1
|
Ferrari RR, Ricardo PC, Dias FC, de Souza Araujo N, Soares DO, Zhou QS, Zhu CD, Coutinho LL, Arias MC, Batista TM. The nuclear and mitochondrial genome assemblies of Tetragonisca angustula (Apidae: Meliponini), a tiny yet remarkable pollinator in the Neotropics. BMC Genomics 2024; 25:587. [PMID: 38862915 PMCID: PMC11167848 DOI: 10.1186/s12864-024-10502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The field of bee genomics has considerably advanced in recent years, however, the most diverse group of honey producers on the planet, the stingless bees, are still largely neglected. In fact, only eleven of the ~ 600 described stingless bee species have been sequenced, and only three using a long-read (LR) sequencing technology. Here, we sequenced the nuclear and mitochondrial genomes of the most common, widespread and broadly reared stingless bee in Brazil and other neotropical countries-Tetragonisca angustula (popularly known in Brazil as jataí). RESULTS A total of 48.01 Gb of DNA data were generated, including 2.31 Gb of Pacific Bioscience HiFi reads and 45.70 Gb of Illumina short reads (SRs). Our preferred assembly comprised 683 contigs encompassing 284.49 Mb, 62.84 Mb of which (22.09%) corresponded to 445,793 repetitive elements. N50, L50 and complete BUSCOs reached 1.02 Mb, 91 contigs and 97.1%, respectively. We predicted that the genome of T. angustula comprises 17,459 protein-coding genes and 4,108 non-coding RNAs. The mitogenome consisted of 17,410 bp, and all 37 genes were found to be on the positive strand, an unusual feature among bees. A phylogenomic analysis of 26 hymenopteran species revealed that six odorant receptor orthogroups of T. angustula were found to be experiencing rapid evolution, four of them undergoing significant contractions. CONCLUSIONS Here, we provided the first nuclear and mitochondrial genome assemblies for the ecologically and economically important T. angustula, the fourth stingless bee species to be sequenced with LR technology thus far. We demonstrated that even relatively small amounts of LR data in combination with sufficient SR data can yield high-quality genome assemblies for bees.
Collapse
Affiliation(s)
- Rafael Rodrigues Ferrari
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro, Brazil
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Felipe Cordeiro Dias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | - Dalliane Oliveira Soares
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro, Brazil
| | - Qing-Song Zhou
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao-Dong Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sate Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Luiz Lehmann Coutinho
- Departamento de Ciências Animais, Universidade de São Paulo/ESALQ, Piracicaba, Brazil
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - Thiago Mafra Batista
- Centro de Formação em Ciências Ambientais, Universidade Federal do Sul da Bahia, Porto Seguro, Brazil.
| |
Collapse
|
2
|
Araujo NDS, Ogihara F, Martins PM, Arias MC. Insights from Melipona bicolor hybrid genome assembly: a stingless bee genome with chromosome-level scaffold. BMC Genomics 2024; 25:171. [PMID: 38350872 PMCID: PMC10863234 DOI: 10.1186/s12864-024-10075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The highly eusocial stingless bees are crucial pollinators of native and agricultural ecosystems. Nevertheless, genomic studies within this bee tribe remain scarce. We present the genome assembly of the stingless bee Melipona bicolor. This bee is a remarkable exception to the typical single-queen colony structure, since in this species, multiple queens may coexist and share reproductive duties, resulting in genetically diverse colonies with weak kinship connections. As the only known genuinely polygynous bee, M. bicolor's genome provides a valuable resource for investigating sociality beyond kin selection. RESULTS The genome was assembled employing a hybrid approach combining short and long reads, resulting in 241 contigs spanning 259 Mb (N50 of 6.2 Mb and 97.5% complete BUSCOs). Comparative analyses shed light on some evolutionary aspects of stingless bee genomics, including multiple chromosomal rearrangements in Melipona. Additionally, we explored the evolution of venom genes in M. bicolor and other stingless bees, revealing that, apart from two genes, the conserved repertoire of venom components remains under purifying selection in this clade. CONCLUSION This study advances our understanding of stingless bee genomics, contributing to the conservation efforts of these vital pollinators and offering insights into the evolutionary mechanisms driving their unique adaptations.
