1
|
Cao J, Xie J, Yu M, Xu T, Zhang H, Chen L, Sun S. The Promoting Mechanism of the Sterile Fermentation Filtrate of Serratia odorifera on Hypsizygus marmoreus by Means of Metabolomics Analysis. Biomolecules 2023; 13:1804. [PMID: 38136674 PMCID: PMC10741993 DOI: 10.3390/biom13121804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Hypsizygus marmoreus has become one of the most popular edible mushrooms due to its high nutritional and economic value. Previous researchers found that Serratia odorifera could promote the growth of H. marmoreus by producing and secreting some of its inducers. However, the specific mechanism of action was still unclear. In this study, we found that the exogenous addition of sterile fermentation filtrate (HZSO-1), quorum sensing (QS) signaling molecules, 3-oxo-C6-HSL, cyclo(Pro-Leu), and cyclo(Tyr-Leu) could significantly promote the growth of H. marmoreus, increase the number of clamp junctions, and the diameter of mycelium (p < 0.05). In addition, non-targeted metabolomic analysis revealed that 706 metabolites were detected in the treated group. Of these, 307 metabolites were significantly different (p < 0.05). Compared with the control, 54 and 86 metabolites were significantly increased and decreased in the HZSO-1 group, respectively (p < 0.05). We speculate that the sterile fermentation filtrate of S. odorifera could mediate the carbohydrate and amino acid metabolism of H. marmoreus by influencing the pentose phosphate pathway (PPP) to increase the energy supply for the growth and development of the mycelium. The above results will further reveal the growth-promoting mechanism of S. odorifera on H. marmoreus.
Collapse
Affiliation(s)
- Jixuan Cao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Jiacheng Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Mingming Yu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Tao Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Huangru Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Liding Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.C.); (J.X.); (M.Y.); (T.X.); (H.Z.); (L.C.)
- Gutian Edible Fungi Research Institute, Fujian Agriculture and Forestry University, Ningde 352200, China
| |
Collapse
|
2
|
Angelini P, Flores GA, Cusumano G, Venanzoni R, Pellegrino RM, Zengin G, Di Simone SC, Menghini L, Ferrante C. Bioactivity and Metabolomic Profile of Extracts Derived from Mycelial Solid Cultures of Hypsizygus marmoreus. Microorganisms 2023; 11:2552. [PMID: 37894210 PMCID: PMC10609027 DOI: 10.3390/microorganisms11102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/16/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The beech mushroom (Hypsizygus marmoreus) is a highly nutritious, edible medicinal mushroom native to East Asia. The present research investigated the impact of different substrates on the metabolite compositions of H. marmoreus mycelia cultivated in vitro. The substrates tested included malt extract agar, malt extract agar enriched with barley malt, and malt extract agar enriched with grape pomace. The study also assessed antimicrobial and antiradical activities of the extracts against gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram-negative bacteria (Escherichia coli, Salmonella typhi, and Pseudomonas aeruginosa), yeasts (Candida albicans, C. tropicalis, and C. parapsilosis), and dermatophytes (Trichophyton mentagrophytes, T. tonsurans, T. rubrum, Arthroderma quadrifidum, A. gypseum, A. curreyi, and A. insingulare). The results revealed that the H. marmoreus mycelia extracts demonstrated antibacterial and antifungal activities against the tested microorganisms. Extracts obtained from the cultivation in substrates enriched with either barley malt or grape pomace exhibited the highest antibacterial activity among all the tested bacterial strains except for P. aeruginosa. The same extracts showed the highest inhibitory effect against C. albicans and C. parapsilosis. Noteworthy, the extract from the mushroom cultivated in the substrate enriched with grape pomace also exhibited remarkable efficacy against T. mentagrophytes and T. tonsurans. Terpenoid and carbapenem compounds could be related to the antimicrobial properties of the extracts from mushrooms cultivated in substrates enriched with grape pomace. In comparison, the higher antiradical properties could be related to the content of indole compounds. In conclusion, growth substrate selection affects the nutritional and medicinal properties of H. marmoreus, making it a valuable contribution to the understanding of the cultivation of this mushroom.
