1
|
Hu H, Lu Z, Ma Y, Song X, Wang D, Wu C, Ma X, Shan Y, Ren X, Ma Y. Impact of transinfection of Wolbachia from the planthopper Laodelphax striatellus on reproductive fitness and transcriptome of the whitefly Bemisia tabaci. J Invertebr Pathol 2024; 207:108230. [PMID: 39547593 DOI: 10.1016/j.jip.2024.108230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Abstract
The whitefly Bemisia tabaci is critical global pest threatening crops and leading to agricultural losses. Wolbachia is an intracellular symbiotic bacterium in insects, which can regulate the growth and development of the host through various ways. In a prior study, Wolbachia was found to be transferred to whitefly and induce fitness changes. However, little is known about the underlying mechanisms of host-Wolbachia interactions in B. tabaci. In this study, a Wolbachia strain wStri was isolated from the small brown planthopper, Laodelphex striatellus, and transferred to B. tabaci. The distribution of Wolbachia in whiteflies was determined using fluorescence in situ hybridization. Reciprocal crossing experiments demonstrated that wStri did not induce cytoplasmic incompatibility phenotypes in B. tabaci, but prolonged the developmental duration of the offspring. We performed transcriptomic analysis of Wolbachia-infected female and male adults using Illumina-based RNA-Seq. A total of 843 differentially expressed genes (DEGs) were identified in infected females, among them 141 were significantly up-regulated and 702 were down-regulated by Wolbachia infection. In infected males, of 511 gene sets, 279 host genes were significantly up-regulated, and 232 were down-regulated by Wolbachia infection. KEGG analysis of DEGs demonstrated significant differences in gene pathway distribution between up-regulated and down-regulated genes. These genes are involved in various biological processes, including, but not limited to, detoxification, oxidation-reduction, metabolic processes, and immunity. The transcriptomic profiling of this study offers valuable information on the differential expression of genes in whiteflies following Wolbachia infection, and enhances our understanding of this host-symbiotic interaction.
Collapse
Affiliation(s)
- Hongyan Hu
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhenhua Lu
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Yajie Ma
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xianpeng Song
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Dan Wang
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Changcai Wu
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xiaoyan Ma
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yongpan Shan
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Xiangliang Ren
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Yan Ma
- Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
2
|
Mostoufi SL, Singh ND. Pathogen infection alters the gene expression landscape of transposable elements in Drosophila melanogaster. G3 (BETHESDA, MD.) 2024; 14:jkae171. [PMID: 39129654 PMCID: PMC11373657 DOI: 10.1093/g3journal/jkae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/09/2024] [Indexed: 08/13/2024]
Abstract
Transposable elements make up substantial proportions of eukaryotic genomes and many are thought to be remnants of ancient viral infections. Current research has begun to highlight the role transposable elements can play in the immune system response to infections. However, most of our knowledge about transposable element expression during infection is limited by the specific host and pathogen factors from each study, making it difficult to compare studies and develop broader patterns regarding the role of transposable elements during infection. Here, we use the tools and resources available in the model, Drosophila melanogaster, to analyze multiple gene expression datasets of flies subject to bacterial, fungal, and viral infections. We analyzed differences in pathogen species, host genotype, host tissue, and sex to understand how these factors impact transposable element expression during infection. Our results highlight both shared and unique transposable element expression patterns between pathogens and suggest a larger effect of pathogen factors over host factors for influencing transposable element expression.
Collapse
Affiliation(s)
- Sabrina L Mostoufi
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
3
|
Gruntenko NE, Deryuzhenko MA, Andreenkova OV, Shishkina OD, Bobrovskikh MA, Shatskaya NV, Vasiliev GV. Drosophila melanogaster Transcriptome Response to Different Wolbachia Strains. Int J Mol Sci 2023; 24:17411. [PMID: 38139239 PMCID: PMC10743526 DOI: 10.3390/ijms242417411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Wolbachia is a maternally inherited, intercellular bacterial symbiont of insects and some other invertebrates. Here, we investigated the effect of two different Wolbachia strains, differing in a large chromosomal inversion, on the differential expression of genes in D. melanogaster females. We revealed significant changes in the transcriptome of the infected flies compared to the uninfected ones, as well as in the transcriptome of flies infected with the Wolbachia strain, wMelPlus, compared to flies infected with the wMelCS112 strain. We linked differentially expressed genes (DEGs) from two pairwise comparisons, "uninfected-wMelPlus-infected" and "uninfected-wMelCS112-infected", into two gene networks, in which the following functional groups were designated: "Proteolysis", "Carbohydrate transport and metabolism", "Oxidation-reduction process", "Embryogenesis", "Transmembrane transport", "Response to stress" and "Alkaline phosphatases". Our data emphasized similarities and differences between infections by different strains under study: a wMelPlus infection results in more than double the number of upregulated DEGs and half the number of downregulated DEGs compared to a wMelCS112 infection. Thus, we demonstrated that Wolbachia made a significant contribution to differential expression of host genes and that the bacterial genotype plays a vital role in establishing the character of this contribution.
