1
|
Zeeshan M, Sun C, Wang X, Hu Y, Wu H, Li S, Salam A, Zhu S, Khan AH, Holford P, Ali MA, Elshikh MS, Zhang Z, Zhang P. Insights into the ameliorative effect of ZnONPs on arsenic toxicity in soybean mediated by hormonal regulation, transporter modulation, and stress responsive genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1427367. [PMID: 39139724 PMCID: PMC11319271 DOI: 10.3389/fpls.2024.1427367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024]
Abstract
Arsenic (As) contamination of agricultural soils poses a serious threat to crop productivity and food safety. Zinc oxide nanoparticles (ZnONPs) have emerged as a potential amendment for mitigating the adverse effects of As stress in plants. Soybean crop is mostly grown on marginalized land and is known for high accumulation of As in roots than others tissue. Therefore, this study aimed to elucidate the underlying mechanisms of ZnONPs in ameliorating arsenic toxicity in soybean. Our results demonstrated that ZnOB significantly improved the growth performance of soybean plants exposed to arsenic. This improvement was accompanied by a decrease (55%) in As accumulation and an increase in photosynthetic efficiency. ZnOB also modulated hormonal balance, with a significant increase in auxin (149%), abscisic acid (118%), gibberellin (160%) and jasmonic acid content (92%) under As(V) stress assuring that ZnONPs may enhance root growth and development by regulating hormonal signaling. We then conducted a transcriptomic analysis to understand further the molecular mechanisms underlying the NPs-induced As(V) tolerance. This analysis identified genes differentially expressed in response to ZnONPs supplementation, including those involved in auxin, abscisic acid, gibberellin, and jasmonic acid biosynthesis and signaling pathways. Weighted gene co-expression network analysis identified 37 potential hub genes encoding stress responders, transporters, and signal transducers across six modules potentially facilitated the efflux of arsenic from cells, reducing its toxicity. Our study provides valuable insights into the molecular mechanisms associated with metalloid tolerance in soybean and offers new avenues for improving As tolerance in contaminated soils.
Collapse
Affiliation(s)
- Muhammad Zeeshan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Chenyu Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Xin Wang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Yuxin Hu
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hao Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Shengnan Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Abdul Salam
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Shiqi Zhu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Aamir Hamid Khan
- Faculty of Biology and Environmental Protection, Department of Biogeography, Paleoecology and Nature conservation, University of Lodz, Lodz, Poland
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
| | - Peiwen Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| |
Collapse
|
2
|
Puccio G, Ingraffia R, Giambalvo D, Frenda AS, Harkess A, Sunseri F, Mercati F. Exploring the genetic landscape of nitrogen uptake in durum wheat: genome-wide characterization and expression profiling of NPF and NRT2 gene families. FRONTIERS IN PLANT SCIENCE 2023; 14:1302337. [PMID: 38023895 PMCID: PMC10665861 DOI: 10.3389/fpls.2023.1302337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Nitrate uptake by plants primarily relies on two gene families: Nitrate transporter 1/peptide transporter (NPF) and Nitrate transporter 2 (NRT2). Here, we extensively characterized the NPF and NRT2 families in the durum wheat genome, revealing 211 NPF and 20 NRT2 genes. The two families share many Cis Regulatory Elements (CREs) and Transcription Factor binding sites, highlighting a partially overlapping regulatory system and suggesting a coordinated response for nitrate transport and utilization. Analyzing RNA-seq data from 9 tissues and 20 cultivars, we explored expression profiles and co-expression relationships of both gene families. We observed a strong correlation between nucleotide variation and gene expression within the NRT2 gene family, implicating a shared selection mechanism operating on both coding and regulatory regions. Furthermore, NPF genes showed highly tissue-specific expression profiles, while NRT2s were mainly divided in two co-expression modules, one expressed in roots (NAR2/NRT3 dependent) and the other induced in anthers and/ovaries during maturation. Our evidences confirmed that the majority of these genes were retained after small-scale duplication events, suggesting a neo- or sub-functionalization of many NPFs and NRT2s. Altogether, these findings indicate that the expansion of these gene families in durum wheat could provide valuable genetic variability useful to identify NUE-related and candidate genes for future breeding programs in the context of low-impact and sustainable agriculture.