Collapse
Affiliation(s)
- Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (G.A.F.); (G.C.); (R.V.); (R.M.P.)
| | - Giancarlo Angeles Flores
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (G.A.F.); (G.C.); (R.V.); (R.M.P.)
| | - Gaia Cusumano
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (G.A.F.); (G.C.); (R.V.); (R.M.P.)
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (G.A.F.); (G.C.); (R.V.); (R.M.P.)
| | - Roberto Maria Pellegrino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia, Italy; (G.A.F.); (G.C.); (R.V.); (R.M.P.)
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey;
| | - Simonetta Cristina Di Simone
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (C.F.)
| | - Luigi Menghini
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (C.F.)
| | - Claudio Ferrante
- Botanic Garden “Giardino dei Semplici”, Department of Pharmacy, “Gabriele d’Annunzio” University, Via dei Vestini 31, 66100 Chieti, Italy; (S.C.D.S.); (C.F.)
| |
Collapse
|
3
|
Lin J, Wu Q, Qiao J, Zheng S, Liu W, Wu L, Liu J, Zeng Z. A review on composite strategy of MOF derivatives for improving electromagnetic wave absorption. iScience 2023; 26:107132. [PMID: 37456858 PMCID: PMC10338214 DOI: 10.1016/j.isci.2023.107132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
To address the electromagnetic wave (EMW) pollution issues caused by the development of electronics and wireless communication technology, it is urgent to develop efficient EMW-absorbing materials. With controllable composition, diverse structure, high porosity, and large specific surface area, metal-organic framework (MOF) derivatives have sparked the infinite passion and creativity of researchers in the electromagnetic field. Against the challenges of poor inherent impedance matching and insufficient attenuation capability of pure MOF derivative, designing and developing MOF derivative-based composites by compounding MOF with other materials, such as graphene, CNTs, MXene, and so on, has been an effective strategy for constructing high-efficiency EMW absorbing materials. This review systematically expounds the research progress of MOF derivative-based composite strategies, and discusses the challenges and opportunities faced by MOF derivatives in the field of EMW absorption. This work can provide some good ideas for researchers to design and prepare high-efficiency MOF-based EMW absorbing materials in applications of next-generation electronics and aerospace.
Collapse
Affiliation(s)
- Jingpeng Lin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Qilei Wu
- Science and Technology on Electromagnetic Compatibility Laboratory, China Ship Development and Design Centre, Wuhan 430064, PR China
| | - Jing Qiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Sinan Zheng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Wei Liu
- Institute of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518063, PR China
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
- Suzhou Research Institute of Shandong University, Suzhou 215123, PR China
| |
Collapse
|
4
|
Himmelstrand K, Brandström Durling M, Karlsson M, Stenlid J, Olson Å. Multiple rearrangements and low inter- and intra-species mitogenome sequence variation in the Heterobasidion annosum s.l. species complex. Front Microbiol 2023; 14:1159811. [PMID: 37275157 PMCID: PMC10234125 DOI: 10.3389/fmicb.2023.1159811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Mitochondria are essential organelles in the eukaryotic cells and responsible for the energy production but are also involved in many other functions including virulence of some fungal species. Although the evolution of fungal mitogenomes have been studied at some taxonomic levels there are still many things to be learned from studies of closely related species. Methods In this study, we have analyzed 60 mitogenomes in the five species of the Heterobasidion annosum sensu lato complex that all are necrotrophic pathogens on conifers. Results and Discussion Compared to other fungal genera the genomic and genetic variation between and within species in the complex was low except for multiple rearrangements. Several translocations of large blocks with core genes have occurred between the five species and rearrangements were frequent in intergenic areas. Mitogenome lengths ranged between 108 878 to 116 176 bp, mostly as a result of intron variation. There was a high degree of homology of introns, homing endonuclease genes, and intergenic ORFs among the five Heterobasidion species. Three intergenic ORFs with unknown function (uORF6, uORF8 and uORF9) were found in all five species and was located in conserved synteny blocks. A 13 bp long GC-containing self-complementary palindrome was discovered in many places in the five species that were optional in presence/absence. The within species variation is very low, among 48 H. parviporum mitogenomes, there was only one single intron exchange, and SNP frequency was 0.28% and indel frequency 0.043%. The overall low variation in the Heterobasidion annosum sensu lato complex suggests a slow evolution of the mitogenome.
