1
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Rubin JB, Abou-Antoun T, Ippolito JE, Llaci L, Marquez CT, Wong JP, Yang L. Epigenetic developmental mechanisms underlying sex differences in cancer. J Clin Invest 2024; 134:e180071. [PMID: 38949020 PMCID: PMC11213507 DOI: 10.1172/jci180071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cancer risk is modulated by hereditary and somatic mutations, exposures, age, sex, and gender. The mechanisms by which sex and gender work alone and in combination with other cancer risk factors remain underexplored. In general, cancers that occur in both the male and female sexes occur more commonly in XY compared with XX individuals, regardless of genetic ancestry, geographic location, and age. Moreover, XY individuals are less frequently cured of their cancers, highlighting the need for a greater understanding of sex and gender effects in oncology. This will be necessary for optimal laboratory and clinical cancer investigations. To that end, we review the epigenetics of sexual differentiation and its effect on cancer hallmark pathways throughout life. Specifically, we will touch on how sex differences in metabolism, immunity, pluripotency, and tumor suppressor functions are patterned through the epigenetic effects of imprinting, sex chromosome complement, X inactivation, genes escaping X inactivation, sex hormones, and life history.
Collapse
Affiliation(s)
| | | | - Joseph E. Ippolito
- Department of Radiology
- Department of Biochemistry and Molecular Biophysics
| | - Lorida Llaci
- Deartment of Genetics Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
3
|
Palumbo S, Palumbo D, Cirillo G, Giurato G, Aiello F, Miraglia Del Giudice E, Grandone A. Methylome analysis in girls with idiopathic central precocious puberty. Clin Epigenetics 2024; 16:82. [PMID: 38909248 PMCID: PMC11193236 DOI: 10.1186/s13148-024-01683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Genetic and environmental factors are implicated in many developmental processes. Recent evidence, however, has suggested that epigenetic changes may also influence the onset of puberty or the susceptibility to a wide range of diseases later in life. The present study aims to investigate changes in genomic DNA methylation profiles associated with pubertal onset analyzing human peripheral blood leukocytes from three different groups of subjects: 19 girls with central precocious puberty (CPP), 14 healthy prepubertal girls matched by age and 13 healthy pubertal girls matched by pubertal stage. For this purpose, the comparisons were performed between pre- and pubertal controls to identify changes in normal pubertal transition and CPP versus pre- and pubertal controls. RESULTS Analysis of methylation changes associated with normal pubertal transition identified 1006 differentially methylated CpG sites, 86% of them were found to be hypermethylated in prepubertal controls. Some of these CpG sites reside in genes associated with the age of menarche or transcription factors involved in the process of pubertal development. Analysis of methylome profiles in CPP patients showed 65% and 55% hypomethylated CpG sites compared with prepubertal and pubertal controls, respectively. In addition, interestingly, our results revealed the presence of 43 differentially methylated genes coding for zinc finger (ZNF) proteins. Gene ontology and IPA analysis performed in the three groups studied revealed significant enrichment of them in some pathways related to neuronal communication (semaphorin and gustation pathways), estrogens action, some cancers (particularly breast and ovarian) or metabolism (particularly sirtuin). CONCLUSIONS The different methylation profiles of girls with normal and precocious puberty indicate that regulation of the pubertal process in humans is associated with specific epigenetic changes. Differentially methylated genes include ZNF genes that may play a role in developmental control. In addition, our data highlight changes in the methylation status of genes involved in signaling pathways that determine the migration and function of GnRH neurons and the onset of metabolic and neoplastic diseases that may be associated with CPP in later life.
