1
|
Hiley AS, Mongiardino Koch N, Rouse GW. Phylogenetics of Lepidonotopodini (Macellicephalinae, Polynoidae, Annelida) and Comparative Mitogenomics of Shallow-Water vs. Deep-Sea Scaleworms (Aphroditiformia). BIOLOGY 2024; 13:979. [PMID: 39765646 PMCID: PMC11726774 DOI: 10.3390/biology13120979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/15/2025]
Abstract
Within Polynoidae, a diverse aphroditiform family, the subfamily Macellicephalinae comprises anchialine cave-dwelling and deep-sea scaleworms. In this study, Lepidonotopodinae is synonymized with Macellicephalinae, and the tribe Lepidonotopodini is applied to a well-supported clade inhabiting deep-sea chemosynthetic-based ecosystems. Newly sequenced "genome skimming" data for 30 deep-sea polynoids and the comparatively shallow living Eulagisca gigantea is used to bioinformatically assemble their mitogenomes. When analyzed with existing scaleworm mitogenomes, deep-sea scaleworms exhibit increased gene order rearrangement events compared to shallow-water relatives. Additionally, comparative analyses of shallow-water vs. deep-sea polynoid substitution rates in mitochondrial protein-coding genes show an overall relaxed purifying selection and a positive selection of several amino acid sites in deep-sea species, indicating that polynoid mitogenomes have undergone selective pressure to evolve metabolic adaptations suited to deep-sea environments. Furthermore, the inclusion of skimming data for already known Lepidonotopodini species allowed for an increased coverage of DNA data and a representation of the taxa necessary to create a more robust phylogeny using 18 genes, as opposed to the six genes previously used. The phylogenetic results support the erection of Cladopolynoe gen. nov., Mamiwata gen. nov., Photinopolynoe gen. nov., Stratigos gen. nov., and Themis gen. nov., and emended diagnoses for Branchinotogluma, Branchipolynoe, Lepidonotopodium, and Levensteiniella.
Collapse
Affiliation(s)
- Avery S. Hiley
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA;
| | | | - Greg W. Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0202, USA;
| |
Collapse
|
2
|
Poliseno A, Quattrini AM, Lau YW, Pirro S, Reimer JD, McFadden CS. New mitochondrial gene order arrangements and evolutionary implications in the class Octocorallia. Mitochondrial DNA A DNA Mapp Seq Anal 2024:1-11. [PMID: 39431478 DOI: 10.1080/24701394.2024.2416173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
The complete mitochondrial genomes of octocorals typically range from 18.5 kb to 20.5 kb in length and include 14 protein-coding genes (PCGs), two ribosomal RNA genes and one tRNA. To date, seven different gene orders (A-G) have been described, yet comprehensive investigations of the actual number of arrangements, as well as comparative analyses and evolutionary reconstructions of mitochondrial genome evolution within the whole class Octocorallia, have been often overlooked. Here, we considered the complete mitochondrial genomes available for octocorals and explored their structure and gene order variability. Our results updated the actual number of mitochondrial gene order arrangements so far known for octocorals from 7 to 14 and allowed us to explore and preliminarily discuss the role of some of the structural and functional factors in the mitogenomes. We performed comparative mitogenomic analyses on the existing and novel octocoral gene orders, considering different mitogenomic structural features such as genome size, GC percentage, AT and GC skewness. The mitochondrial gene order history mapped on a recently published nuclear loci phylogeny showed that the most common rearrangement events in octocorals are inversions, inverted transpositions and transpositions. Furthermore, gene order rearrangement events were restricted only to some regions of the tree. Overall, different rearrangement events arose independently and from the ancestral and most common gene order, instead of being derived from other rearranged orders. Finally, our data demonstrate how the study of mitochondrial gene orders can be used to explore the evolution of octocorals and in some cases can be used to assess the phylogenetic placement of certain taxa.