Collapse
Affiliation(s)
| | | | | | | | - Åke Olson
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Comparative Proteomic Analyses within Three Developmental Stages of the Mushroom White Hypsizygus marmoreus. J Fungi (Basel) 2023; 9:jof9020225. [PMID: 36836339 PMCID: PMC9958986 DOI: 10.3390/jof9020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/29/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
(1) Background: The Hypsizygus marmoreus is a popular edible mushroom in East Asian markets. In a previous study, we reported the proteomic analyses of different developmental stages of H. marmoreus, from primordium to mature fruiting body. However, the growth and protein expression changes from scratching to primordium are unclear. (2) Methods: A label-free LC-MS/MS quantitative proteomic analysis technique was adopted to obtain the protein expression profiles of three groups of samples collected in different growth stages from scratching to the tenth day after scratching. The Pearson's correlation coefficient analysis and principal component analysis were performed to reveal the correlation among samples. The differentially expressed proteins (DEPs) were organized. Gene Ontology (GO) analysis was performed to divide the DEPs into different metabolic processes and pathways. (3) Results: From the 3rd day to the 10th day after scratching, mycelium recovered gradually and formed primordia. Compared with the Rec stage, 218 highly expressed proteins were identified in the Knot stage. Compared with the Pri stage, 217 highly expressed proteins were identified in the Rec stage. Compared with the Pri stage, 53 highly expressed proteins were identified in the Knot stage. A variety of the same highly expressed proteins were identified in these three developmental stages, including: glutathione S-transferase, acetyltransferase, importin, dehydrogenase, heat-shock proteins, ribosomal proteins, methyltransferase, etc. The key pathways in the development of H. marmoreus are metabolic process, catabolic process, oxidoreductase activity and hydrolase activity. DEPs in the Knot or Pri stages compared with the Rec stage were significantly decreased in the metabolic-, catabolic- and carbohydrate-related process; and the oxidoreductase, peptidase, and hydrolase activity, which can serve as targets for selectable molecular breeding in H. marmoreus. A total of 2000 proteins were classified into eight different modules by WGCNA, wherein 490 proteins were classified into the turquoise module. (4) Conclusions: Generally, from the 3rd day to the 10th day after scratching, mycelium recovered gradually and formed primordia. Importin, dehydrogenase, heat-shock proteins, ribosomal proteins, transferases were all highly expressed in these three developmental stages. DEPs in the Rec stage compared with the Knot or Pri stages were significantly enriched in the metabolic-, catabolic- and carbohydrate-related process; and in oxidoreductase, peptidase and hydrolase activities. This research contributes to the understanding of the mechanisms of the development changes before primordium of H. marmoreus.
Collapse
|
6
|
Characterization and phylogenetic analysis of the complete mitochondrial genome of the pathogenic fungus Ilyonectria destructans. Sci Rep 2022; 12:2359. [PMID: 35149731 PMCID: PMC8837645 DOI: 10.1038/s41598-022-05428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
Ilyonectria destructans is a pathogenic fungus causing root rot and other symptoms on trees and many crops. This paper analyses the mitochondrial genome of I. destructans and compares it with other published Nectriaceae mitogenomes. The I. destructans mitogenome appears as a circular DNA molecule of 42,895 bp and an overall GC content of 28.23%. It contains 28 protein-coding genes (15 core protein genes and 13 free-standing ORFs), two rRNAs and 27 tRNAs. The gene content and order were found to be conserved in the mitogenome of I. destructans and other Nectriaceae, although the genome size varies because of the variation in the number and length of intergenic regions and introns. For most core protein-coding genes in Nectriaceae species, Ka/Ks < 1 indicates purifying selection. Among some Nectriaceae representatives, only the rps3 gene was found under positive selection. Phylogenetic analyses based on nucleotide sequences of 15 protein-coding genes divided 45 Hypocreales species into six major clades matching the families Bionectriaceae, Cordycipitaceae, Clavicipitaceae, Ophiocordycipitaceae, Hypocreaceae and Nectriaceae. I. destructans appeared as a sister species to unidentified Ilyonectia sp., closely related to C. ilicicola, N. cinnabarina and a clad of ten Fusarium species and G. moniliformis. The complete mitogenome of I. destructans reported in the current paper will facilitate the study of epidemiology, biology, genetic diversity of the species and the evolution of family Nectriace and the Hypocreales order.
