. AtPLDε-OE soybean plants displayed increased root length and leaf size, and the effect of AtPLDε-ΟΕ on leaf size was greater under nitrogen-deficient than -sufficient condition. Under nitrogen deficiency, AtPLDε-OE soybean plants had a higher chlorophyll content and activity of nitrogen assimilation-related enzymes than wild-type soybean plants. AtPLDε-OE led to a higher level of specific PA species in roots after rhizobium inoculation than wild type. AtPLDε-OE soybean plants also increased seed production under nitrogen deprivation with and without nodulation and decreased seed germination in response to high humidity storage and artificial aging. These results suggest that PLDε promotes nitrogen response and affects adversely seed viability during storage.
Collapse
Affiliation(s)
- Shuaibing Yao
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, United States
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Geliang Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, United States
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO, United States
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| |
Collapse
|
10
|
Arif MAR, Afzal I, Börner A. Genetic Aspects and Molecular Causes of Seed Longevity in Plants-A Review. PLANTS (BASEL, SWITZERLAND) 2022; 11:598. [PMID: 35270067 PMCID: PMC8912819 DOI: 10.3390/plants11050598] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022]
Abstract
Seed longevity is the most important trait related to the management of gene banks because it governs the regeneration cycle of seeds. Thus, seed longevity is a quantitative trait. Prior to the discovery of molecular markers, classical genetic studies have been performed to identify the genetic determinants of this trait. Post-2000 saw the use of DNA-based molecular markers and modern biotechnological tools, including RNA sequence (RNA-seq) analysis, to understand the genetic factors determining seed longevity. This review summarizes the most important and relevant genetic studies performed in Arabidopsis (24 reports), rice (25 reports), barley (4 reports), wheat (9 reports), maize (8 reports), soybean (10 reports), tobacco (2 reports), lettuce (1 report) and tomato (3 reports), in chronological order, after discussing some classical studies. The major genes identified and their probable roles, where available, are debated in each case. We conclude by providing information about many different collections of various crops available worldwide for advanced research on seed longevity. Finally, the use of new emerging technologies, including RNA-seq, in seed longevity research is emphasized by providing relevant examples.
Collapse
Affiliation(s)
- Mian Abdur Rehman Arif
- Wheat Breeding Group, Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad 38000, Pakistan
| | - Irfan Afzal
- Seed Physiology Lab, Department of Agronomy, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Andreas Börner
- Leibniz-Institute für Pflanzengenetik und Kulturpflanzenforschung (IPK), OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
11
|
Zhang W, Xu W, Li S, Zhang H, Liu X, Cui X, Song L, Zhu Y, Chen X, Chen H. GmAOC4 modulates seed germination by regulating JA biosynthesis in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:439-447. [PMID: 34674010 DOI: 10.1007/s00122-021-03974-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE An allene oxide cyclase 4, GmAOC4, was determined by GWAS and RT-PCR to be significantly associated with seed germination in soybean, and regulates seed germination by promoting more JA accumulation. The seed germination phase is a critical component of the plant lifecycle, and a better understanding of the mechanism behind seed germination in soybeans is needed. We used a genome-wide association study (GWAS) to detect a GWAS signal on chromosome 18. In this GWAS signal, SNP S18_56189166 was located within the 3'untranslated region of Glyma.18G280900, which encodes allene oxide cyclase 4 (named GmAOC4). Analysis of real-time PCR demonstrated that expression levels of GmAOC4 in the low-germination variety (KF, carrying SNP S18_56189166-T) were higher than in the high-germination variety (NN, carrying SNP S18_56189166-C). In these two varieties, KF showed a higher JA concentration than NN at 0 and 24 h after imbibition. Moreover, the overexpression of GmAOC4 led to an increase in the concentration of jasmonic acid (JA) in soybean hairy roots and Arabidopsis thaliana. Furthermore, it was found that GmAOC4-OE lines showed less seed germination than the wild type (WT) under normal conditions in Arabidopsis. After 7 days of ABA treatment, transgenic lines exhibited lower seed germination and higher expression levels of AtABI5 compared with WT, indicating that the overexpression of GmAOC4 resulted in hypersensitivity to ABA. Our findings demonstrate that GmAOC4, which promotes more JA accumulation, helps to regulate seed germination in soybeans.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wenjing Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Songsong Li