Collapse
Affiliation(s)
- Angelo Poliseno
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Andrea M Quattrini
- Department of Biology, Harvey Mudd College, Claremont, CA, USA
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Yee Wah Lau
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | - James D Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, Nishihara, Okinawa, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | |
Collapse
|
3
|
Li F, Zhang Y, Zhong T, Heng X, Ao T, Gu Z, Wang A, Liu C, Yang Y. The Complete Mitochondrial Genomes of Two Rock Scallops (Bivalvia: Spondylidae) Indicate Extensive Gene Rearrangements and Adaptive Evolution Compared with Pectinidae. Int J Mol Sci 2023; 24:13844. [PMID: 37762147 PMCID: PMC10531248 DOI: 10.3390/ijms241813844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Different from the diverse family Pectinidae, the Spondylidae is a small group with a single genus that shares the sedentary life habit of cementing themselves to the substrate. However, little information related to the genetic diversity of Spondylidae has been reported. In the present study, the complete mitochondrial genomes of Spondylus versicolor and S. spinosus were sequenced and compared with those of pectinids. The mtDNA of S. versicolor and S. spinosus show similar patterns with respect to genome size, AT content, AT skew, GC skew, and codon usage, and their mitogenomic sizes are longer than most pectinid species. The mtDNA of S. spinosus is 27,566 bp in length, encoding 13 protein-coding genes, 22 transfer RNA genes, and 2 ribosomal RNA genes, while an additional tRNA-Met was found in the mtDNA of S. versicolor, which is 28,600 bp in length. The monophylies of Spondylidae and Pectinidae were well supported, but the internal relationships within Pectinidae remain unresolved due to the paraphyly of the genus Mimachlamy and the controversial position of the tribe Aequipectinini. The gene orders of S. versicolor and S. spinosus are almost identical but differ greatly from species of the Pectinidae, indicating extensive gene rearrangements compared with Pectinidae. Positive selection analysis revealed evidence of adaptive evolution in the branch of Spondylidae. The present study could provide important information with which to understand the evolutionary progress of the diverse and economically significant marine bivalve Pectinoidea.
Collapse
Affiliation(s)
- Fengping Li
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Yu Zhang
- Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Tao Zhong
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
| | - Xin Heng
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Tiancheng Ao
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
| | - Zhifeng Gu
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Aimin Wang
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Chunsheng Liu
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Yi Yang
- School of Marine Biology and Aquaculture, Hainan University, Haikou 570228, China; (F.L.); (Z.G.); (A.W.); (C.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| |
Collapse
|
4
|
Kobayashi G, Itoh H, Nakajima N. First report of the mitogenome of the invasive reef-building polychaete Ficopomatus enigmaticus (Annelida: Serpulidae) and a cryptic lineage from the Japanese Archipelago. Mol Biol Rep 2023; 50:7183-7196. [PMID: 37407804 DOI: 10.1007/s11033-023-08647-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The mitochondrial genomes (mitogenomes) of the family Serpulidae are characterized by a high nucleotide sequence divergence and a significant number of gene order rearrangements compared with other families within the phylum Annelida. However, only two of 50 genera of serpulids have mitogenomes already sequenced. In this study, we report the first sequencing and assembly of the complete mitogenome of Ficopomatus, thus providing further knowledge on mitochondrial gene sequences of Serpulidae. METHODS AND RESULTS A mitogenome of the invasive reef-building polychaete Ficopomatus enigmaticus was amplified by long PCR and sequenced using the Illumina MiSeq System. It comprised 15,853 bp and consisted of 12 protein-coding genes (atp8 was not found), 23 tRNA, and two rRNA genes. The AT and GC skew values were infrequent when compared to annelid mitogenomes but similar to other serpulids sequenced to date (i.e., Spirobranchus and Hydroides). The mitochondrial gene order of F. enigmaticus was highly rearranged compared to other serpulids. To amplify 16S rRNA gene sequences, we developed a 16S rRNA primer set by modifying the universal primer set 16SarL/16SbrH. We detected the 16S rRNA sequence of F. enigmaticus deposited in GenBank erroneously characterized as of serpulid origin. We reported for the first time the presence of two lineages of F. enigmaticus in Japan, which have already been identified in California, Australia, and the Mediterranean. CONCLUSIONS The first mitochondrial genome of F. enigmaticus showed a unique gene order rearrangement, corroborating the remarkable diversity in the previously reported mitogenomes of other serpulid species. The presence of the two lineages of F. enigmaticus identified for the first time in Japan represents another case of cryptic invasion. The first 16S rRNA gene sequences of F. enigmaticus obtained in the present study can be used as reference sequences in future DNA metabarcoding studies.
