1
|
Li R, Zarate D, Avila-Magaña V, Li J. Comparative transcriptomics revealed parallel evolution and innovation of photosymbiosis molecular mechanisms in a marine bivalve. Proc Biol Sci 2024; 291:20232408. [PMID: 38807516 DOI: 10.1098/rspb.2023.2408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/05/2024] [Indexed: 05/30/2024] Open
Abstract
Photosymbioses between heterotrophic hosts and autotrophic symbionts are evolutionarily prevalent and ecologically significant. However, the molecular mechanisms behind such symbioses remain less elucidated, which hinders our understanding of their origin and adaptive evolution. This study compared gene expression patterns in a photosymbiotic bivalve (Fragum sueziense) and a closely related non-symbiotic species (Trigoniocardia granifera) under different light conditions to detect potential molecular pathways involved in mollusc photosymbiosis. We discovered that the presence of algal symbionts greatly impacted host gene expression in symbiont-containing tissues. We found that the host immune functions were suppressed under normal light compared with those in the dark. In addition, we found that cilia in the symbiont-containing tissues play important roles in symbiont regulation or photoreception. Interestingly, many potential photosymbiosis genes could not be annotated or do not exhibit orthologues in T. granifera transcriptomes, indicating unique molecular functions in photosymbiotic bivalves. Overall, we found both novel and known molecular mechanisms involved in animal-algal photosymbiosis within bivalves. Given that many of the molecular pathways are shared among distantly related host lineages, such as molluscs and cnidarians, it indicates that parallel and/or convergent evolution is instrumental in shaping host-symbiont interactions and responses in these organisms.
Collapse
Affiliation(s)
- Ruiqi Li
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, USA
| | - Daniel Zarate
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, USA
| | | | - Jingchun Li
- Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, USA
| |
Collapse
|
2
|
Ratinskaia L, Malavin S, Zvi-Kedem T, Vintila S, Kleiner M, Rubin-Blum M. Metabolically-versatile Ca. Thiodiazotropha symbionts of the deep-sea lucinid clam Lucinoma kazani have the genetic potential to fix nitrogen. ISME COMMUNICATIONS 2024; 4:ycae076. [PMID: 38873029 PMCID: PMC11171427 DOI: 10.1093/ismeco/ycae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/06/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Lucinid clams are one of the most diverse and widespread symbiont-bearing animal groups in both shallow and deep-sea chemosynthetic habitats. Lucinids harbor Ca. Thiodiazotropha symbionts that can oxidize inorganic and organic substrates such as hydrogen sulfide and formate to gain energy. The interplay between these key metabolic functions, nutrient uptake and biotic interactions in Ca. Thiodiazotropha is not fully understood. We collected Lucinoma kazani individuals from next to a deep-sea brine pool in the eastern Mediterranean Sea, at a depth of 1150 m and used Oxford Nanopore and Illumina sequencing to obtain high-quality genomes of their Ca. Thiodiazotropha gloverae symbiont. The genomes served as the basis for transcriptomic and proteomic analyses to characterize the in situ gene expression, metabolism and physiology of the symbionts. We found genes needed for N2 fixation in the deep-sea symbiont's genome, which, to date, were only found in shallow-water Ca. Thiodiazotropha. However, we did not detect the expression of these genes and thus the potential role of nitrogen fixation in this symbiosis remains to be determined. We also found the high expression of carbon fixation and sulfur oxidation genes, which indicate chemolithoautotrophy as the key physiology of Ca. Thiodiazotropha. However, we also detected the expression of pathways for using methanol and formate as energy sources. Our findings highlight the key traits these microbes maintain to support the nutrition of their hosts and interact with them.