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongmei Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaoqing Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Li Song
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yuelin Zhu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
12
|
Zhao M, Hu B, Fan Y, Ding G, Yang W, Chen Y, Chen Y, Xie J, Zhang F. Identification, Analysis, and Confirmation of Seed Storability-Related Loci in Dongxiang Wild Rice ( Oryza rufipogon Griff.). Genes (Basel) 2021; 12:genes12111831. [PMID: 34828437 PMCID: PMC8622159 DOI: 10.3390/genes12111831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
Dongxiang wild rice (Oryza rufipogon Griff.) (DXWR) has strong seed storability and identifying its elite gene resources may facilitate genetic improvements in rice seed storability. In this study, we developed two backcross inbred lines (BILs) populations, with DXWR as a common donor parent and two rice varieties (F6 and R974) as recipient parents. Bulked segregant analysis via whole genome sequencing (BSA-seq) was used to identify seed storability-related loci in the DXWR and F6 population. Two main genomic regions containing 18,550,000–20,870,000 bp on chromosome 4 and 7,860,000–9,780,000 bp on chromosome 9 were identified as candidate loci of DXWR seed storability; these overlapped partially with seed storability-related quantitative trait loci (QTLs) discovered in previous studies, suggesting that these loci may provide important regions for isolating the responsible genes. In total, 448 annotated genes were predicted within the identified regions, of which 274 and 82 had nonsynonymous and frameshift mutations, respectively. We detected extensive metabolic activities and cellular processes during seed storability and confirmed the effects of the seed storability-related candidate loci using four BILs from DXWR and R974. These results may facilitate the cloning of DXWR seed storability-related genes, thereby elucidating rice seed storability and its improvement potential.
Collapse
Affiliation(s)
- Minmin Zhao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (M.Z.); (G.D.); (Y.C.)
| | - Biaolin Hu
- Rice National Engineering Laboratory, Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330022, China;
| | - Yuanwei Fan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China;
| | - Gumu Ding
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (M.Z.); (G.D.); (Y.C.)
| | - Wanling Yang
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, Nanchang 330022, China; (W.Y.); (Y.C.)
| | - Yong Chen
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, Nanchang 330022, China; (W.Y.); (Y.C.)
| | - Yanhong Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (M.Z.); (G.D.); (Y.C.)
| | - Jiankun Xie
- Jiangxi Provincial Key Lab of Protection and Utilization of Subtropical Plant Resources, Nanchang 330022, China; (W.Y.); (Y.C.)
- Correspondence: (J.X.); (F.Z.)
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China; (M.Z.); (G.D.); (Y.C.)
- Correspondence: (J.X.); (F.Z.)
| |
Collapse
|
13
|
Wang R, Wu F, Xie X, Yang C. Quantitative Trait Locus Mapping of Seed Vigor in Soybean under -20 °C Storage and Accelerated Aging Conditions via RAD Sequencing. Curr Issues Mol Biol 2021; 43:1977-1996. [PMID: 34889905 PMCID: PMC8928945 DOI: 10.3390/cimb43030136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 12/31/2022] Open
Abstract
Due to its fast deterioration, soybean (Glycine max L.) has an inherently poor seed vigor. Vigor loss occurring during storage is one of the main obstacles to soybean production in the tropics. To analyze the genetic background of seed vigor, soybean seeds of a recombinant inbred line (RIL) population derived from the cross between Zhonghuang24 (ZH24, low vigor cultivar) and Huaxia3hao (HX3, vigorous cultivar) were utilized to identify the quantitative trait loci (QTLs) underlying the seed vigor under -20 °C conservation and accelerated aging conditions. According to the linkage analysis, multiple seed vigor-related QTLs were identified under both -20 °C and accelerated aging storage. Two major QTLs and eight QTL hotspots localized on chromosomes 3, 6, 9, 11, 15, 16, 17, and 19 were detected that were associated with seed vigor across two storage conditions. The indicators of seed vigor did not correlate well between the two aging treatments, and no common QTLs were detected in RIL populations stored in two conditions. These results indicated that deterioration under accelerated aging conditions was not reflective of natural aging at -20 °C. Additionally, we suggest 15 promising candidate genes that could possibly determine the seed vigor in soybeans, which would help explore the mechanisms responsible for maintaining high seed vigor.