Collapse
Affiliation(s)
| | - Fernando Ogihara
- Laboratory of Genetics and Evolution of Bees, Bioscience Institute, Universidade de São Paulo - USP, São Paulo, Brazil
| | - Pedro Mariano Martins
- Gene Expression and Evolution Laboratory, Bioscience Institute, Universidade de São Paulo - USP, São Paulo, Brazil
| | - Maria Cristina Arias
- Laboratory of Genetics and Evolution of Bees, Bioscience Institute, Universidade de São Paulo - USP, São Paulo, Brazil
| |
Collapse
|
3
|
Li YR, Wang ZW, Corlett RT, Yu WB. Comparative analyses of mitogenomes in the social bees with insights into evolution of long inverted repeats in the Meliponini. Zool Res 2024; 45:160-175. [PMID: 38199971 PMCID: PMC10839653 DOI: 10.24272/j.issn.2095-8137.2023.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The insect mitogenome is typically a compact circular molecule with highly conserved gene contents. Nonetheless, mitogenome structural variations have been reported in specific taxa, and gene rearrangements, usually the tRNAs, occur in different lineages. Because synapomorphies of mitogenome organizations can provide information for phylogenetic inferences, comparative analyses of mitogenomes have been given increasing attention. However, most studies use a very few species to represent the whole genus, tribe, family, or even order, overlooking potential variations at lower taxonomic levels, which might lead to some incorrect inferences. To provide new insights into mitogenome organizations and their implications for phylogenetic inference, this study conducted comparative analyses for mitogenomes of three social bee tribes (Meliponini, Bombini, and Apini) based on the phylogenetic framework with denser taxonomic sampling at the species and population levels. Comparative analyses revealed that mitogenomes of Apini and Bombini are the typical type, while those of Meliponini show diverse variations in mitogenome sizes and organizations. Large inverted repeats (IRs) cause significant gene rearrangements of protein coding genes (PCGs) and rRNAs in Indo-Malay/Australian stingless bee species. Molecular evolution analyses showed that the lineage with IRs have lower d N/ d S ratios for PCGs than lineages without IRs, indicating potential effects of IRs on the evolution of mitochondrial genes. The finding of IRs and different patterns of gene rearrangements suggested that Meliponini is a hotspot in mitogenome evolution. Unlike conserved PCGs and rRNAs whose rearrangements were found only in the mentioned lineages within Meliponini, tRNA rearrangements are common across all three tribes of social bees, and are significant even at the species level, indicating that comprehensive sampling is needed to fully understand the patterns of tRNA rearrangements, and their implications for phylogenetic inference.
Collapse
Affiliation(s)
- Yu-Ran Li
- Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, China
| | - Zheng-Wei Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Richard T Corlett
- Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China. E-mail:
| | - Wen-Bin Yu
- Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Mengla, Yunnan 666303, China. E-mail:
| |
Collapse
|
4
|
Xiao X, Haas J, Nauen R. Functional orthologs of honeybee CYP6AQ1 in stingless bees degrade the butenolide insecticide flupyradifurone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115719. [PMID: 37992638 DOI: 10.1016/j.ecoenv.2023.115719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Flupyradifurone (FPF), a novel butenolide insecticide binding to nicotinic acetylcholine receptors (nAChRs), has been shown to be less acutely toxic to western honey bees (Apis mellifera) than other insecticides such as neonicotinoids sharing the same target-site. A previous study revealed that this is due to enhanced oxidative metabolism of FPF, mediated by three cytochrome P450 monooxygenases (P450s), including CYP6AQ1. Therefore, we followed a toxicogenomics approach and investigated the potential role of functional CYP6AQ1 orthologs in FPF metabolism from eight different bee species, including stingless bees (Tribe: Meliponini). We conducted a phylogenetic analysis on four stingless bee species, including Frieseomelitta varia, Heterotrigona itama, Melipona quadrifasciata and Tetragonula carbonaria to identify CYP6AQ1-like functional orthologs. Three non-Meliponini, but tropical bee species, i.e., Ammobates syriacus, Euglossa dilemma and Megalopta genalis were analyzed as well. We identified candidate P450s in all (neo)tropical species with greater than 61% and 67% predicted protein sequence identities when compared to A. mellifera CYP6AQ1 and Bombus terrestris CYP6AQ26, respectively. Heterologous expression in High Five insect cells of these functional orthologs revealed a common coumarin substrate profile and a preference for the O-debenzylation of bulkier substrates. Competition assays using the fluorescent probe substrate 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC) with these enzymes indicated inhibition of BOMFC metabolism by increasing concentrations of FPF. Furthermore, UPLC-MS/MS analysis revealed the capacity of all CYP6AQ1-like orthologs to metabolize FPF by hydroxylation in vitro at various levels, indicating a conserved FPF detoxification potential in different (neo)tropical bee species including Meliponini. This research, employing a toxicogenomics approach, provides important insights into the potential of stingless and other tropical bee species to detoxify FPF, and highlights the significance of investigating the detoxification mechanisms of insecticides in non-Apis bee species by molecular tools to inform risk assessment and conservation efforts.