Collapse
Affiliation(s)
- Guglielmo Puccio
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| | - Rosolino Ingraffia
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Dario Giambalvo
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alfonso S. Frenda
- Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Francesco Sunseri
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
- Department Agraria , University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Francesco Mercati
- Institute of Biosciences and BioResources (IBBR), National Research Council, Palermo, Italy
| |
Collapse
|
3
|
Feng J, Zhu C, Cao J, Liu C, Zhang J, Cao F, Zhou X. Genome-wide identification and expression analysis of the NRT genes in Ginkgo biloba under nitrate treatment reveal the potential roles during calluses browning. BMC Genomics 2023; 24:633. [PMID: 37872493 PMCID: PMC10594704 DOI: 10.1186/s12864-023-09732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Nitrate is a primary nitrogen source for plant growth, and previous studies have indicated a correlation between nitrogen and browning. Nitrate transporters (NRTs) are crucial in nitrate allocation. Here, we utilized a genome-wide approach to identify and analyze the expression pattern of 74 potential GbNRTs under nitrate treatments during calluses browning in Ginkgo, including 68 NITRATE TRANSPORTER 1 (NRT1)/PEPTIDE TRANSPORTER (PTR) (NPF), 4 NRT2 and 2 NRT3. Conserved domains, motifs, phylogeny, and cis-acting elements (CREs) were analyzed to demonstrate the evolutionary conservation and functional diversity of GbNRTs. Our analysis showed that the NPF family was divided into eight branches, with the GbNPF2 and GbNPF6 subfamilies split into three groups. Each GbNRT contained 108-214 CREs of 19-36 types, especially with binding sites of auxin and transcription factors v-myb avian myeloblastosis viral oncogene homolog (MYB) and basic helix-loop-helix (bHLH). The E1X1X2E2R motif had significant variations in GbNPFs, indicating changes in the potential dynamic proton transporting ability. The expression profiles of GbNRTs indicated that they may function in regulating nitrate uptake and modulating the signaling of auxin and polyphenols biosynthesis, thereby affecting browning in Ginkgo callus induction. These findings provide a better understanding of the role of NRTs during NO3- uptake and utilization in vitro culture, which is crucial to prevent browning and develop an efficient regeneration and suspension production system in Ginkgo.
Collapse
Affiliation(s)
- Jin Feng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Can Zhu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jiaqi Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Chen Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Jiaqi Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
| | - Fuliang Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
4
|
Zhang M, Zhang W, Zheng Z, Zhang Z, Hua B, Liu J, Miao M. Genome-Wide Identification and Expression Analysis of NPF Genes in Cucumber ( Cucumis sativus L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1252. [PMID: 36986940 PMCID: PMC10057324 DOI: 10.3390/plants12061252] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) proteins perform an essential role in regulating plant nitrate absorption and distribution and in improving plant nitrogen use efficiency. In this study, cucumber (Cucumis sativus L.) NPF genes were comprehensively analyzed at the whole genome level, and 54 NPF genes were found to be unevenly distributed on seven chromosomes in the cucumber genome. The phylogenetic analysis showed that these genes could be divided into eight subfamilies. We renamed all CsNPF genes according to the international nomenclature, based on their homology with AtNPF genes. By surveying the expression profiles of CsNPF genes in various tissues, we found that CsNPF6.4 was specifically expressed in roots, indicating that CsNPF6.4 may play a role in N absorption; CsNPF6.3 was highly expressed in petioles, which may be related to NO3- storage in petioles; and CsNPF2.8 was highly expressed in fruits, which may promote NO3- transport to the embryos. We further examined their expression patterns under different abiotic stress and nitrogen conditions, and found that CsNPF7.2 and CsNPF7.3 responded to salt, cold, and low nitrogen stress. Taken together, our study lays a foundation for further exploration of the molecular and physiological functions of cucumber nitrate transporters.