Collapse
Affiliation(s)
- Genki Kobayashi
- Ishinomaki Senshu University, 1 Shinmito Minamisakai, Ishinomaki, Miyagi, 986-8580, Japan.
| | - Hajime Itoh
- National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Nobuyoshi Nakajima
- National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
5
|
Struck TH, Golombek A, Hoesel C, Dimitrov D, Elgetany AH. Mitochondrial Genome Evolution in Annelida-A Systematic Study on Conservative and Variable Gene Orders and the Factors Influencing its Evolution. Syst Biol 2023; 72:925-945. [PMID: 37083277 PMCID: PMC10405356 DOI: 10.1093/sysbio/syad023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023] Open
Abstract
The mitochondrial genomes of Bilateria are relatively conserved in their protein-coding, rRNA, and tRNA gene complement, but the order of these genes can range from very conserved to very variable depending on the taxon. The supposedly conserved gene order of Annelida has been used to support the placement of some taxa within Annelida. Recently, authors have cast doubts on the conserved nature of the annelid gene order. Various factors may influence gene order variability including, among others, increased substitution rates, base composition differences, structure of noncoding regions, parasitism, living in extreme habitats, short generation times, and biomineralization. However, these analyses were neither done systematically nor based on well-established reference trees. Several focused on only a few of these factors and biological factors were usually explored ad-hoc without rigorous testing or correlation analyses. Herein, we investigated the variability and evolution of the annelid gene order and the factors that potentially influenced its evolution, using a comprehensive and systematic approach. The analyses were based on 170 genomes, including 33 previously unrepresented species. Our analyses included 706 different molecular properties, 20 life-history and ecological traits, and a reference tree corresponding to recent improvements concerning the annelid tree. The results showed that the gene order with and without tRNAs is generally conserved. However, individual taxa exhibit higher degrees of variability. None of the analyzed life-history and ecological traits explained the observed variability across mitochondrial gene orders. In contrast, the combination and interaction of the best-predicting factors for substitution rate and base composition explained up to 30% of the observed variability. Accordingly, correlation analyses of different molecular properties of the mitochondrial genomes showed an intricate network of direct and indirect correlations between the different molecular factors. Hence, gene order evolution seems to be driven by molecular evolutionary aspects rather than by life history or ecology. On the other hand, variability of the gene order does not predict if a taxon is difficult to place in molecular phylogenetic reconstructions using sequence data or not. We also discuss the molecular properties of annelid mitochondrial genomes considering canonical views on gene evolution and potential reasons why the canonical views do not always fit to the observed patterns without making some adjustments. [Annelida; compositional biases; ecology; gene order; life history; macroevolution; mitochondrial genomes; substitution rates.].
Collapse
Affiliation(s)
- Torsten H Struck
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318 Oslo, Norway
- Centre of Molecular Biodiversity Research, Zoological Research Museum Alexander KoenigBonn 53113, Germany
- FB05 Biology/Chemistry; University of Osnabrück, Osnabrück 49069, Germany
| | - Anja Golombek
- Centre of Molecular Biodiversity Research, Zoological Research Museum Alexander KoenigBonn 53113, Germany
- FB05 Biology/Chemistry; University of Osnabrück, Osnabrück 49069, Germany
| | - Christoph Hoesel
- FB05 Biology/Chemistry; University of Osnabrück, Osnabrück 49069, Germany
| | - Dimitar Dimitrov
- Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, 5020 Bergen, Norway
| | - Asmaa Haris Elgetany
- Natural History Museum, University of Oslo, P.O. Box 1172, Blindern, 0318 Oslo, Norway
- Zoology Department, Faculty of Science, Damietta University, New Damietta, Central zone, 34517, Egypt
| |
Collapse
|
6
|
Kobayashi G, Itoh H, Nakajima N. Molecular Phylogeny of Thoracotreme Crabs Including Nine Newly Determined Mitochondrial Genomes. Zoolog Sci 2023; 40:224-234. [PMID: 37256570 DOI: 10.2108/zs220063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/02/2023] [Indexed: 06/01/2023]
Abstract
Mitochondrial genomes are used widely for the molecular phylogenetic analysis of animals. Although phylogenetic analyses based on the mitogenomes of brachyurans often yield well-resolved phylogenies, most interfamilial phylogenetic relationships in Thoracotremata remain unclear. We determined nine new mitogenomes of Thoracotremata, including mitogenomes of Camptandriidae (Deiratonotus japonicus), Dotillidae (Ilyoplax integra, Ilyoplax pusilla, and Tmethypocoelis choreutes), Macrophthalmidae (Ilyograpsus nodulosus), Pinnotheridae (Arcotheres sp. and Indopinnixa haematosticta), Plagusiidae (Guinusia dentipes), and Percnidae (Percnon planissimum). Interestingly, Percnon planissimum (Percnidae) was found to possess ≥ 19 repeated sequences in the control region. The gene orders of Il. nodulosus, Arcotheres sp., and In. haematosticta were revealed to be unique among thoracotreme crabs. Although the results of Bayesian and maximum likelihood (ML) phylogenetic analyses of three datasets were incongruent, highly supported clades (PP ≥ 0.99 or BS ≥ 99%) were not contradictory among the analyses. All analyses suggested the paraphyly of Grapsoidea and Ocypodoidea, corroborating the findings of previous studies based on molecular phylogenies of thoracotreme crabs. The phylogenetic positions of symbiotic thoracotreme crabs, Pinnotheridae and Cryptochiridae, were highly supported (Pinnotheridae + Ocypodidae and Cryptochiridae + Grapsidae, respectively) for the Bayesian analyses but not for the ML analyses. Analyses of more thoracotreme species' mitogenome sequences in additional studies will further strengthen the framework for thoracotreme evolution.