Collapse
Affiliation(s)
- Xingzhi Xiao
- Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany; Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany
| | - Julian Haas
- Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany.
| |
Collapse
|
5
|
Françoso E, Zuntini AR, Ricardo PC, Araújo NS, Silva JPN, Brown MJF, Arias MC. The complete mitochondrial genome of Trigonisca nataliae (Hymenoptera, Apidae) assemblage reveals heteroplasmy in the control region. Gene 2023:147621. [PMID: 37419430 DOI: 10.1016/j.gene.2023.147621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
The evolution of mitochondrial genomes in the stingless bees is surprisingly dynamic, making them a model system to understand mitogenome structure, function, and evolution. Out of the seven mitogenomes available in this group, five exhibit atypical characteristics, including extreme rearrangements, rapid evolution and complete mitogenome duplication. To further explore the mitogenome diversity in these bees, we utilized isolated mtDNA and Illumina sequencing to assemble the complete mitogenome of Trigonisca nataliae, a species found in Northern Brazil. The mitogenome of T. nataliae was highly conserved in gene content and structure when compared to Melipona species but diverged in the control region (CR). Using PCR amplification, cloning and Sanger sequencing, six different CR haplotypes, varying in size and content, were recovery. These findings indicate that heteroplasmy, where different mitochondrial haplotypes coexist within individuals, occurs in T. nataliae. Consequently, we argue that heteroplasmy might indeed be a common phenomenon in bees that could be associated with variations in mitogenome size and challenges encountered during the assembly process.
Collapse
Affiliation(s)
- Elaine Françoso
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK; Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil.
| | | | - Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Natália Souza Araújo
- Unit of Evolutionary Biology & Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - João Paulo Naldi Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, TW20 0EX, UK
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
6
|
Françoso E, Zuntini AR, Ricardo PC, Santos PKF, de Souza Araujo N, Silva JPN, Gonçalves LT, Brito R, Gloag R, Taylor BA, Harpur B, Oldroyd BP, Brown MJF, Arias MC. Rapid evolution, rearrangements and whole mitogenome duplication in the Australian stingless bees Tetragonula (Hymenoptera: Apidae): A steppingstone towards understanding mitochondrial function and evolution. Int J Biol Macromol 2023; 242:124568. [PMID: 37100315 DOI: 10.1016/j.ijbiomac.2023.124568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/16/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
The extreme conservation of mitochondrial genomes in metazoans poses a significant challenge to understanding mitogenome evolution. However, the presence of variation in gene order or genome structure, found in a small number of taxa, can provide unique insights into this evolution. Previous work on two stingless bees in the genus Tetragonula (T. carbonaria and T. hockingsi) revealed highly divergent CO1 regions between them and when compared to the bees from the same tribe (Meliponini), indicating rapid evolution. Using mtDNA isolation and Illumina sequencing, we elucidated the mitogenomes of both species. In both species, there has been a duplication of the whole mitogenome to give a total genome size of 30,666 bp in T. carbonaria; and 30,662 bp in T. hockingsi. These duplicated genomes present a circular structure with two identical and mirrored copies of all 13 protein coding genes and 22 tRNAs, with the exception of a few tRNAs that are present as single copies. In addition, the mitogenomes are characterized by rearrangements of two block of genes. We believe that rapid evolution is present in the whole Indo-Malay/Australasian group of Meliponini but is extraordinarily elevated in T. carbonaria and T. hockingsi, probably due to founder effect, low effective population size and the mitogenome duplication. All these features - rapid evolution, rearrangements, and duplication - deviate significantly from the vast majority of the mitogenomes described so far, making the mitogenomes of Tetragonula unique opportunities to address fundamental questions of mitogenome function and evolution.