Collapse
|
7
|
Song Y, Wan J, Shang JJ, Feng Z, Jin Y, Li H, Guo T, Wu YY, Bao DP, Zhang M, Lv L, Liu J, Yang RH. The complete mitochondrial genome of the edible mushroom Grifola frondosa. Mitochondrial DNA B Resour 2022; 7:286-288. [PMID: 35111939 PMCID: PMC8803107 DOI: 10.1080/23802359.2021.1917312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The culinary-medicinal mushroom Grifola frondosa is widely cultivated in East Asia. In this study, the complete mitochondrial genome of G. frondosa was determined using Illumina sequencing. The circular molecule was 197,486 bp in length with a content of 25.01% GC, which was one of the largest mitochondrial genomes in the order Polyporales. A total of 39 known genes encoding 13 common mitochondrial genes, 24 tRNA genes, 1 ribosomal protein s3 gene (rps3), and 1 DNA polymerase gene (dpo) were predicted in this genome. The phylogenetic analysis showed that G. frondosa clustered together with Sparassis crispa, Laetiporus sulphureus, Wolfiporia cocos, and Taiwanofungus camphoratus. The complete mitochondrial genome reported here may provide new insight into genetic information and evolution for further studies.
Collapse
Affiliation(s)
- Ying Song
- Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, Shenyang, PR China
| | - Jianing Wan
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Jun-Jun Shang
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Zhan Feng
- Jiangsu China Green Co. Ltd, Siyang, PR China
| | - Yuchang Jin
- Jiangsu China Green Co. Ltd, Siyang, PR China
| | - Hewen Li
- Jiangsu China Green Co. Ltd, Siyang, PR China
| | - Ting Guo
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Ying-Ying Wu
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Da-Peng Bao
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | - Min Zhang
- Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, Shenyang, PR China
| | - Litao Lv
- Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, Shenyang, PR China
| | - Junjie Liu
- Institute of Edible Fungi, Liaoning Academy of Agricultural Sciences, Shenyang, PR China
| | - Rui-Heng Yang
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| |
Collapse
|
8
|
Comparative Proteomic Analysis within the Developmental Stages of the Mushroom White Hypsizygus marmoreus. J Fungi (Basel) 2021; 7:jof7121064. [PMID: 34947046 PMCID: PMC8704636 DOI: 10.3390/jof7121064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/27/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022] Open
Abstract
(1) Background: The white Hypsizygus marmoreus is a popular edible mushroom in East Asia markets. Research on the systematic investigation of the protein expression changes in the cultivation process of this mushroom are few. (2) Methods: Label-free LC-MS/MS quantitative proteomics analysis technique was adopted to obtain the protein expression profiles of six groups of samples collected in different growth stages. A total of 3468 proteins were identified. The UpSetR plot analysis, Pearson correlation coefficient (PCC) analysis, and principal component (PC) analysis were performed to reveal the correlation among the six groups of samples. The differentially expressed proteins (DEPs) were organised by One-way ANOVA test and divided into four clusters. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to divide the DEPs into different metabolic processes and pathways in each cluster. (3) Results: The DEPs in cluster 1 are of the highest abundance in the mycelium and are mainly involved in protein biosynthesis, biosynthesis of cofactors, lipid metabolism, spliceosome, cell cycle regulation, and MAPK signaling pathway. The DEPs in cluster 2 are enriched in the stem and are mainly associated with protein biosynthesis, biosynthesis of cofactors, carbon, and energy metabolism. The DEPs in cluster 3 are highly expressed in the primordia and unmatured fruiting bodies and are related to amino acids metabolism, carbon and carbohydrate