Collapse
Affiliation(s)
- Nataly E. Gruntenko
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (M.A.D.); (O.V.A.); (O.D.S.); (M.A.B.); (N.V.S.); (G.V.V.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Frantz SI, Small CM, Cresko WA, Singh ND. Ovarian transcriptional response to Wolbachia infection in D. melanogaster in the context of between-genotype variation in gene expression. G3 (BETHESDA, MD.) 2023; 13:jkad047. [PMID: 36857313 PMCID: PMC10151400 DOI: 10.1093/g3journal/jkad047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/22/2022] [Accepted: 01/07/2023] [Indexed: 03/02/2023]
Abstract
Wolbachia is a maternally transmitted endosymbiotic bacteria that infects a wide variety of arthropod and nematode hosts. The effects of Wolbachia on host biology are far-reaching and include changes in host gene expression. However, previous work on the host transcriptional response has generally been investigated in the context of a single host genotype. Thus, the relative effect of Wolbachia infection versus vs. host genotype on gene expression is unknown. Here, we explicitly test the relative roles of Wolbachia infection and host genotype on host gene expression by comparing the ovarian transcriptomes of 4 strains of Drosophila melanogaster (D. melanogaster) infected and uninfected with Wolbachia. Our data suggest that infection explains a small amount of transcriptional variation, particularly in comparison to variation in gene expression among strains. However, infection specifically affects genes related to cell cycle, translation, and metabolism. We also find enrichment of cell division and recombination processes among genes with infection-associated differential expression. Broadly, the transcriptomic changes identified in this study provide novel understanding of the relative magnitude of the effect of Wolbachia infection on gene expression in the context of host genetic variation and also point to genes that are consistently differentially expressed in response to infection among multiple genotypes.
Collapse
Affiliation(s)
- Sophia I Frantz
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403USA
| | - Clayton M Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403USA
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR, 97403USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403USA
- Presidential Initiative in Data Science, University of Oregon, Eugene, OR, 97403USA
| | - Nadia D Singh
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403USA
| |
Collapse
|
5
|
Zhao T, Xiao Y, Huang B, Ran MJ, Duan X, Wang YF, Lu Y, Yu XQ. A dual role of lola in Drosophila ovary development: regulating stem cell niche establishment and repressing apoptosis. Cell Death Dis 2022; 13:756. [PMID: 36056003 PMCID: PMC9440207 DOI: 10.1038/s41419-022-05195-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 01/21/2023]
Abstract
In Drosophila ovary, niche is composed of somatic cells, including terminal filament cells (TFCs), cap cells (CCs) and escort cells (ECs), which provide extrinsic signals to maintain stem cell renewal or initiate cell differentiation. Niche establishment begins in larval stages when terminal filaments (TFs) are formed, but the underlying mechanism for the development of TFs remains largely unknown. Here we report that transcription factor longitudinals lacking (Lola) is essential for ovary morphogenesis. We showed that Lola protein was expressed abundantly in TFCs and CCs, although also in other cells, and lola was required for the establishment of niche during larval stage. Importantly, we found that knockdown expression of lola induced apoptosis in adult ovary, and that lola affected adult ovary morphogenesis by suppressing expression of Regulator of cullins 1b (Roc1b), an apoptosis-related gene that regulates caspase activation during spermatogenesis. These findings significantly expand our understanding of the mechanisms controlling niche establishment and adult oogenesis in Drosophila.
Collapse
Affiliation(s)
- Ting Zhao
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China
| | - Yanhong Xiao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, South China Normal University, Guangzhou, PR China
| | - Bo Huang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China
| | - Mao-Jiu Ran
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China
| | - Xin Duan
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China
| | - Yu-Feng Wang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, PR China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, South China Normal University, Guangzhou, PR China.