Collapse
Affiliation(s)
- Stefania Palumbo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy.
| | - Domenico Palumbo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Grazia Cirillo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Francesca Aiello
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Anna Grandone
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| |
Collapse
|
4
|
Reiner A, Bakulski KM, Fisher JD, Dou JF, Schneper L, Mitchell C, Notterman DA, Zawistowski M, Ware EB. Sex-specific DNA methylation in saliva from the multi-ethnic Future of Families and Child Wellbeing Study. Epigenetics 2023; 18:2222244. [PMID: 37300819 PMCID: PMC10259311 DOI: 10.1080/15592294.2023.2222244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The prevalence and severity of many diseases differs by sex, potentially due to sex-specific patterns in DNA methylation. Autosomal sex-specific differences in DNA methylation have been observed in cord blood and placental tissue but are not well studied in saliva or in diverse populations. We sought to characterize sex-specific DNA methylation on autosomal chromosomes in saliva samples from children in the Future of Families and Child Wellbeing Study, a multi-ethnic prospective birth cohort containing an oversampling of Black, Hispanic and low-income families. DNA methylation from saliva samples was analysed on 796 children (50.6% male) at both ages 9 and 15 with DNA methylation measured using the Illumina HumanMethylation 450k array. An epigenome-wide association analysis of the age 9 samples identified 8,430 sex-differentiated autosomal DNA methylation sites (P < 2.4 × 10-7), of which 76.2% had higher DNA methylation in female children. The strongest sex-difference was in the cg26921482 probe, in the AMDHD2 gene, with 30.6% higher DNA methylation in female compared to male children (P < 1 × 10-300). Treating the age 15 samples as an internal replication set, we observed highly consistent results between the ages 9 and 15 measurements, indicating stable and replicable sex-differentiation. Further, we directly compared our results to previously published DNA methylation sex differences in both cord blood and saliva and again found strong consistency. Our findings support widespread and robust sex-differential DNA methylation across age, human tissues, and populations. These findings help inform our understanding of potential biological processes contributing to sex differences in human physiology and disease.
Collapse
Affiliation(s)
- Allison Reiner
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonah D. Fisher
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Lisa Schneper
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Colter Mitchell
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Erin B. Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Zhang D, Sun B, Yi X, Dong N, Gong G, Yu W, Guo L. Prevalence of high blood pressure and its associated factors among students in Shenyang, China: A cross-sectional study. Medicine (Baltimore) 2023; 102:e35536. [PMID: 37861490 PMCID: PMC10589542 DOI: 10.1097/md.0000000000035536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/15/2023] [Indexed: 10/21/2023] Open
Abstract
There is growing evidence that the prevalence of high blood pressure is increasing, and it may have serious consequences. However, research on the prevalence and influencing factors of high blood pressure among primary and secondary school students is still relatively scarce. This study aims to investigate the prevalence and influencing factors of high blood pressure among primary and secondary school students in Shenyang, in order to provide scientific evidence for the prevention and management of this disease. From April to May 2020, 4892 students aged 7 to 17 years were selected as the survey subjects, and on-site physical measurements and questionnaire surveys were conducted. The prevalence of high blood pressure was described. Restricted cubic spline was used to analyze the dose-response relationship between sleep duration, BMI and the risk of high blood pressure. Logistic regression was used to analyze the risk factors. Multiplicative and additive models were used to analyze the interaction between sleep duration and BMI. The results showed that the overall prevalence of high blood pressure among students aged 7 to 17 years in Shenyang was 9.9%, with a higher prevalence in females than males (12.1% vs 7.9%) and in urban areas than suburban areas (11.8% vs 7.7%). The prevalence was lowest in students with normal weight (8.3%) and highest in those who were obese (12.5%). The prevalence fluctuated to some extent among different age groups, but overall, it increased with age, with the lowest prevalence in primary school students (7.0%), 11.4% in mild school students, and the highest prevalence of 14.3% in high school students. Multivariable analysis showed that the risk of high blood pressure in female students was 1.90 times higher than that in male students (95% CI: 1.54-2.35), and the risk in suburban areas was 0.65 times lower than that in urban areas (95% CI: 0.52-0.81). Students with a BMI ≥ 21 kg/m2 had a 1.58 times higher risk than those with a BMI < 21 kg/m2(95% CI: 1.28-1.96), while those with a sleep time ≥ 8 hours had a 0.80 times lower risk than those with a sleep time < 8 hours (95% CI: 0.65-0.99). Exercise can significantly reduce the risk of high blood pressure, while using electronic devices for more than 0.5 hours significantly increases the risk of high blood pressure. BMI and sleep duration have no interaction effect on the risk of high blood pressure. To reduce the prevalence of high blood pressure, students should reduce the use of electronic devices, ensure adequate exercise, maintain a reasonable weight, and ensure sufficient sleep.