metabolism, protein biosynthesis and processing, biosynthesis of cofactors, cell cycle regulation, MAPK signaling pathway, ubiquitin-mediated proteolysis, and proteasome. The DEPs in cluster 4 are of the highest abundance in the cap and are mainly associated with spliceosome, endocytosis, nucleocytoplasmic transport, protein processing, oxidative phosphorylation, biosynthesis of cofactors, amino acids metabolism, and lipid metabolism. (4) Conclusions: This research reports the proteome analysis of different developmental stages during the cultivation of the commercially relevant edible fungi the white H. marmoreus. In the mycelium stage, most of the DEPs are associated with cell proliferation, signal response, and mycelium growth. In the primordia and unmatured fruiting bodies stage, the DEPs are mainly involved in biomass increase, cell proliferation, signal response, and differentiation. In the mature fruiting body stage, the DEPs in the stem are largely associated with cell elongation and increase in biomass, and most of the DEPs in the cap are mainly related to pileus expansion. Several carbohydrate-active enzymes, transcription factors, heat shock proteins, and some DEPs involved in MAPK and cAMP signaling pathways were determined. These proteins might play vital roles in metabolic processes and activities. This research can add value to the understanding of mechanisms concerning mushroom development during commercial production.
Collapse
|
9
|
Araújo DS, De-Paula RB, Tomé LMR, Quintanilha-Peixoto G, Salvador-Montoya CA, Del-Bem LE, Badotti F, Azevedo VAC, Brenig B, Aguiar ERGR, Drechsler-Santos ER, Fonseca PLC, Góes-Neto A. Comparative mitogenomics of Agaricomycetes: Diversity, abundance, impact and coding potential of putative open-reading frames. Mitochondrion 2021; 58:1-13. [PMID: 33582235 DOI: 10.1016/j.mito.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
The mitochondrion is an organelle found in eukaryote organisms, and it is vital for different cellular pathways. The mitochondrion has its own DNA molecule and, because its genetic content is relatively conserved, despite the variation of size and structure, mitogenome sequences have been widely used as a promising molecular biomarker for taxonomy and evolution in fungi. In this study, the mitogenomes of two fungal species of Agaricomycetes class, Phellinotus piptadeniae and Trametes villosa, were assembled and annotated for the first time. We used these newly sequenced mitogenomes for comparative analyses with other 55 mitogenomes of Agaricomycetes available in public databases. Mitochondrial DNA (mtDNA) size and content are highly variable and non-coding and intronic regions, homing endonucleases (HEGs), and unidentified ORFs (uORFs) significantly contribute to the total size of the mitogenome. Furthermore, accessory genes (most of them as HEGs) are shared between distantly related species, most likely as a consequence of horizontal gene transfer events. Conversely, uORFs are only shared between taxonomically related species, most probably as a result of vertical evolutionary inheritance. Additionally, codon usage varies among mitogenomes and the GC content of mitochondrial features may be used to distinguish coding from non-coding sequences. Our results also indicated that transposition events of mitochondrial genes to the nuclear genome are not common. Despite the variation of size and content of the mitogenomes, mitochondrial genes seemed to be reliable molecular markers in our time-divergence analysis, even though the nucleotide substitution rates of mitochondrial and nuclear genomes of fungi are quite different. We also showed that many events of mitochondrial gene shuffling probably happened amongst the Agaricomycetes during evolution, which created differences in the gene order among species, even those of the same genus. Altogether, our study revealed new information regarding evolutionary dynamics in Agaricomycetes.