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, South China Normal University, Guangzhou, PR China.
| |
Collapse
|
6
|
He Z, Fang Y, Li DC, Chen DS, Wu F. Toxicity of procymidone to Bombyx mori based on physiological and transcriptomic analysis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21906. [PMID: 35398926 DOI: 10.1002/arch.21906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Procymidone is widely used in vegetables and fruits because of its broad-spectrum and high efficiency. However, it is unclear whether procymidone can affect silkworm (Bombyx mori) growth and cocoon production. This study investigated the effects of procymidone on the growth and cocoon production of silkworms. We analyzed the growth, and cocoon quality of fifth instar larvae fed on mulberry leaves saturated with different concentrations (2.5, 5, and 10 mg/ml) of procymidone and the control. Results showed that procymidone supplementation decreased the larval growth and cocoon quality compared to the control group, suggesting that procymidone had toxicity to silkworms. Additionally, after transcriptomic analysis, we identified 396 significantly differentially expressed genes (DEGs) in the presence of procymidone. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) illustrated that these DEGs were closely related to metabolism. Taken together, these results confirmed that procymidone could cause toxicity by affecting metabolism in silkworm larvae. We believed that these results could provide important materials for the effect of procymidone on silkworms and gave us some clues for pesticides used in the mulberry garden.
Collapse
Affiliation(s)
- Zhen He
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Yang Fang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
| | - De-Chen Li
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Deng-Song Chen
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Fan Wu
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| |
Collapse
|
7
|
Nascimento da Silva J, Calixto Conceição C, Cristina Ramos de Brito G, Costa Santos D, Martins da Silva R, Arcanjo A, Henrique Ferreira Sorgine M, de Oliveira PL, Andrade Moreira L, da Silva Vaz I, Logullo C. Wolbachia pipientis modulates metabolism and immunity during Aedes fluviatilis oogenesis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 146:103776. [PMID: 35526745 DOI: 10.1016/j.ibmb.2022.103776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Wolbachia pipientis is a maternally transmitted bacterium that mostly colonizes arthropods, including the mosquito Aedes fluviatilis, potentially affecting different aspects of host physiology. This intracellular bacterium prefers gonadal tissue cells, interfering with the reproductive cycle of insects, arachnids, crustaceans, and nematodes. Wolbachia's ability to modulate the host's reproduction is related to its success in prevalence and frequency. Infecting oocytes is essential for vertical propagation, ensuring its presence in the germline. The mosquito Ae. fluviatilis is a natural host for this bacterium and therefore represents an excellent experimental model in the effort to understand host-symbiont interactions and the mutual metabolic regulation. The aim of this study was to comparatively describe metabolic changes in naturally Wolbachia-infected and uninfected ovaries of Ae. fluviatilis during the vitellogenic period of oogenesis, thus increasing the knowledge about Wolbachia parasitic/symbiotic mechanisms.
Collapse
Affiliation(s)
- Jhenifer Nascimento da Silva
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Christiano Calixto Conceição
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Gisely Cristina Ramos de Brito
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Daniel Costa Santos
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Renato Martins da Silva
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Angélica Arcanjo
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Marcos Henrique Ferreira Sorgine
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Pedro L de Oliveira
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Luciano Andrade Moreira
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Instituto René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil; Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Logullo
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
8
|
Dou W, Miao Y, Xiao J, Huang D. Association of Wolbachia with Gene Expression in Drosophila Testes. MICROBIAL ECOLOGY 2021; 82:805-817. [PMID: 33555369 DOI: 10.1007/s00248-021-01703-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Wolbachia is a genus of intracellular symbiotic bacteria that are widely distributed in arthropods and nematodes. These maternally inherited bacteria regulate host reproductive systems in various ways to facilitate their vertical transmission. Since the identification of Wolbachia in many insects, the relationship between Wolbachia and the host has attracted great interest. Numerous studies have indicated that Wolbachia modifies a variety of biological processes in the host. Previous studies in Drosophila melanogaster (D. melanogaster) have demonstrated that Wolbachia can affect spermatid differentiation, chromosome deposition, and sperm activity in the early stages of spermatogenesis, leading to sperm dysfunction. Here, we explored the putative effect of Wolbachia in sperm maturation using transcriptomic approaches to compare gene expression in Wolbachia-infected and Wolbachia-free D. melanogaster adult testes. Our findings show that Wolbachia affects many biological processes in D. melanogaster adult testes, and most of the differentially expressed genes involved in carbohydrate metabolism, lysosomal degradation, proteolysis, lipid metabolism, and immune response were upregulated in the presence of Wolbachia. In contrast, some genes that are putatively associated with cutin and wax biosynthesis and peroxisome pathways were downregulated. We did not find any differentially expressed genes that are predicted to be related to spermatogenesis in the datasets. This work provides additional information for understanding the Wolbachia-host intracellular relationships.