Collapse
Affiliation(s)
- Rongfan Wang
- Department of Seed Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (R.W.); (F.W.)
| | - Fengqi Wu
- Department of Seed Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (R.W.); (F.W.)
| | - Xianrong Xie
- Department of Genetics, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
| | - Cunyi Yang
- Department of Seed Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (R.W.); (F.W.)
| |
Collapse
|
14
|
Elattar MA, Karikari B, Li S, Song S, Cao Y, Aslam M, Hina A, Abou-Elwafa SF, Zhao T. Identification and Validation of Major QTLs, Epistatic Interactions, and Candidate Genes for Soybean Seed Shape and Weight Using Two Related RIL Populations. Front Genet 2021; 12:666440. [PMID: 34122518 PMCID: PMC8195344 DOI: 10.3389/fgene.2021.666440] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the genetic mechanism underlying seed size, shape, and weight is essential for enhancing soybean cultivars. High-density genetic maps of two recombinant inbred line (RIL) populations, LM6 and ZM6, were evaluated across multiple environments to identify and validate M-QTLs as well as identify candidate genes behind major and stable quantitative trait loci (QTLs). A total of 239 and 43 M-QTLs were mapped by composite interval mapping (CIM) and mixed-model-based composite interval mapping (MCIM) approaches, from which 180 and 18, respectively, are novel QTLs. Twenty-two QTLs including four novel major QTLs were validated in the two RIL populations across multiple environments. Moreover, 18 QTLs showed significant AE effects, and 40 pairwise of the identified QTLs exhibited digenic epistatic effects. Thirty-four QTLs associated with seed flatness index (FI) were identified and reported here for the first time. Seven QTL clusters comprising several QTLs for seed size, shape, and weight on genomic regions of chromosomes 3, 4, 5, 7, 9, 17, and 19 were identified. Gene annotations, gene ontology (GO) enrichment, and RNA-seq analyses of the genomic regions of those seven QTL clusters identified 47 candidate genes for seed-related traits. These genes are highly expressed in seed-related tissues and nodules, which might be deemed as potential candidate genes regulating the seed size, weight, and shape traits in soybean. This study provides detailed information on the genetic basis of the studied traits and candidate genes that could be efficiently implemented by soybean breeders for fine mapping and gene cloning, and for marker-assisted selection (MAS) targeted at improving these traits individually or concurrently.