Collapse
Affiliation(s)
- Daniel S Araújo
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ruth B De-Paula
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Luiz M R Tomé
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Quintanilha-Peixoto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Luiz-Eduardo Del-Bem
- Department of Botany, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Badotti
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Vasco A C Azevedo
- Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Eric R G R Aguiar
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | | | - Paula L C Fonseca
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Program of Bioinformatics, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
10
|
Zubaer A, Wai A, Patel N, Perillo J, Hausner G. The Mitogenomes of Ophiostoma minus and Ophiostoma piliferum and Comparisons With Other Members of the Ophiostomatales. Front Microbiol 2021; 12:618649. [PMID: 33643245 PMCID: PMC7902536 DOI: 10.3389/fmicb.2021.618649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Fungi assigned to the Ophiostomatales are of economic concern as many are blue-stain fungi and some are plant pathogens. The mitogenomes of two blue-stain fungi, Ophiostoma minus and Ophiostoma piliferum, were sequenced and compared with currently available mitogenomes for other members of the Ophiostomatales. Species representing various genera within the Ophiostomatales have been examined for gene content, gene order, phylogenetic relationships, and the distribution of mobile elements. Gene synteny is conserved among the Ophiostomatales but some members were missing the atp9 gene. A genome wide intron landscape has been prepared to demonstrate the distribution of the mobile genetic elements (group I and II introns and homing endonucleases) and to provide insight into the evolutionary dynamics of introns among members of this group of fungi. Examples of complex introns or nested introns composed of two or three intron modules have been observed in some species. The size variation among the mitogenomes (from 23.7 kb to about 150 kb) is mostly due to the presence and absence of introns. Members of the genus Sporothrix sensu stricto appear to have the smallest mitogenomes due to loss of introns. The taxonomy of the Ophiostomatales has recently undergone considerable revisions; however, some lineages remain unresolved. The data showed that genera such as Raffaelea appear to be polyphyletic and the separation of Sporothrix sensu stricto from Ophiostoma is justified.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Nikita Patel
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jordan Perillo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Zhao D, Xin Z, Hou H, Zhou Y, Wang J, Xiao J, Huang D. Inferring the Phylogenetic Positions of Two Fig Wasp Subfamilies of Epichrysomallinae and Sycophaginae Using Transcriptomes and Mitochondrial Data. Life (Basel) 2021; 11:40. [PMID: 33440891 PMCID: PMC7826959 DOI: 10.3390/life11010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 11/17/2022] Open
Abstract
Fig wasps are a group of insects (Hymenoptera: Chalcidoidea) that live in the compact syconia of fig trees (Moraceae: Ficus). Accurate classification and phylogenetic results are very important for studies of fig wasps, but the taxonomic statuses of some fig wasps, especially the non-pollinating subfamilies are difficult to determine, such as Epichrysomallinae and Sycophaginae. To resolve the taxonomic statuses of Epichrysomallinae and Sycophaginae, we obtained transcriptomes and mitochondrial genome (mitogenome) data for four species of fig wasps. These newly added data were combined with the data of 13 wasps (data on 11 fig wasp species were from our laboratory and two wasp species were download from NCBI). Based on the transcriptome and genome data, we obtained 145 single-copy orthologous (SCO) genes in 17 wasp species, and based on mitogenome data, we obtained 13 mitochondrial protein-coding genes (PCGs) for each of the 17 wasp species. Ultimately, we used 145 SCO genes, 13 mitochondrial PCGs and combined SCO genes and mitochondrial genes data to reconstruct the phylogenies of fig wasps using both maximum likelihood (ML) and Bayesian inference (BI) analyses. Our results suggest that both Epichrysomallinae and Sycophaginae are more closely related to Agaonidae with a high statistical support.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinhua Xiao
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (D.Z.); (Z.X.); (H.H.); (Y.Z.); (J.W.)
| | - Dawei Huang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin 300071, China; (D.Z.); (Z.X.); (H.H.); (Y.Z.); (J.W.)