Collapse
Affiliation(s)
- Mengying Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Wenyan Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Zijian Zheng
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Zhiping Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Bing Hua
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Jiexia Liu
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Minmin Miao
- College of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Casajús V, Howe K, Fish T, Civello P, Thannhauser T, Li L, Gómez Lobato M, Martínez G. Evidence of glucosinolates translocation from inflorescences to stems during postharvest storage of broccoli. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:322-329. [PMID: 36669347 DOI: 10.1016/j.plaphy.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Broccoli is a vegetable appreciated by consumers for its nutritional properties, particularly for its high glucosinolate (GLS) content. However, broccoli shows a high rate of senescence during postharvest and the GLS content in inflorescences decreases sharply. Usually, postharvest studies on broccoli focus on inflorescences, ignoring the other tissues harvested such as the stems and main stalk. In this work, GLS metabolism in whole heads of broccoli (including inflorescences, small stems and stalk) was analysed during postharvest senescence. The content of GLS content, expression of GLS metabolic genes, and expression of GLS transport-associated genes were measured in the three parts of harvested broccoli. A marked decrease in the content of all GLSs was detected in inflorescences, but an increase in the stems and stalk. Also, decreased expressions of GLS biosynthesis and degradation genes were detected in all tissues analysed. On the other hand, an increase in the expression of one of the genes involved in GLS transport was observed. These results suggest that GLSs would be transported from inflorescences to stems during postharvest senescence. From a commercial point of view, broccoli stems are usually discarded and not used as food. However, the accumulation of GLSs in the stems is an important factor to consider when contemplating potential commercial use of this part of the plant.
Collapse
Affiliation(s)
- Victoria Casajús
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, 113 and 61, 1900, La Plata, Argentina
| | - Kevin Howe
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Pedro Civello
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, 113 and 61, 1900, La Plata, Argentina; Facultad de Ciencias Exactas. Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - María Gómez Lobato
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, 113 and 61, 1900, La Plata, Argentina
| | - Gustavo Martínez
- Instituto de Fisiología Vegetal (INFIVE) UNLP-CONICET, 113 and 61, 1900, La Plata, Argentina; Facultad de Ciencias Exactas. Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| |
Collapse
|
6
|
Identification of NPF Family Genes in Brassica rapa Reveal Their Potential Functions in Pollen Development and Response to Low Nitrate Stress. Int J Mol Sci 2023; 24:ijms24010754. [PMID: 36614198 PMCID: PMC9821126 DOI: 10.3390/ijms24010754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Nitrate Transporter 1/Peptide Transporter Family (NPF) genes encode membrane transporters involved in the transport of diverse substrates. However, little is known about the diversity and functions of NPFs in Brassica rapa. In this study, 85 NPFs were identified in B. rapa (BrNPFs) which comprised eight subfamilies. Gene structure and conserved motif analysis suggested that BrNFPs were conserved throughout the genus. Stress and hormone-responsive cis-acting elements and transcription factor binding sites were identified in BrNPF promoters. Syntenic analysis suggested that tandem duplication contributed to the expansion of BrNPFs in B. rapa. Transcriptomic profiling analysis indicated that BrNPF2.6, BrNPF2.15, BrNPF7.6, and BrNPF8.9 were expressed in fertile floral buds, suggesting important roles in pollen development. Thirty-nine BrNPFs were responsive to low nitrate availability in shoots or roots. BrNPF2.10, BrNPF2.19, BrNPF2.3, BrNPF5.12, BrNPF5.16, BrNPF5.8, and BrNPF6.3 were only up-regulated in roots under low nitrate conditions, indicating that they play positive roles in nitrate absorption. Furthermore, many genes were identified in contrasting genotypes that responded to vernalization and clubroot disease. Our results increase understanding of BrNPFs as candidate genes for genetic improvement studies of B. rapa to promote low nitrate availability tolerance and for generating sterile male lines based on gene editing methods.