Collapse
Affiliation(s)
- Mahmoud A Elattar
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.,Agronomy Department, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Benjamin Karikari
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shuguang Li
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shiyu Song
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yongce Cao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Muhammed Aslam
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Aiman Hina
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | | | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
da Silva Linge C, Cai L, Fu W, Clark J, Worthington M, Rawandoozi Z, Byrne DH, Gasic K. Multi-Locus Genome-Wide Association Studies Reveal Fruit Quality Hotspots in Peach Genome. FRONTIERS IN PLANT SCIENCE 2021; 12:644799. [PMID: 33732279 PMCID: PMC7959719 DOI: 10.3389/fpls.2021.644799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/04/2021] [Indexed: 05/23/2023]
Abstract
Peach is one of the most important fruit crops in the world, with the global annual production about 24.6 million tons. The United States is the fourth-largest producer after China, Spain, and Italy. Peach consumption has decreased over the last decade, most likely due to inconsistent quality of the fruit on the market. Thus, marker-assisted selection for fruit quality traits is highly desired in fresh market peach breeding programs and one of the major goals of the RosBREED project. The ability to use DNA information to select for desirable traits would enable peach breeders to efficiently plan crosses and select seedlings with desired quality traits early in the selection process before fruiting. Therefore, we assembled a multi-locus genome wide association study (GWAS) of 620 individuals from three public fresh market peach breeding programs (Arkansas, Texas, and South Carolina). The material was genotyped using 9K SNP array and the traits were phenotyped for three phenological (bloom date, ripening date, and days after bloom) and 11 fruit quality-related traits (blush, fruit diameter, fruit weight, adherence, fruit firmness, redness around pit, fruit texture, pit weight, soluble solid concentration, titratable acidity, and pH) over three seasons (2010, 2011, and 2012). Multi-locus association analyses, carried out using mrMLM 4.0 and FarmCPU R packages, revealed a total of 967 and 180 quantitative trait nucleotides (QTNs), respectively. Among the 88 consistently reliable QTNs detected using multiple multi-locus GWAS methods and/or at least two seasons, 44 were detected for the first time. Fruit quality hotspots were identified on chromosomes 1, 3, 4, 5, 6, and 8. Out of 566 candidate genes detected in the genomic regions harboring the QTN clusters, 435 were functionally annotated. Gene enrichment analyses revealed 68 different gene ontology (GO) terms associated with fruit quality traits. Data reported here advance our understanding of genetic mechanisms underlying important fruit quality traits and further support the development of DNA tools for breeding.
Collapse
Affiliation(s)
- Cassia da Silva Linge
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - Lichun Cai
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Wanfang Fu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| | - John Clark
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Margaret Worthington
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Zena Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Ksenija Gasic
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, United States
| |
Collapse
|
16
|
Liang J, Sun J, Ye Y, Yan X, Yan T, Rao Y, Zhou H, Le M. QTL mapping of PEG-induced drought tolerance at the early seedling stage in sesame using whole genome re-sequencing. PLoS One 2021; 16:e0247681. [PMID: 33626101 PMCID: PMC7904189 DOI: 10.1371/journal.pone.0247681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
Improvement in sesame drought tolerance at seedling stage is important for yield stability. Genetic approaches combing with conventional breeding is the most effective way to develop drought-tolerant cultivars. In this study, three traits and their relative values, including seedling weight (SW), shoot length (SL) and root length (RL), were evaluated under control and osmotic conditions in a recombinant inbred line (RIL) population derived from cross of Zhushanbai and Jinhuangma. Significant variation and high broad sense heritability were observed for all traits except SW under stress condition in the population. With this population, a high-density linkage map with 1354 bin markers was constructed through whole genome re-sequencing (WGS) strategy. Quantitative trait loci (QTL) mapping was performed for all the traits. A total of 34 QTLs were detected on 10 chromosomes. Among them, 13 stable QTLs were revealed in two independent experiments, eight of them were associated with traits under water stress condition. One region on chromosome 12 related to RL under osmotic condition and relative RL had the highest LOD value and explained the largest phenotypic variation among all the QTLs detected under water stress condition. These findings will provide new genetic resources for molecular improvement of drought tolerance and candidate gene identification in sesame.