| |
Collapse
|
12
|
Kulik T, Van Diepeningen AD, Hausner G. Editorial: The Significance of Mitogenomics in Mycology. Front Microbiol 2021; 11:628579. [PMID: 33488569 PMCID: PMC7817700 DOI: 10.3389/fmicb.2020.628579] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Affiliation(s)
- Tomasz Kulik
- Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Anne D Van Diepeningen
- B.U. Biointeractions and Plant Health, Wageningen Plant Research, Wageningen University & Research, Wageningen, Netherlands
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
13
|
Medina R, Franco MEE, Bartel LC, Martinez Alcántara V, Saparrat MCN, Balatti PA. Fungal Mitogenomes: Relevant Features to Planning Plant Disease Management. Front Microbiol 2020; 11:978. [PMID: 32547508 PMCID: PMC7272585 DOI: 10.3389/fmicb.2020.00978] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial genomes (mt-genomes) are characterized by a distinct codon usage and their autonomous replication. Mt-genomes encode highly conserved genes (mt-genes), like proteins involved in electron transport and oxidative phosphorylation but they also carry highly variable regions that are in part responsible for their high plasticity. The degree of conservation of their genes is such that they allow the establishment of phylogenetic relationships even across distantly related species. Here, we describe the mechanisms that generate changes along mt-genomes, which play key roles at enlarging the ability of fungi to adapt to changing environments. Within mt-genomes of fungal pathogens, there are dispensable as well as indispensable genes for survival, virulence and/or pathogenicity. We also describe the different complexes or mechanisms targeted by fungicides, thus addressing a relevant issue regarding disease management. Despite the controversial origin and evolution of fungal mt-genomes, the intrinsic mechanisms and molecular biology involved in their evolution will help to understand, at the molecular level, the strategies for fungal disease management.
Collapse
Affiliation(s)
- Rocio Medina
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | | | - Laura Cecilia Bartel
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Virginia Martinez Alcántara
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario Carlos Nazareno Saparrat
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
- Instituto de Fisiología Vegetal (INFIVE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, La Plata, Argentina
| | - Pedro Alberto Balatti
- Centro de Investigaciones de Fitopatología, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIDEFI-CICPBA), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
14
|
Zhang Y, Yang G, Fang M, Deng C, Zhang KQ, Yu Z, Xu J. Comparative Analyses of Mitochondrial Genomes Provide Evolutionary Insights Into Nematode-Trapping Fungi. Front Microbiol 2020; 11:617. [PMID: 32351475 PMCID: PMC7174627 DOI: 10.3389/fmicb.2020.00617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/19/2020] [Indexed: 01/10/2023] Open
Abstract
Predatory fungi in Orbiliaceae (Ascomycota) have evolved a diversity of trapping devices that enable them to trap and kill nematodes, other small animals, and protozoans. These trapping devices include adhesive hyphae, adhesive knobs, adhesive networks, constricting rings, and non-constricting rings. Their diversity and practical importance have attracted significant attention from biologists, making them excellent model organisms for studying adaptative evolution and as biological control agents against parasitic nematodes. The putative origins and evolutionary relationships among these carnivorous fungi have been investigated using nuclear protein-encoding genes, but their patterns of mitogenome relationships and divergences remain unknown. Here we analyze and compare the mitogenomes of 12 fungal strains belonging to eight species, including six species representing all four types of nematode trapping devices and two from related but non-predatory fungi. All 12 analyzed mitogenomes were of circular DNA molecules, with lengths ranging from 146,101 bp to 280,699 bp. Gene synteny analysis revealed several gene rearrangements and intron transfers among the mitogenomes. In addition, the number of protein coding genes (PCGs), GC content, AT skew, and GC skew varied among these mitogenomes. The increased number and total size of introns were the main contributors to the length differences among the mitogenomes. Phylogenetic analyses of the protein-coding genes indicated that mitochondrial and nuclear genomes evolved at different rates, and signals of positive selection were found in several genes involved in energy metabolism. Our study provides novel insights into the evolution of nematode-trapping fungi and shall facilitate further investigations of this ecologically and agriculturally important group of fungi.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Guangzhu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Meiling Fang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Chu Deng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Zefen Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, China
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|