Collapse
Affiliation(s)
- Genki Kobayashi
- Ishinomaki Senshu University, Minamisakai, Ishinomaki, Miyagi 986-8580, Japan,
| | - Hajime Itoh
- National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Nobuyoshi Nakajima
- National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
7
|
Cejp B, Ravara A, Aguado MT. First mitochondrial genomes of Chrysopetalidae (Annelida) from shallow-water and deep-sea chemosynthetic environments. Gene 2022; 815:146159. [PMID: 34995739 DOI: 10.1016/j.gene.2021.146159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023]
Abstract
Among Annelida, Chrysopetalidae is an ecologically and morphologically diverse group, which includes shallow-water, deep-sea, free-living, and symbiotic species. Here, the four first mitochondrial genomes of this group are presented and described. One of the free-living shallow-water species Chrysopetalum debile (Chrysopetalinae), one of the yet undescribed free-living deep-sea species Boudemos sp., and those of the two deep-sea bivalve endosymbionts Craseoschema thyasiricola and Iheyomytilidicola lauensis (Calamyzinae). An updated phylogeny of Chrysopetalidae is performed, which supports previous phylogenetic hypotheses within Chrysopetalinae and indicates a complex ecological evolution within Calamyzinae. Additionally, analyses of natural selection pressure in the four mitochondrial genomes and additional genes from the two shallow-water species Bhawania goodei and Arichlidon gathofi were performed. Relaxed selection pressure in the mitochondrion of deep-sea and symbiotic species was found, with many sites under selection identified in the COX3 gene of deep-sea species.
Collapse
Affiliation(s)
- Benjamin Cejp
- Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, Georg-August-University Göttingen, 37073, Germany.
| | - Ascensão Ravara
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - M Teresa Aguado
- Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, Georg-August-University Göttingen, 37073, Germany.
| |
Collapse
|
8
|
Kobayashi G, Itoh H, Kojima S. Mitogenome of a stink worm (Annelida: Travisiidae) includes degenerate group II intron that is also found in five congeneric species. Sci Rep 2022; 12:4449. [PMID: 35292662 PMCID: PMC8924214 DOI: 10.1038/s41598-022-08103-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 12/05/2022] Open
Abstract
Mitogenomes are useful for inferring phylogenetic relationships between organisms. Although the mitogenomes of Annelida, one of the most morphologically and ecologically diverse metazoan groups have been well sequenced, those of several families remain unexamined. This study determined the first mitogenome from the family Travisiidae (Travisia sanrikuensis), analyzed its mitogenomic features, and reconstructed a phylogeny of Sedentaria. The monophyly of the Terebellida + Arenicolida + Travisiidae clade is supported by molecular phylogenetic analysis. The placement of Travisiidae is unclear because of the lack of mitogenomes from closely related lineages. An unexpected intron appeared within the cox1 gene of T. sanrikuensis and in the same positions of five undescribed Travisia spp. Although the introns are shorter (790–1386 bp) than other group II introns, they can be considered degenerate group II introns due to type II intron maturase open reading frames, found in two of the examined species, and motifs characteristic of group II introns. This is likely the first known case in metazoans where mitochondrial group II introns obtained by a common ancestor are conserved in several descendants. Insufficient evolutionary time for intron loss in Travisiidae, or undetermined mechanisms may have helped maintain the degenerate introns.