Collapse
Affiliation(s)
- Lina Ratinskaia
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Stas Malavin
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker 8499000, Israel
| | - Tal Zvi-Kedem
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| | - Simina Vintila
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, United States
| | - Maxim Rubin-Blum
- Biology Department, National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108000Israel
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838Israel
| |
Collapse
|
3
|
Hao Z, Lu Q, Zhou Y, Liang Y, Gao Y, Ma H, Xu Y, Wang H. Molecular characterization of MyD88 as a potential biomarker for pesticide-induced stress in Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105610. [PMID: 37945249 DOI: 10.1016/j.pestbp.2023.105610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 11/12/2023]
Abstract
The widespread use of pesticides hampers the immune system of non-target organisms, however, there is a lack of common biomarkers to detect such effects. Myeloid differentiation primary response factor 88 (MyD88) is a crucial junction protein in the Toll-like receptor signaling pathway, which plays an important role in the inflammatory response. In this study, we investigated MyD88 as a potential biomarker for pesticide-induced stress. Phylogenetic analysis revealed that MyD88 was a conserved protein in the evolution of vertebrates and invertebrates. MyD88s usually have death domain (DD) and Toll/interleukin-1 receptor (TIR) domain. Bombyx mori (B. mori) is an important economic insect that is sensitive to toxic substances. We found microbial pesticides enhanced the expression level of MyD88 in B. mori. Transcriptome analysis demonstrated that MyD88 expression level was increased in the fatbody after dinotefuran exposure, a third-generation neonicotinoid pesticide. Moreover, the expression of MyD88 was upregulated in fatbody and midgut by imidacloprid, a first-generation neonicotinoid pesticide. Additionally, insect growth regulator (IGR) pesticides, such as methoprene and fenoxycarb, could induce MyD88 expression in the fatbody of B. mori. These results indicated that MyD88 is a potential biomarker for pesticide-induced stress in B. mori. This study provides novel insights into screening common biomarkers for multiple pesticide stresses and important implications for the development of more sustainable pest management strategies.
Collapse
Affiliation(s)
- Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanyan Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanting Liang
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yun Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huanyan Ma
- Agricultural Technology Extension Center of Zhejiang Province, Hangzhou, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Sokolnikova Y, Mokrina M, Magarlamov T, Grinchenko A, Kumeiko V. Specification of hemocyte subpopulations based on immune-related activities and the production of the agglutinin MkC1qDC in the bivalve Modiolus kurilensis. Heliyon 2023; 9:e15577. [PMID: 37151667 PMCID: PMC10161718 DOI: 10.1016/j.heliyon.2023.e15577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/12/2023] [Accepted: 04/14/2023] [Indexed: 05/09/2023] Open
Abstract
Bivalves, such as Modiolus are used as indicator organisms to monitor the state of the marine environment. Even though hemocytes are known to play a key role in the adaptive and protective mechanisms of bivalves, these cells are poorly studied in horse-mussel Modiolus kurilensis. In this paper, we present classification of horse-mussel hemocytes based on their immune functions, including the production of specific immune-related molecules, as well as their morphological composition after isolation by density gradient centrifugation. An effective fractionation protocol was adapted to separate four hemocyte subpopulations with distinct morphofunctional profiles. First subpopulation consisted of small under-differentiated hemoblasts (2.20 ± 0.85%) with a bromodeoxyuridine positive nucleus, and did not show any immune reactivity. Second was represented by agranulocytes (24.11 ± 2.40%), with evenly filled cytoplasm containing a well-developed protein-synthesizing apparatus, polysomes, smooth endoplasmic reticulum and mitochondria, and positively stained for myeloperoxidase, acidic proteins, glycogen and neutral polysaccharides. Third subpopulation consisted of eosinophilic granulocytes (62.64 ± 9.32%) that contained the largest number of lysosomes, peroxisomes and vesicles with contents of different density, and showed the highest phosphatase, reactive oxygen species (ROS) and phagocytic activities. Lastly, fourth group, basophilic granulocytes (14.21 ± 0.34%), are main producers of lectin-like protein MkC1qDC, recently discovered in M. kurilensis and characterized by pronounced antibacterial and anticancer activity. These cells characterized by intracytoplasmic of the MkC1qDC localization, forming granule-like bodies visualized with specific antibody. Both granulocytes and agranulocytes showed phagocytic activity and ROS production, and these reactions were more pronounced for eosinophilic granulocytes, suggesting that this group is the key element of the cell-mediated immune response of M. kurilensis. Our results support a concept of bivalve's hemocyte specification with distinct phenotypes.