Collapse
Affiliation(s)
- Junchao Liang
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
| | - Jian Sun
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
- * E-mail: (JS); (ML)
| | - Yanying Ye
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
| | - Xiaowen Yan
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
| | - Tingxian Yan
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
| | - Yueliang Rao
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
| | - Hongying Zhou
- Crop Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
| | - Meiwang Le
- Nanchang Branch of National Center of Oilcrops Improvement, Nanchang, China
- Jiangxi Province Key Laboratory of Oilcrops Biology, Nanchang, China
- Horticulture Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- * E-mail: (JS); (ML)
| |
Collapse
|
17
|
Li M, Chen L, Zeng J, Razzaq MK, Xu X, Xu Y, Wang W, He J, Xing G, Gai J. Identification of Additive-Epistatic QTLs Conferring Seed Traits in Soybean Using Recombinant Inbred Lines. FRONTIERS IN PLANT SCIENCE 2020; 11:566056. [PMID: 33362807 PMCID: PMC7758492 DOI: 10.3389/fpls.2020.566056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/29/2020] [Indexed: 05/31/2023]
Abstract
Seed weight and shape are important agronomic traits that affect soybean quality and yield. In the present study, we used image analysis software to evaluate 100-seed weight and seed shape traits (length, width, perimeter, projection area, length/width, and weight/projection area) of 155 novel recombinant inbred soybean lines (NJRISX) generated by crossing "Su88-M21" and "XYXHD". We examined quantitative trait loci (QTLs) associated with the six traits (except seed weight per projection area), and identified 42 additive QTLs (5-8 QTLs per trait) accounting for 24.9-37.5% of the phenotypic variation (PV). Meanwhile, 2-4 epistatic QTL pairs per trait out of a total of 18 accounted for 2.5-7.2% of the PV; and unmapped minor QTLs accounted for the remaining 35.0-56.7% of the PV. A total of 28 additive and 11 epistatic QTL pairs were concentrated in nine joint QTL segments (JQSs), indicating that QTLs associated with seed weight and shape are closely related and interacted. An interaction was also detected between additive and epistatic QTL pairs and environment, which made significant contributions of 1.4-9.5% and 0.4-0.8% to the PV, respectively. We annotated 18 candidate genes in the nine JQSs, which were important for interpreting the close relationships among the six traits. These findings indicate that examining the interactions between closely related traits rather than only analyzing individual trait provides more useful insight into the genetic system of the interrelated traits for which there has been limited QTL information.
Collapse
|
18
|
Molecular and environmental factors regulating seed longevity. Biochem J 2020; 477:305-323. [PMID: 31967650 DOI: 10.1042/bcj20190165] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022]
Abstract
Seed longevity is a central pivot of the preservation of biodiversity, being of main importance to face the challenges linked to global climate change and population growth. This complex, quantitative seed quality trait is acquired on the mother plant during the second part of seed development. Understanding what factors contribute to lifespan is one of the oldest and most challenging questions in plant biology. One of these challenges is to recognize that longevity depends on the storage conditions that are experimentally used because they determine the type and rate of deleterious conditions that lead to cell death and loss of viability. In this review, we will briefly review the different storage methods that accelerate the deteriorative reactions during storage and argue that a minimum amount of information is necessary to interpret the longevity data. Next, we will give an update on recent discoveries on the hormonal factors regulating longevity, both from the ABA signaling pathway but also other hormonal pathways. In addition, we will review the effect of both maternal and abiotic factors that influence longevity. In the last section of this review, we discuss the problems in unraveling cause-effect relationship between the time of death during storage and deteriorative reactions leading to seed ageing. We focus on the three major types of cellular damage, namely membrane permeability, lipid peroxidation and RNA integrity for which germination data on seed stored in dedicated seed banks for long period times are now available.
Collapse
|
19
|
Metabolomics: A Tool for Cultivar Phenotyping and Investigation of Grain Crops. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060831] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The quality of plants is often enhanced for diverse purposes such as improved resistance to environmental pressures, better taste, and higher yields. Considering the world’s dependence on plants (nutrition, medicine, or biofuel), developing new cultivars with superior characteristics is of great importance. As part of the ‘omics’ approaches, metabolomics has been employed to investigate the large number of metabolites present in plant systems under well-defined environmental conditions. Recent advances in the metabolomics field have greatly expanded our understanding of plant metabolism, largely driven by potential application to agricultural systems. The current review presents the workflow for plant metabolome analyses, current knowledge, and future directions of such research as determinants of cultivar phenotypes. Furthermore, the value of metabolome analyses in contemporary crop science is illustrated. Here, metabolomics has provided valuable information in research on grain crops and identified significant biomarkers under different conditions and/or stressors. Moreover, the value of metabolomics has been redefined from simple biomarker identification to a tool for discovering active drivers involved in biological processes. We illustrate and conclude that the rapid advances in metabolomics are driving an explosion of information that will advance modern breeding approaches for grain crops and address problems associated with crop productivity and sustainable agriculture.