Collapse
Affiliation(s)
- Dan Zhang
- Department of School Health, Shenyang Center for Disease Control and Prevention, Shenyang, China
| | - Baijun Sun
- Department of School Health, Shenyang Center for Disease Control and Prevention, Shenyang, China
| | - Xiaodan Yi
- Department of School Health, Shenyang Center for Disease Control and Prevention, Shenyang, China
| | - Nan Dong
- Department of School Health, Shenyang Center for Disease Control and Prevention, Shenyang, China
| | - Guifang Gong
- Department of School Health, Shenyang Center for Disease Control and Prevention, Shenyang, China
| | - Wenbo Yu
- Department of School Health, Shenyang Center for Disease Control and Prevention, Shenyang, China
| | - Lianying Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Shenyang Medical College, Shenyang, China
| |
Collapse
|
6
|
Argente J, Dunkel L, Kaiser UB, Latronico AC, Lomniczi A, Soriano-Guillén L, Tena-Sempere M. Molecular basis of normal and pathological puberty: from basic mechanisms to clinical implications. Lancet Diabetes Endocrinol 2023; 11:203-216. [PMID: 36620967 PMCID: PMC10198266 DOI: 10.1016/s2213-8587(22)00339-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 01/07/2023]
Abstract
Puberty is a major maturational event; its mechanisms and timing are driven by genetic determinants, but also controlled by endogenous and environmental cues. Substantial progress towards elucidation of the neuroendocrine networks governing puberty has taken place. However, key aspects of the mechanisms responsible for the precise timing of puberty and its alterations have only recently begun to be deciphered, propelled by epidemiological data suggesting that pubertal timing is changing in humans, via mechanisms that are not yet understood. By integrating basic and clinical data, we provide a comprehensive overview of current advances on the physiological basis of puberty, with a particular focus on the roles of kisspeptins and other central transmitters, the underlying molecular and endocrine mechanisms, and the pathways involved in pubertal modulation by nutritional and metabolic cues. Additionally, we have summarised molecular features of precocious and delayed puberty in both sexes, as revealed by clinical and genetic studies. This Review is a synoptic up-to-date view of how puberty is controlled and of the pathogenesis of major pubertal alterations, from both a clinical and translational perspective. We also highlight unsolved challenges that will seemingly concentrate future research efforts in this active domain of endocrinology.
Collapse
Affiliation(s)
- Jesús Argente
- Department of Pediatrics & Pediatric Endocrinology, Universidad Autónoma de Madrid, University Hospital Niño Jesús, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, Madrid, Spain.
