1
|
Yang Y, Wang D, Lü P, Ma S, Chen K. Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system. Mol Biol Rep 2023; 50:3723-3738. [PMID: 36648696 PMCID: PMC9843688 DOI: 10.1007/s11033-023-08240-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
PURPOSE This work characterizes the applications of CRISPR/Cas12 system, including nucleic acid detection, animal, plant and microbial genome editing. METHODS The literature on CRISPR/Cas12 system was collected and reviewed. RESULTS CRISPR/Cas system is an acquired immune system derived from bacteria and archaea, which has become the most popular technology around the world because of its outstanding contribution in genome editing. Type V CRISPR/Cas systems are distinguished by a single RNA-guided RuvC nuclease domain with single effector molecule. Cas12a, the first reported type V CRISPR/Cas system, targets double-stranded DNA (dsDNA) adjacent to PAM sequences and trans-cleaves single-stranded DNA (ssDNA). We present the applications of CRISPR/Cas12 system for nucleic acid detection and genome editing in animals, plants and microorganisms. Furthermore, this review also summarizes the applications of other Cas12 proteins, such as Cas12b, Cas12c, Cas12d, and so on, which further widen the application prospects of CRISPR/Cas12 system. CONCLUSIONS Knowledge of the applications of CRISPR/Cas12 system is necessary for improving the understanding of the functional diversity of CRISPR/Cas12 system and also provides significant references for further research and utilization of CRISPR/Cas12 in other new fields.
Collapse
Affiliation(s)
- Yanhua Yang
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China.
| | - Dandan Wang
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Peng Lü
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Shangshang Ma
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, People's Republic of China
| |
Collapse
|
2
|
Tsuchida CA, Zhang S, Doost MS, Zhao Y, Wang J, O'Brien E, Fang H, Li CP, Li D, Hai ZY, Chuck J, Brötzmann J, Vartoumian A, Burstein D, Chen XW, Nogales E, Doudna JA, Liu JJG. Chimeric CRISPR-CasX enzymes and guide RNAs for improved genome editing activity. Mol Cell 2022; 82:1199-1209.e6. [PMID: 35219382 PMCID: PMC9189900 DOI: 10.1016/j.molcel.2022.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/25/2021] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
A compact protein with a size of <1,000 amino acids, the CRISPR-associated protein CasX is a fundamentally distinct RNA-guided nuclease when compared to Cas9 and Cas12a. Although it can induce RNA-guided genome editing in mammalian cells, the activity of CasX is less robust than that of the widely used S. pyogenes Cas9. Here, we show that structural features of two CasX homologs and their guide RNAs affect the R-loop complex assembly and DNA cleavage activity. Cryo-EM-based structural engineering of either the CasX protein or the guide RNA produced two new CasX genome editors (DpbCasX-R3-v2 and PlmCasX-R1-v2) with significantly improved DNA manipulation efficacy. These results advance both the mechanistic understanding of CasX and its application as a genome-editing tool.
Collapse
Affiliation(s)
- Connor A Tsuchida
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, Berkeley, California 94720, USA; Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Shouyue Zhang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mohammad Saffari Doost
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | - Yuqian Zhao
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jia Wang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Elizabeth O'Brien
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | - Huan Fang
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Cheng-Ping Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Danyuan Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhuo-Yan Hai
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jonathan Chuck
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Julian Brötzmann
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Araz Vartoumian
- Innovative Genomics Institute, University of California, Berkeley, California 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA
| | - David Burstein
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Xiao-Wei Chen
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Eva Nogales
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| | - Jennifer A Doudna
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, Berkeley, California 94720, USA; Innovative Genomics Institute, University of California, Berkeley, California 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA; Department of Chemistry, University of California, Berkeley, California 94720, USA; Gladstone Institute of Data Science and Biotechnology. Gladstone Institutes, San Francisco, California 94158, USA.
| | - Jun-Jie Gogo Liu
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|