Collapse
Affiliation(s)
- Yulia Sokolnikova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
- Corresponding author. A.V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, 690041, Vladivostok, Russian Federation
| | - Mariia Mokrina
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-0845, Japan
- Far Eastern Federal University, 690922, Vladivostok, Russian Federation
| | - Timur Magarlamov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
| | - Andrey Grinchenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
- Far Eastern Federal University, 690922, Vladivostok, Russian Federation
| | - Vadim Kumeiko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041, Vladivostok, Russian Federation
- Far Eastern Federal University, 690922, Vladivostok, Russian Federation
- Corresponding author. Far Eastern Federal University, 690922, Vladivostok, Russian Federation
| |
Collapse
|
5
|
Zehetmayer S, Posch M, Graf A. Impact of adaptive filtering on power and false discovery rate in RNA-seq experiments. BMC Bioinformatics 2022; 23:388. [PMID: 36153479 PMCID: PMC9509565 DOI: 10.1186/s12859-022-04928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background In RNA-sequencing studies a large number of hypothesis tests are performed to compare the differential expression of genes between several conditions. Filtering has been proposed to remove candidate genes with a low expression level which may not be relevant and have little or no chance of showing a difference between conditions. This step may reduce the multiple testing burden and increase power. Results We show in a simulation study that filtering can lead to some increase in power for RNA-sequencing data, too aggressive filtering, however, can lead to a decline. No uniformly optimal filter in terms of power exists. Depending on the scenario different filters may be optimal. We propose an adaptive filtering strategy which selects one of several filters to maximise the number of rejections. No additional adjustment for multiplicity has to be included, but a rule has to be considered if the number of rejections is too small. Conclusions For a large range of simulation scenarios, the adaptive filter maximises the power while the simulated False Discovery Rate is bounded by the pre-defined significance level. Using the adaptive filter, it is not necessary to pre-specify a single individual filtering method optimised for a specific scenario. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04928-z.
Collapse
|
6
|
Paredes GF, Viehboeck T, Markert S, Mausz MA, Sato Y, Liebeke M, König L, Bulgheresi S. Differential regulation of degradation and immune pathways underlies adaptation of the ectosymbiotic nematode Laxus oneistus to oxic-anoxic interfaces. Sci Rep 2022; 12:9725. [PMID: 35697683 PMCID: PMC9192688 DOI: 10.1038/s41598-022-13235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/13/2022] [Indexed: 11/09/2022] Open
Abstract
Eukaryotes may experience oxygen deprivation under both physiological and pathological conditions. Because oxygen shortage leads to a reduction in cellular energy production, all eukaryotes studied so far conserve energy by suppressing their metabolism. However, the molecular physiology of animals that naturally and repeatedly experience anoxia is underexplored. One such animal is the marine nematode Laxus oneistus. It thrives, invariably coated by its sulfur-oxidizing symbiont Candidatus Thiosymbion oneisti, in anoxic sulfidic or hypoxic sand. Here, transcriptomics and proteomics showed that, whether in anoxia or not, L. oneistus mostly expressed genes involved in ubiquitination, energy generation, oxidative stress response, immune response, development, and translation. Importantly, ubiquitination genes were also highly expressed when the nematode was subjected to anoxic sulfidic conditions, together with genes involved in autophagy, detoxification and ribosome biogenesis. We hypothesize that these degradation pathways were induced to recycle damaged cellular components (mitochondria) and misfolded proteins into nutrients. Remarkably, when L. oneistus was subjected to anoxic sulfidic conditions, lectin and mucin genes were also upregulated, potentially to promote the attachment of its thiotrophic symbiont. Furthermore, the nematode appeared to survive oxygen deprivation by using an alternative electron carrier (rhodoquinone) and acceptor (fumarate), to rewire the electron transfer chain. On the other hand, under hypoxia, genes involved in costly processes (e.g., amino acid biosynthesis, development, feeding, mating) were upregulated, together with the worm's Toll-like innate immunity pathway and several immune effectors (e.g., bactericidal/permeability-increasing proteins, fungicides). In conclusion, we hypothesize that, in anoxic sulfidic sand, L. oneistus upregulates degradation processes, rewires the oxidative phosphorylation and reinforces its coat of bacterial sulfur-oxidizers. In upper sand layers, instead, it appears to produce broad-range antimicrobials and to exploit oxygen for biosynthesis and development.