Collapse
Affiliation(s)
- Elaine Françoso
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK; Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil.
| | | | - Paulo Cseri Ricardo
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | | | - Natalia de Souza Araujo
- Unit of Evolutionary Biology & Ecology, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - João Paulo Naldi Silva
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| | | | | | - Rosalyn Gloag
- School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Benjamin A Taylor
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| | - Brock Harpur
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA
| | - Benjamin P Oldroyd
- School of Life and Environmental Sciences, The University of Sydney, NSW, 2006, Australia
| | - Mark J F Brown
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, School of Life Sciences and the Environment, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Maria Cristina Arias
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
7
|
Bataglia L, Simões ZLP, Nunes FMF. Active genic machinery for epigenetic RNA modifications in bees. INSECT MOLECULAR BIOLOGY 2021; 30:566-579. [PMID: 34291855 DOI: 10.1111/imb.12726] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Epitranscriptomics is an emerging field of investigation dedicated to the study of post-transcriptional RNA modifications. RNA methylations regulate RNA metabolism and processing, including changes in response to environmental cues. Although RNA modifications are conserved from bacteria to eukaryotes, there is little evidence of an epitranscriptomic pathway in insects. Here we identified genes related to RNA m6 A (N6-methyladenine) and m5 C (5-methylcytosine) methylation machinery in seven bee genomes (Apis mellifera, Melipona quadrifasciata, Frieseomelitta varia, Eufriesea mexicana, Bombus terrestris, Megachile rotundata and Dufourea novaeangliae). In A. mellifera, we validated the expression of methyltransferase genes and found that the global levels of m6 A and m5 C measured in the fat body and brain of adult workers differ significantly. Also, m6 A levels were differed significantly mainly between the fourth larval instar of queens and workers. Moreover, we found a conserved m5 C site in the honeybee 28S rRNA. Taken together, we confirm the existence of epitranscriptomic machinery acting in bees and open avenues for future investigations on RNA epigenetics in a wide spectrum of hymenopteran species.
Collapse
Affiliation(s)
- L Bataglia
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Z L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - F M F Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
8
|
Waiker P, de Abreu FCP, Luna-Lucena D, Freitas FCP, Simões ZLP, Rueppell O. Recombination mapping of the Brazilian stingless bee Frieseomelitta varia confirms high recombination rates in social hymenoptera. BMC Genomics 2021; 22:673. [PMID: 34536998 PMCID: PMC8449902 DOI: 10.1186/s12864-021-07987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/04/2021] [Indexed: 11/26/2022] Open
Abstract
Background Meiotic recombination is a fundamental genetic process that shuffles allele combinations and promotes accurate segregation of chromosomes. Analyses of the ubiquitous variation of recombination rates within and across species suggest that recombination is evolving adaptively. All studied insects with advanced eusociality have shown exceptionally high recombination rates, which may represent a prominent case of adaptive evolution of recombination. However, our understanding of the relationship between social evolution and recombination rates is incomplete, partly due to lacking empirical data. Here, we present a linkage map of the monandrous, advanced eusocial Brazilian stingless bee, Frieseomelitta varia, providing the first recombination analysis in the diverse Meliponini (Hymenoptera, Apidae). Results Our linkage map includes 1417 markers in 19 linkage groups. This map spans approximately 2580 centimorgans, and comparisons to the physical genome assembly indicate that it covers more than 75 % of the 275 Megabasepairs (Mbp) F. varia genome. Thus, our study results in a genome-wide recombination rate estimate of 9.3–12.5 centimorgan per Mbp. This value is higher than estimates from nonsocial insects and comparable to other highly social species, although it does not support our prediction that monandry and strong queen-worker caste divergence of F. varia lead to even higher recombination rates than other advanced eusocial species. Conclusions Our study expands the association between elevated recombination and sociality in the order Hymenoptera and strengthens the support for the hypothesis that advanced social evolution in hymenopteran insects invariably selects for high genomic recombination rates. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07987-3.
Collapse
Affiliation(s)
- Prashant Waiker
- Biology Department, University of North Carolina at Greensboro, 321 McIver St, Greensboro, NC, 27412, USA.