Collapse
|
7
|
Zhang H, Li Z, Xu G, Bai G, Zhang P, Zhai N, Zheng Q, Chen Q, Liu P, Jin L, Zhou H. Genome-wide identification and characterization of NPF family reveals NtNPF6.13 involving in salt stress in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2022; 13:999403. [PMID: 36311086 PMCID: PMC9608447 DOI: 10.3389/fpls.2022.999403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Proteins of the Nitrate Transporter 1/Peptide Transporter (NPF) family transport a diverse variety of substrates, such as nitrate, peptides, hormones and chloride. In this study, a systematic analysis of the tobacco (Nicotiana tabacum) NPF family was performed in the cultivated 'K326'. In total, 143 NtNPF genes were identified and phylogenetically classified into eight subfamilies, NPF1 to NPF8, based on the classification of NPF families in other plant species. The chromosomal locations and structures of the NtNPF genes were analyzed. The expression profiles of NtNPF genes under NaCl stress were analyzed to screen the possible NPF genes involving in chloride regulation in tobacco. Most NtNPF6 genes responded to salt stress in the roots and leaves. The expression of NtNPF6.13 was significantly down-regulated after salt stress for 12h. The chloride content was reduced in the roots of ntnpf6.13 mutant. These findings support the participation of NtNPF6.13 in chloride uptake. Several other NtNPF genes that play potential roles in chloride metabolism of tobacco require further study.
Collapse
Affiliation(s)
- Hui Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Zefeng Li
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Guoyun Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Ge Bai
- National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Peipei Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Niu Zhai
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Qingxia Zheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Qiansi Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Lifeng Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Huina Zhou
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
8
|
Kanstrup C, Nour-Eldin HH. The emerging role of the nitrate and peptide transporter family: NPF in plant specialized metabolism. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102243. [PMID: 35709542 DOI: 10.1016/j.pbi.2022.102243] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/14/2022] [Accepted: 05/07/2022] [Indexed: 05/02/2023]
Abstract
The nitrate and peptide transporter family (NPF) is one of the largest transporter families in the plant kingdom. The name of the family reflects the substrates (nitrate and peptides) identified for the two founding members CHL1 and PTR2 from Arabidopsis thaliana almost 30 years ago. However, since then, the NPF has emerged as a hotspot for transporters with a wide range of crucial roles in plant specialized metabolism. Recent prominent examples include 1) controlling accumulation of antinutritional glucosinolates in Brassica seeds, 2) deposition of heat-stress tolerance flavonol diglucosides to pollen coats 3) production of anti-cancerous monoterpene indole alkaloid precursors in Catharanthus roseus and 4) detoxification of steroid glycoalkaloids in ripening tomatoes. In this review, we turn the spotlight on the emerging role of the NPF in plant specialized metabolism and its potential for improving crop traits through transport engineering.
Collapse
Affiliation(s)
- Christa Kanstrup
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Hussam Hassan Nour-Eldin
- DynaMo Center of Excellence, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
9
|
Watanabe M, Otagaki S, Matsumoto S, Shiratake K. Genome-Wide Analysis of Multidrug and Toxic Compound Extruction Transporters in Grape. FRONTIERS IN PLANT SCIENCE 2022; 13:892638. [PMID: 35909729 PMCID: PMC9330396 DOI: 10.3389/fpls.2022.892638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Grape (Vitis vinifera L.) is an important fruit crop in the world. It is used as a table grape and is also used for raisin and wine production. Grape berries accumulate secondary metabolites, such as anthocyanins, tannins, and resveratrol, which are known as functional compounds for human health. Multidrug and toxic compound extrusion transporter (MATEs) transport secondary metabolites. MATEs also transport other solutes, including organic acids, and toxic xenobiotics, depending on cation gradient and play various roles in plants. MATE comprises 300-500 amino acid residues and possesses a MATE domain and 8-12 transmembrane domains. In the present study, 59 MATE genes were identified in the grape genome, and phylogenetic analysis revealed the presence of four groups of grape MATEs (Group 1-4). Their information, such as gene structures, protein motifs, predicted subcellular localizations, and gene IDs of four genome annotations, that is, CRIBI v1, CRIBI v2, Genoscope, and Vcost v3, were annotated. The transport substrates and physiological functions of grape MATEs were estimated based on their homology with the analyzed MATEs in other plant species. Group 1 may transport toxic compounds and alkaloids, Group 2 may transport polyphenolic compounds, Group 3 may transport organic acids, and Group 4 may transport plant hormones related to signal transduction. In addition to the known anthocyanin transporters, VvMATE37 and VvMATE39, a novel anthocyanin transporter, VvMATE38 in Group 2, was suggested as a key transporter for anthocyanin accumulation in grape berry skin. VvMATE46, VvMATE47, and VvMATE49 in Group 3 may contribute to Al3+ detoxification and Fe2+/Fe3+ translocation via organic acid transport. This study provides helpful and fundamental information for grape MATE studies and resolves the confusion of gene IDs in different genome annotations.