Collapse
|
20
|
Hina A, Cao Y, Song S, Li S, Sharmin RA, Elattar MA, Bhat JA, Zhao T. High-Resolution Mapping in Two RIL Populations Refines Major "QTL Hotspot" Regions for Seed Size and Shape in Soybean ( Glycine max L.). Int J Mol Sci 2020; 21:E1040. [PMID: 32033213 PMCID: PMC7038151 DOI: 10.3390/ijms21031040] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 01/10/2023] Open
Abstract
Seed size and shape are important traits determining yield and quality in soybean. However, the genetic mechanism and genes underlying these traits remain largely unexplored. In this regard, this study used two related recombinant inbred line (RIL) populations (ZY and K3N) evaluated in multiple environments to identify main and epistatic-effect quantitative trait loci (QTLs) for six seed size and shape traits in soybean. A total of 88 and 48 QTLs were detected through composite interval mapping (CIM) and mixed-model-based composite interval mapping (MCIM), respectively, and 15 QTLs were common among both methods; two of them were major (R2 > 10%) and novel QTLs (viz., qSW-1-1ZN and qSLT-20-1K3N). Additionally, 51 and 27 QTLs were identified for the first time through CIM and MCIM methods, respectively. Colocalization of QTLs occurred in four major QTL hotspots/clusters, viz., "QTL Hotspot A", "QTL Hotspot B", "QTL Hotspot C", and "QTL Hotspot D" located on Chr06, Chr10, Chr13, and Chr20, respectively. Based on gene annotation, gene ontology (GO) enrichment, and RNA-Seq analysis, 23 genes within four "QTL Hotspots" were predicted as possible candidates, regulating soybean seed size and shape. Network analyses demonstrated that 15 QTLs showed significant additive x environment (AE) effects, and 16 pairs of QTLs showing epistatic effects were also detected. However, except three epistatic QTLs, viz., qSL-13-3ZY, qSL-13-4ZY, and qSW-13-4ZY, all the remaining QTLs depicted no main effects. Hence, the present study is a detailed and comprehensive investigation uncovering the genetic basis of seed size and shape in soybeans. The use of a high-density map identified new genomic regions providing valuable information and could be the primary target for further fine mapping, candidate gene identification, and marker-assisted breeding (MAB).
Collapse
Affiliation(s)
- Aiman Hina
- Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China; (A.H.); (S.S.); (S.L.); (R.A.S.); (M.A.E.)
| | - Yongce Cao
- Shaanxi Key Laboratory of Chinese Jujube; College of Life Science, Yan’an University, Yan’an 716000, China;
| | - Shiyu Song
- Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China; (A.H.); (S.S.); (S.L.); (R.A.S.); (M.A.E.)
| | - Shuguang Li
- Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China; (A.H.); (S.S.); (S.L.); (R.A.S.); (M.A.E.)
| | - Ripa Akter Sharmin
- Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China; (A.H.); (S.S.); (S.L.); (R.A.S.); (M.A.E.)
| | - Mahmoud A. Elattar
- Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China; (A.H.); (S.S.); (S.L.); (R.A.S.); (M.A.E.)
| | - Javaid Akhter Bhat
- Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China; (A.H.); (S.S.); (S.L.); (R.A.S.); (M.A.E.)
| | - Tuanjie Zhao
- Ministry of Agriculture (MOA) Key Laboratory of Biology and Genetic Improvement of Soybean (General), State Key Laboratory for Crop Genetics and Germplasm Enhancement, Soybean Research Institute, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China; (A.H.); (S.S.); (S.L.); (R.A.S.); (M.A.E.)
| |
Collapse
|