| | - Fabiano Carlos Pinto de Abreu
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP, Ribeirão Preto, Brazil
| | - Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávia Cristina Paula Freitas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP, Ribeirão Preto, Brazil
| | - Olav Rueppell
- Biology Department, University of North Carolina at Greensboro, 321 McIver St, Greensboro, NC, 27412, USA.,Department of Biological Sciences, University of Alberta, AB, T6G 2E9, Edmonton, Canada
| |
Collapse
|
9
|
10-hydroxy-2E-decenoic acid (10HDA) does not promote caste differentiation in Melipona scutellaris stingless bees. Sci Rep 2021; 11:9882. [PMID: 33972627 PMCID: PMC8110752 DOI: 10.1038/s41598-021-89212-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/16/2021] [Indexed: 02/03/2023] Open
Abstract
In bees from genus Melipona, differential feeding is not enough to fully explain female polyphenism. In these bees, there is a hypothesis that in addition to the environmental component (food), a genetic component is also involved in caste differentiation. This mechanism has not yet been fully elucidated and may involve epigenetic and metabolic regulation. Here, we verified that the genes encoding histone deacetylases HDAC1 and HDAC4 and histone acetyltransferase KAT2A were expressed at all stages of Melipona scutellaris, with fluctuations between developmental stages and castes. In larvae, the HDAC genes showed the same profile of Juvenile Hormone titers-previous reported-whereas the HAT gene exhibited the opposite profile. We also investigated the larvae and larval food metabolomes, but we did not identify the putative queen-fate inducing compounds, geraniol and 10-hydroxy-2E-decenoic acid (10HDA). Finally, we demonstrated that the histone deacetylase inhibitor 10HDA-the major lipid component of royal jelly and hence a putative regulator of honeybee caste differentiation-was unable to promote differentiation in queens in Melipona scutellaris. Our results suggest that epigenetic and hormonal regulations may act synergistically to drive caste differentiation in Melipona and that 10HDA is not a caste-differentiation factor in Melipona scutellaris.
Collapse
|
10
|
Araujo NDS, Arias MC. Gene expression and epigenetics reveal species-specific mechanisms acting upon common molecular pathways in the evolution of task division in bees. Sci Rep 2021; 11:3654. [PMID: 33574391 PMCID: PMC7878513 DOI: 10.1038/s41598-020-75432-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 10/05/2020] [Indexed: 01/30/2023] Open
Abstract
A striking feature of advanced insect societies is the existence of workers that forgo reproduction. Two broad types of workers exist in eusocial bees: nurses who care for their young siblings and the queen, and foragers who guard the nest and forage for food. Comparisons between these two worker subcastes have been performed in honeybees, but data from other bees are scarce. To understand whether similar molecular mechanisms are involved in nurse-forager differences across distinct species, we compared gene expression and DNA methylation profiles between nurses and foragers of the buff-tailed bumblebee Bombus terrestris and the stingless bee Tetragonisca angustula. These datasets were then compared to previous findings from honeybees. Our analyses revealed that although the expression pattern of genes is often species-specific, many of the biological processes and molecular pathways involved are common. Moreover, the correlation between gene expression and DNA methylation was dependent on the nucleotide context, and non-CG methylation appeared to be a relevant factor in the behavioral changes of the workers. In summary, task specialization in worker bees is characterized by a plastic and mosaic molecular pattern, with species-specific mechanisms acting upon broad common pathways across species.
Collapse
Affiliation(s)
- Natalia de Souza Araujo
- Department of Genetics and Evolutionary Biology, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, SP, 05508-090, Brazil.
- Department of Evolutionary Biology and Ecology, Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50, 1050, Brussels, Belgium.
| | - Maria Cristina Arias
- Department of Genetics and Evolutionary Biology, Universidade de São Paulo, Rua Do Matão, 277, São Paulo, SP, 05508-090, Brazil
| |
Collapse
|
11
|
First Draft Genome Assembly of the Malaysian Stingless Bee, Heterotrigona itama (Apidae, Meliponinae). DATA 2020. [DOI: 10.3390/data5040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Malaysian stingless bee industry is hugely dependent on wild colonies. Nevertheless, the availability of new queens to establish new colonies is insufficient to meet the growing demand for hives in the industry. Heterotrigona itama is primarily utilized for honey production in the region and the major source of stingless bee colonies comes from the wild. To propagate new colonies domestically, a fundamental understanding of the biology of queen development, especially from the genomics aspect, is necessary. The whole genome was sequenced using a paired-end 150 strategy on the Illumina HiSeq X platform. The shotgun sequencing generated approximately 89 million raw pair-end reads with a total output of 13.37 Gb and a GC content of 37.31%. The genome size of the species was estimated to be approximately 272 Mb. Phylogenetic analysis showed H. itama are much more closely related to the bumble bee (Bombus spp.) than they are to the modern honey bee (Apis spp.). The genome data provided here are expected to contribute to a better understanding of the genetic aspect of queen differentiation as well as of important molecular pathways which are crucial for stingless bee biology, management and conservation.
Collapse
|