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Medical School, London, UK
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Latronico
- Developmental Endocrinology Unit, Laboratory of Hormones and Molecular Genetics, LIM42, Department of Endocrinology and Metabolism, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Leandro Soriano-Guillén
- Service of Pediatrics, University Hospital Fundación Jiménez Díaz, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofia, Córdoba, Spain; Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
7
|
Gim JA. Integrative Approaches of DNA Methylation Patterns According to Age, Sex and Longitudinal Changes. Curr Genomics 2023; 23:385-399. [PMID: 37920553 PMCID: PMC10173416 DOI: 10.2174/1389202924666221207100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/04/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Background In humans, age-related DNA methylation has been studied in blood, tissues, buccal swabs, and fibroblasts, and changes in DNA methylation patterns according to age and sex have been detected. To date, approximately 137,000 samples have been analyzed from 14,000 studies, and the information has been uploaded to the NCBI GEO database. Methods A correlation between age and methylation level and longitudinal changes in methylation levels was revealed in both sexes. Here, 20 public datasets derived from whole blood were analyzed using the Illumina BeadChip. Batch effects with respect to the time differences were correlated. The overall change in the pattern was provided as the inverse of the coefficient of variation (COV). Results Of the 20 datasets, nine were from a longitudinal study. All data had age and sex as common variables. Comprehensive details of age-, sex-, and longitudinal change-based DNA methylation levels in the whole blood sample were elucidated in this study. ELOVL2 and FHL2 showed the maximum correlation between age and DNA methylation. The methylation patterns of genes related to mental health differed according to age. Age-correlated genes have been associated with malformations (anteverted nostril, craniofacial abnormalities, and depressed nasal bridge) and drug addiction (drug habituation and smoking). Conclusion Based on 20 public DNA methylation datasets, methylation levels according to age and longitudinal changes by sex were identified and visualized using an integrated approach. The results highlight the molecular mechanisms underlying the association of sex and biological age with changes in DNA methylation, and the importance of optimal genomic information management.
Collapse
Affiliation(s)
- Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| |
Collapse
|
8
|
Resztak JA, Choe J, Nirmalan S, Wei J, Bruinsma J, Houpt R, Alazizi A, Mair-Meijers HE, Wen X, Slatcher RB, Zilioli S, Pique-Regi R, Luca F. Analysis of transcriptional changes in the immune system associated with pubertal development in a longitudinal cohort of children with asthma. Nat Commun 2023; 14:230. [PMID: 36646693 PMCID: PMC9842661 DOI: 10.1038/s41467-022-35742-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Puberty is an important developmental period marked by hormonal, metabolic and immune changes. Puberty also marks a shift in sex differences in susceptibility to asthma. Yet, little is known about the gene expression changes in immune cells that occur during pubertal development. Here we assess pubertal development and leukocyte gene expression in a longitudinal cohort of 251 children with asthma. We identify substantial gene expression changes associated with age and pubertal development. Gene expression changes between pre- and post-menarcheal females suggest a shift from predominantly innate to adaptive immunity. We show that genetic effects on gene expression change dynamically during pubertal development. Gene expression changes during puberty are correlated with gene expression changes associated with asthma and may explain sex differences in prevalence. Our results show that molecular data used to study the genetics of early onset diseases should consider pubertal development as an important factor that modifies the transcriptome.
Collapse
Affiliation(s)
- Justyna A Resztak
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Jane Choe
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Shreya Nirmalan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Julian Bruinsma
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Russell Houpt
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | | | - Xiaoquan Wen
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | | | - Samuele Zilioli
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI, USA
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
9
|
Blood-based DNA methylation signatures in cancer: A systematic review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166583. [PMID: 36270476 DOI: 10.1016/j.bbadis.2022.166583] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
DNA methylation profiles are in dynamic equilibrium via the initiation of methylation, maintenance of methylation and demethylation, which control gene expression and chromosome stability. Changes in DNA methylation patterns play important roles in carcinogenesis and primarily manifests as hypomethylation of the entire genome and the hypermethylation of individual loci. These changes may be reflected in blood-based DNA, which provides a non-invasive means for cancer monitoring. Previous blood-based DNA detection objects primarily included circulating tumor DNA/cell-free DNA (ctDNA/cfDNA), circulating tumor cells (CTCs) and exosomes. Researchers gradually found that methylation changes in peripheral blood mononuclear cells (PBMCs) also reflected the presence of tumors. Blood-based DNA methylation is widely used in early diagnosis, prognosis prediction, dynamic monitoring after treatment and other fields of clinical research on cancer. The reversible methylation of genes also makes them important therapeutic targets. The present paper summarizes the changes in DNA methylation in cancer based on existing research and focuses on the characteristics of the detection objects of blood-based DNA, including ctDNA/cfDNA, CTCs, exosomes and PBMCs, and their application in clinical research.