Collapse
Affiliation(s)
- Gabriela F Paredes
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Tobias Viehboeck
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephanie Markert
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | | | - Yui Sato
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Lena König
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Silvia Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Osvatic JT, Wilkins LGE, Leibrecht L, Leray M, Zauner S, Polzin J, Camacho Y, Gros O, van Gils JA, Eisen JA, Petersen JM, Yuen B. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups. Proc Natl Acad Sci U S A 2021; 118:e2104378118. [PMID: 34272286 PMCID: PMC8307296 DOI: 10.1073/pnas.2104378118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the ocean, most hosts acquire their symbionts from the environment. Due to the immense spatial scales involved, our understanding of the biogeography of hosts and symbionts in marine systems is patchy, although this knowledge is essential for understanding fundamental aspects of symbiosis such as host-symbiont specificity and evolution. Lucinidae is the most species-rich and widely distributed family of marine bivalves hosting autotrophic bacterial endosymbionts. Previous molecular surveys identified location-specific symbiont types that "promiscuously" form associations with multiple divergent cooccurring host species. This flexibility of host-microbe pairings is thought to underpin their global success, as it allows hosts to form associations with locally adapted symbionts. We used metagenomics to investigate the biodiversity, functional variability, and genetic exchange among the endosymbionts of 12 lucinid host species from across the globe. We report a cosmopolitan symbiont species, Candidatus Thiodiazotropha taylori, associated with multiple lucinid host species. Ca. T. taylori has achieved more success at dispersal and establishing symbioses with lucinids than any other symbiont described thus far. This discovery challenges our understanding of symbiont dispersal and location-specific colonization and suggests both symbiont and host flexibility underpin the ecological and evolutionary success of the lucinid symbiosis.
Collapse
Affiliation(s)
- Jay T Osvatic
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - Laetitia G E Wilkins
- Genome and Biomedical Sciences Facility, Genome Center, University of California, Davis, CA 95616
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, 28209 Bremen, Germany
| | - Lukas Leibrecht
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - Matthieu Leray
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Republic of Panama
| | - Sarah Zauner
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - Julia Polzin
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - Yolanda Camacho
- Centro de Investigación en Ciencias del Mar y Limnología, Escuela de Biología, Universidad de Costa Rica, San Pedro 11501-2060, Costa Rica
| | - Olivier Gros
- UMR 7205, Institut de Systématique, Évolution, Biodiversité, Equipe Biologie de la Mangrove, Département de Biologie, Université des Antilles, 97159 Pointe-à-Pitre Cedex, Guadeloupe
| | - Jan A van Gils
- Royal Netherlands Institute for Sea Research,1790 AB Den Burg, The Netherlands
| | - Jonathan A Eisen
- Genome and Biomedical Sciences Facility, Genome Center, University of California, Davis, CA 95616
- Department of Evolution and Ecology, University of California, Davis, CA 95616
- Department of Medical Microbiology and Immunology, University of California, Davis, CA 95616
| | - Jillian M Petersen
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria;
| | - Benedict Yuen
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
8
|
Ip JCH, Xu T, Sun J, Li R, Chen C, Lan Y, Han Z, Zhang H, Wei J, Wang H, Tao J, Cai Z, Qian PY, Qiu JW. Host-Endosymbiont Genome Integration in a Deep-Sea Chemosymbiotic Clam. Mol Biol Evol 2021; 38:502-518. [PMID: 32956455 PMCID: PMC7826175 DOI: 10.1093/molbev/msaa241] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endosymbiosis with chemosynthetic bacteria has enabled many deep-sea invertebrates to thrive at hydrothermal vents and cold seeps, but most previous studies on this mutualism have focused on the bacteria only. Vesicomyid clams dominate global deep-sea chemosynthesis-based ecosystems. They differ from most deep-sea symbiotic animals in passing their symbionts from parent to offspring, enabling intricate coevolution between the host and the symbiont. Here, we sequenced the genomes of the clam Archivesica marissinica (Bivalvia: Vesicomyidae) and its bacterial symbiont to understand the genomic/metabolic integration behind this symbiosis. At 1.52 Gb, the clam genome encodes 28 genes horizontally transferred from bacteria, a large number of pseudogenes and transposable elements whose massive expansion corresponded to the timing of the rise and subsequent divergence of symbiont-bearing vesicomyids. The genome exhibits gene family expansion in cellular processes that likely facilitate chemoautotrophy, including gas delivery to support energy and carbon production, metabolite exchange with the symbiont, and regulation of the bacteriocyte population. Contraction in cellulase genes is likely adaptive to the shift from phytoplankton-derived to bacteria-based food. It also shows contraction in bacterial recognition gene families, indicative of suppressed immune response to the endosymbiont. The gammaproteobacterium endosymbiont has a reduced genome of 1.03 Mb but retains complete pathways for sulfur oxidation, carbon fixation, and biosynthesis of 20 common amino acids, indicating the host’s high dependence on the symbiont for nutrition. Overall, the host–symbiont genomes show not only tight metabolic complementarity but also distinct signatures of coevolution allowing the vesicomyids to thrive in chemosynthesis-based ecosystems.