Collapse
Affiliation(s)
- Genki Kobayashi
- Seto Marine Biological Laboratory, Field Science Education and Research Center, Kyoto University, 459 Shirahama, Nishimuro, Wakayama, 649-2211, Japan.
| | - Hajime Itoh
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Shigeaki Kojima
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| |
Collapse
|
9
|
Revision of Meiodorvillea Jumars, 1974 (Annelida: Dorvilleidae) including descriptions of three new species from the Southwestern Atlantic Ocean. PLoS One 2022; 17:e0264081. [PMID: 35235589 PMCID: PMC8890639 DOI: 10.1371/journal.pone.0264081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
Meiodorvillea Jumars, 1974 is a little-known genus of Dorvilleidae Chamberlin, 1919, characterized by its small size and reduced appendages and jaw apparatus. A revision of the genus is presented, including analysis of the type material of M. minuta (Hartman, 1965) and M. apalpata Jumars, 1974, as well as specimens collected from shelf and slope continental areas in Brazil. A neotype was designated for M. minuta and its distribution was extended to Brazil. The identity of M. chilensis (Hartmann-Schröder, 1965) is questioned and three new species from 21 to 1,300.7 meters depth are also described. Meiodorvillea penhaesp. nov. has furcate chaeta only in the first anterior chaetigers. In contrast, Meiodorvillea hartmanaesp. nov. has very small palps and asymmetrical thin furcate chaeta and Meiodorvillea jumarsisp. nov. has dorsal cirri and geniculate chaeta only in the first anterior chaetigers.
Collapse
|
10
|
Mitochondrial genomes of two Polydora (Spionidae) species provide further evidence that mitochondrial architecture in the Sedentaria (Annelida) is not conserved. Sci Rep 2021; 11:13552. [PMID: 34193932 PMCID: PMC8245539 DOI: 10.1038/s41598-021-92994-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
Contrary to the early evidence, which indicated that the mitochondrial architecture in one of the two major annelida clades, Sedentaria, is relatively conserved, a handful of relatively recent studies found evidence that some species exhibit elevated rates of mitochondrial architecture evolution. We sequenced complete mitogenomes belonging to two congeneric shell-boring Spionidae species that cause considerable economic losses in the commercial marine mollusk aquaculture: Polydora brevipalpa and Polydora websteri. The two mitogenomes exhibited very similar architecture. In comparison to other sedentarians, they exhibited some standard features, including all genes encoded on the same strand, uncommon but not unique duplicated trnM gene, as well as a number of unique features. Their comparatively large size (17,673 bp) can be attributed to four non-coding regions larger than 500 bp. We identified an unusually large (putative) overlap of 14 bases between nad2 and cox1 genes in both species. Importantly, the two species exhibited completely rearranged gene orders in comparison to all other available mitogenomes. Along with Serpulidae and Sabellidae, Polydora is the third identified sedentarian lineage that exhibits disproportionally elevated rates of mitogenomic architecture rearrangements. Selection analyses indicate that these three lineages also exhibited relaxed purifying selection pressures.
Collapse
|
11
|
Gonzalez BC, Martínez A, Worsaae K, Osborn KJ. Morphological convergence and adaptation in cave and pelagic scale worms (Polynoidae, Annelida). Sci Rep 2021; 11:10718. [PMID: 34021174 PMCID: PMC8139957 DOI: 10.1038/s41598-021-89459-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Across Annelida, accessing the water column drives morphological and lifestyle modifications-yet in the primarily "benthic" scale worms, the ecological significance of swimming has largely been ignored. We investigated genetic, morphological and behavioural adaptations associated with swimming across Polynoidae, using mitogenomics and comparative methods. Mitochondrial genomes from cave and pelagic polynoids were highly similar, with non-significant rearrangements only present in cave Gesiella. Gene orders of the new mitogenomes were highly similar to shallow water species, suggestive of an underlying polynoid ground pattern. Being the first phylogenetic analyses to include the holopelagic Drieschia, we recovered this species nested among shallow water terminals, suggesting a shallow water ancestry. Based on these results, our phylogenetic reconstructions showed that swimming evolved independently three times in Polynoidae, involving convergent adaptations in morphology and motility patterns across the deep sea (Branchipolynoe), midwater (Drieschia) and anchialine caves (Pelagomacellicephala and Gesiella). Phylogenetic generalized least-squares (PGLS) analyses showed that holopelagic and anchialine cave species exhibit hypertrophy of the dorsal cirri, yet, these morphological modifications are achieved along different evolutionary pathways, i.e., elongation of the cirrophore versus style. Together, these findings suggest that a water column lifestyle elicits similar morphological adaptations, favouring bodies designed for drifting and sensing.
Collapse
Affiliation(s)
- Brett C Gonzalez
- Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, P.O. Box 37012, Washington, DC, USA.
| | - Alejandro Martínez
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), Largo Tonolli, 50, Pallanza, Italy
| | - Katrine Worsaae
- Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, Copenhagen Ø, Denmark
| | - Karen J Osborn
- Department of Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, P.O. Box 37012, Washington, DC, USA
- Monterey Bay Aquarium Research Institute, 7700 Sandholdt Road, Moss Landing, CA, USA
| |
Collapse
|