Collapse
|
10
|
Palumbo S, Cirillo G, Aiello F, Papparella A, Miraglia del Giudice E, Grandone A. MKRN3 role in regulating pubertal onset: the state of art of functional studies. Front Endocrinol (Lausanne) 2022; 13:991322. [PMID: 36187104 PMCID: PMC9523110 DOI: 10.3389/fendo.2022.991322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/23/2022] [Indexed: 11/25/2022] Open
Abstract
Puberty is a critical process characterized by several physical and psychological changes that culminate in the achievement of sexual maturation and fertility. The onset of puberty depends on several incompletely understood mechanisms that certainly involve gonadotropin-releasing hormone (GnRH) and its effects on the pituitary gland. The role of makorin ring finger protein 3 (MKRN3) in the regulation of pubertal timing was revealed when loss-of-function mutations were identified in patients with central precocious puberty (CPP), which to date, represent the most commonly known genetic cause of this condition. The MKRN3 gene showed ubiquitous expression in tissues from a broad spectrum of species, suggesting an important cellular role. Its involvement in the initiation of puberty and endocrine functions has just begun to be studied. This review discusses some of the recent approaches developed to predict MKRN3 functions and its involvement in pubertal development.
Collapse
|
11
|
Moore SR, Merrill SM, Sekhon B, MacIsaac JL, Kobor MS, Giesbrecht GF, Letourneau N. Infant DNA methylation: an early indicator of intergenerational trauma? Early Hum Dev 2022; 164:105519. [PMID: 34890904 DOI: 10.1016/j.earlhumdev.2021.105519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/18/2021] [Accepted: 11/24/2021] [Indexed: 11/03/2022]
Abstract
Exposure to adverse childhood experiences (ACEs) increases risk for mental and physical health problems. Intergenerationally, mothers' ACEs predict children's health problems including neurodevelopmental and behavioural problems and poorer physical health. Theories of intergenerational trauma suggest that ACEs experienced in one generation negatively affect the health and well-being of future generations, with DNA methylation (DNAm) being one of several potential biological explanations. To begin exploring this hypothesis, we tested whether infant DNA methylation associated with intergenerational trauma. Secondary analysis employed data from the Alberta Pregnancy Outcomes and Nutrition (APrON) study. Subsample data were collected from mothers during pregnancy and postpartum on measures of distress, stress and ACEs and from infants at 3 months of age on DNAm from blood (n = 92) and buccal epithelial cells (BECs; n = 124; primarily nonoverlapping individuals between tissues). Blood and BECs were examined in separate analyses. Preliminary associations identified in blood and BECs suggest that infant DNAm patterns may relate to maternal ACEs. For the majority of ACE-related DNAm sites, neither maternal perinatal distress, nor maternal cortisol awakening response (CAR; a measure of hypothalamic-pituitary-adrenocortical axis function), substantially reduced associations between maternal ACEs and infant DNAm. However, accounting for maternal perinatal distress and cortisol substantially changed the effect of ACEs in a greater proportion of blood DNAm sites than BEC DNAm sites in the top ACEs-associated correlated methylated regions (CMRs), as well as across all CMRs and all remaining CpGs (that did not fall into CMRs). Possible DNAm patterns in infants, thus, might capture a signature of maternal intergenerational trauma, and this effect appears to be more dependent on maternal perinatal distress and CAR in blood relative to BECs.
Collapse
Affiliation(s)
- Sarah R Moore
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah M Merrill
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bikram Sekhon
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Julia L MacIsaac
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- BC Children's Hospital Research Institute and Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gerald F Giesbrecht
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics & Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Letourneau
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Pediatrics & Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Faculty of Nursing, University of Calgary, Calgary, Alberta, Canada; Department of Psychiatry and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.
| | | |
Collapse
|