Collapse
Affiliation(s)
- Jack Chi-Ho Ip
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ting Xu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jin Sun
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa Prefecture, Japan
| | - Yi Lan
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhuang Han
- Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, Hainan, China
| | - Haibin Zhang
- Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya, Hainan, China
| | - Jiangong Wei
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Hongbin Wang
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Jun Tao
- MLR Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Pei-Yuan Qian
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Life Science, Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China.,HKBU Institute of Research and Continuing Education, Virtual University Park, Shenzhen, China.,Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
9
|
Abstract
One of the most important events in an animal's life history is the initial colonization by its microbial symbionts, yet little is known about this event's immediate impacts on the extent of host gene expression or the molecular mechanisms controlling it. MicroRNAs (miRNAs) are short, noncoding RNAs that bind to target mRNAs, rapidly shaping gene expression by posttranscriptional control of mRNA translation and decay. Here, we show that, in the experimentally tractable binary squid-vibrio symbiosis, colonization of the light organ induces extensive changes in the miRNA transcriptome. Examination of the squid genome revealed the presence of evolutionarily conserved genes encoding elements essential for the production and processing of miRNAs. At 24 h postcolonization, 215 host miRNAs were detected in the light organ, 26 of which were differentially expressed in response to the symbionts. A functional enrichment analysis of genes potentially targeted by downregulation of certain miRNAs at the initiation of symbiosis revealed two major gene ontology (GO) term categories, neurodevelopment and tissue remodeling. This symbiont-induced downregulation is predicted to promote these activities in host tissues and is consistent with the well-described tissue remodeling that occurs at the onset of the association. Conversely, predicted targets of upregulated miRNAs, including the production of mucus, are consistent with attenuation of immune responses by symbiosis. Taken together, our data provide evidence that, at the onset of symbiosis, host miRNAs in the light organ drive alterations in gene expression that (i) orchestrate the symbiont-induced development of host tissues, and (ii) facilitate the partnership by dampening the immune response.IMPORTANCE Animals often acquire their microbiome from the environment at each generation, making the initial interaction of the partners a critical event in the establishment and development of a stable, healthy symbiosis. However, the molecular nature of these earliest interactions is generally difficult to study and poorly understood. We report that, during the initial 24 h of the squid-vibrio association, a differential expression of host miRNAs is triggered by the presence of the microbial partner. Predicted mRNA targets of these miRNAs were associated with regulatory networks that drive tissue remodeling and immune suppression, two major symbiosis-induced developmental outcomes in this and many other associations. These results implicate regulation by miRNAs as key to orchestrating the critical transcriptional responses that occur very early during the establishment of a symbiosis. Animals with more complex microbiota may have similar miRNA-driven responses as their association is initiated, supporting an evolutionary conservation of symbiosis-induced developmental mechanisms.