Collapse
Affiliation(s)
- Weihao Dou
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yunheng Miao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinhua Xiao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Dawei Huang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
9
|
Masson F, Rommelaere S, Marra A, Schüpfer F, Lemaitre B. Dual proteomics of Drosophila melanogaster hemolymph infected with the heritable endosymbiont Spiroplasma poulsonii. PLoS One 2021; 16:e0250524. [PMID: 33914801 PMCID: PMC8084229 DOI: 10.1371/journal.pone.0250524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 11/19/2022] Open
Abstract
Insects are frequently infected with heritable bacterial endosymbionts. Endosymbionts have a dramatic impact on their host physiology and evolution. Their tissue distribution is variable with some species being housed intracellularly, some extracellularly and some having a mixed lifestyle. The impact of extracellular endosymbionts on the biofluids they colonize (e.g. insect hemolymph) is however difficult to appreciate because biofluid composition can depend on the contribution of numerous tissues. Here we investigate Drosophila hemolymph proteome changes in response to the infection with the endosymbiont Spiroplasma poulsonii. S. poulsonii inhabits the fly hemolymph and gets vertically transmitted over generations by hijacking the oogenesis in females. Using dual proteomics on infected hemolymph, we uncovered a weak, chronic activation of the Toll immune pathway by S. poulsonii that was previously undetected by transcriptomics-based approaches. Using Drosophila genetics, we also identified candidate proteins putatively involved in controlling S. poulsonii growth. Last, we also provide a deep proteome of S. poulsonii, which, in combination with previously published transcriptomics data, improves our understanding of the post-transcriptional regulations operating in this bacterium.
Collapse
Affiliation(s)
- Florent Masson
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Samuel Rommelaere
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alice Marra
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Fanny Schüpfer
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
10
|
Shropshire JD, Leigh B, Bordenstein SR. Symbiont-mediated cytoplasmic incompatibility: what have we learned in 50 years? eLife 2020; 9:61989. [PMID: 32975515 PMCID: PMC7518888 DOI: 10.7554/elife.61989] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is the most common symbiont-induced reproductive manipulation. Specifically, symbiont-induced sperm modifications cause catastrophic mitotic defects in the fertilized embryo and ensuing lethality in crosses between symbiotic males and either aposymbiotic females or females harboring a different symbiont strain. However, if the female carries the same symbiont strain, then embryos develop properly, thereby imparting a relative fitness benefit to symbiont-transmitting mothers. Thus, CI drives maternally-transmitted bacteria to high frequencies in arthropods worldwide. In the past two decades, CI experienced a boom in interest due to its (i) deployment in worldwide efforts to curb mosquito-borne diseases, (ii) causation by bacteriophage genes, cifA and cifB, that modify sexual reproduction, and (iii) important impacts on arthropod speciation. This review serves as a gateway to experimental, conceptual, and quantitative themes of CI and outlines significant gaps in understanding CI’s mechanism that are ripe for investigation from diverse subdisciplines in the life sciences.
Collapse
Affiliation(s)
- J Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Brittany Leigh
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, United States.,Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, United States.,Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, United States
| |
Collapse
|
11
|
Dynamics of bacterial composition in the locust reproductive tract are affected by the density-dependent phase. FEMS Microbiol Ecol 2020; 96:5807075. [DOI: 10.1093/femsec/fiaa044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/12/2020] [Indexed: 02/03/2023] Open
Abstract
ABSTRACTThe important role that locust gut bacteria play in their host biology is well accepted. Among other roles, gut bacteria are suggested to be involved in the locust swarming phenomenon. In addition, in many insect orders, the reproductive system is reported to serve as a vector for trans-generation bacterial inoculation. Knowledge of the bacterial composition of the locust reproductive tract is, however, practically absent. Here we characterized the reproductive system bacterial composition of gregarious and solitary females. We investigated its temporal dynamics and how it interacts with the locust phase, by comparative sampling and 16S rRNA amplicon sequencing. We revealed that the bacterial composition of the locust female reproductive tract is mostly constructed of three core genera: Micrococcus, Acinetobacter and Staphylococcus. While solitary females maintained a consistent bacterial composition, in the gregarious phase this consortium demonstrated large temporal shifts, mostly manifested by Brevibacterium blooms. These data are in accord with our previous report on the dynamics of locust hindgut bacterial microbiota, further indicating that locust endosymbionts are affected by their host population density. These newly understood dynamics may have implications beyond their contribution to our knowledge of locust ecology, as aggregation and mass migration are prevalent phenomena across many migrating animals.
Collapse
|