Collapse
|
10
|
Lim SJ, Davis B, Gill D, Swetenburg J, Anderson LC, Engel AS, Campbell BJ. Gill microbiome structure and function in the chemosymbiotic coastal lucinid Stewartia floridana. FEMS Microbiol Ecol 2021; 97:6168404. [PMID: 33705534 DOI: 10.1093/femsec/fiab042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/09/2021] [Indexed: 11/14/2022] Open
Abstract
Lucinid bivalves harbor environmentally acquired, chemosynthetic, gammaproteobacterial gill endosymbionts. Lucinid gill microbiomes, which may contain other gammaproteobacterial and/or spirochete taxa, remain under-sampled. To understand inter-host variability of the lucinid gill microbiome, specifically in the bacterial communities, we analyzed the microbiome content of Stewartia floridana collected from Florida. Sampled gills contained a monospecific gammaproteobacterial endosymbiont expressing lithoautotrophic, mixotrophic, diazotrophic and C1 compound oxidation-related functions previously characterized in similar lucinid species. Another low-abundance Spirochaeta-like species in ∼72% of the sampled gills was most closely related to Spirochaeta-like species in another lucinid Phacoides pectinatus and formed a clade with known marine Spirochaeta symbionts. The spirochete expressed genes were involved in heterotrophy and the transport of sugars, amino acids, peptides and other substrates. Few muscular and neurofilament genes from the host and none from the gammaproteobacterial and spirochete symbionts were differentially expressed among quadrats predominantly covered with seagrass species or 80% bare sand. Our results suggest that spirochetes are facultatively associated with S. floridana, with potential scavenging and nutrient cycling roles. Expressed stress- and defense-related functions in the host and symbionts also suggest species-species communications, which highlight the need for further study of the interactions among lucinid hosts, their microbiomes and their environment.
Collapse
Affiliation(s)
- Shen Jean Lim
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Brenton Davis
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Danielle Gill
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - John Swetenburg
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Laurie C Anderson
- Department of Geology and Geological Engineering, South Dakota School of Mines & Technology, Rapid City, SD 57701, USA
| | - Annette Summers Engel
- Department of Earth and Planetary Sciences, University of Tennessee Knoxville, Knoxville, TN 37920, USA
| | - Barbara J Campbell
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
11
|
Petersen JM, Yuen B. The symbiotic 'all-rounders': Partnerships between marine animals and chemosynthetic nitrogen-fixing bacteria. Appl Environ Microbiol 2021; 87:AEM.02129-20. [PMID: 33355107 PMCID: PMC8090883 DOI: 10.1128/aem.02129-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen fixation is a widespread metabolic trait in certain types of microorganisms called diazotrophs. Bioavailable nitrogen is limited in various habitats on land and in the sea, and accordingly, a range of plant, animal, and single-celled eukaryotes have evolved symbioses with diverse diazotrophic bacteria, with enormous economic and ecological benefits. Until recently, all known nitrogen-fixing symbionts were heterotrophs such as nodulating rhizobia, or photoautotrophs such as cyanobacteria. In 2016, the first chemoautotrophic nitrogen-fixing symbionts were discovered in a common family of marine clams, the Lucinidae. Chemosynthetic nitrogen-fixing symbionts use the chemical energy stored in reduced sulfur compounds to power carbon and nitrogen fixation, making them metabolic 'all-rounders' with multiple functions in the symbiosis. This distinguishes them from heterotrophic symbionts that require a source of carbon from their host, and their chemosynthetic metabolism distinguishes them from photoautotrophic symbionts that produce oxygen, a potent inhibitor of nitrogenase. In this review, we consider evolutionary aspects of this discovery, by comparing strategies that have evolved for hosting intracellular nitrogen-fixing symbionts in plants and animals. The symbiosis between lucinid clams and chemosynthetic nitrogen-fixing bacteria also has important ecological impacts, as they form a nested symbiosis with endangered marine seagrasses. Notably, nitrogen fixation by lucinid symbionts may help support seagrass health by providing a source of nitrogen in seagrass habitats. These discoveries were enabled by new techniques for understanding the activity of microbial populations in natural environments. However, an animal (or plant) host represents a diverse landscape of microbial niches due to its structural, chemical, immune and behavioural properties. In future, methods that resolve microbial activity at the single cell level will provide radical new insights into the regulation of nitrogen fixation in chemosynthetic symbionts, shedding new light on the evolution of nitrogen-fixing symbioses in contrasting hosts and environments.
Collapse
Affiliation(s)
- Jillian M Petersen
- Centre for Microbiology and Environmental Systems Science, University of Vienna
| | - Benedict Yuen
- Centre for Microbiology and Environmental Systems Science, University of Vienna
| |
Collapse
|