Collapse
|
10
|
Systematic Investigation and Expression Profiles of the Nitrate Transporter 1/Peptide Transporter Family (NPF) in Tea Plant ( Camellia sinensis). Int J Mol Sci 2022; 23:ijms23126663. [PMID: 35743106 PMCID: PMC9223465 DOI: 10.3390/ijms23126663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/05/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
NRT1/PTR FAMILY (NPF) genes are characterized as nitrate and peptide transporters that played important roles in various substrates transport in plants. However, little is known about the NPF gene in tea plants. Here, a total of 109 CsNPF members were identified from the tea plant genome, and divided into 8 groups according to their sequence characteristics and phylogenetic relationship. Gene structure and conserved motif analysis supported the evolutionary conservation of CsNPFs. Many hormone and stress response cis-acting elements and transcription factor binding sites were found in CsNPF promoters. Syntenic analysis suggested that multiple duplication types contributed to the expansion of NPF gene family in tea plants. Selection pressure analysis showed that CsNPF genes experienced strong purifying selective during the evolution process. The distribution of NPF family genes revealed that 8 NPF subfamilies were formed before the divergence of eudicots and monocots. Transcriptome analysis showed that CsNPFs were expressed differently in different tissues of the tea plant. The expression of 20 CsNPF genes at different nitrate concentrations was analyzed, and most of those genes responded to nitrate resupply. Subcellular localization showed that both CsNPF2.3 and CsNPF6.1 were localized in the plasma membrane, which was consistent with the characteristics of transmembrane proteins involved in NO3- transport. This study provides a theoretical basis for further investigating the evolution and function of NPF genes.
Collapse
|
11
|
Tan S, Liang Y, Huang Y, Xi J, Huang X, Yang X, Yi K. Phylogeny and Expression Atlas of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY in Agave. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111434. [PMID: 35684207 PMCID: PMC9182991 DOI: 10.3390/plants11111434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 05/08/2023]
Abstract
Agave species are widely cultivated crassulacean acid metabolism (CAM) plants for alcoholic beverages, food and fiber production. Among these, the Agave hybrid H11648 ((A. amaniensis × A. angustifolia) × A. amaniensis) is the main cultivar for sisal fiber in the tropical areas of Brazil, China, and African countries. The plants of Agave hybrid H11648 have a long life cycle and large leaves, which require a huge amount of nitrogen nutrient. However, the molecular basis of nitrogen transport and allocation has not been well understood in agave. In this study, we identified 19 NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY(NPF) genes (called AhNPFs) with full-length coding sequences in Agave hybrid H11648. Our analysis of gene expression in various types of tissues revealed the tissue-specific expression pattern of AhNPFs. We further examined their expression patterns at different leaf developmental stages, under abiotic/biotic stresses and nutrient deficiency. The results reveal several candidate regulators in the agave NPF family, including AhNPF4.3/5.2/7.1. We first characterized the NPF genes in agave based on published leaf transcriptome datasets and emphasized their potential functions. The study will benefit future studies related to nitrogen nutrient in agave.
Collapse
Affiliation(s)
- Shibei Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.T.); (Y.L.); (J.X.)
| | - Yanqiong Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.T.); (Y.L.); (J.X.)
| | - Yanlei Huang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jingen Xi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.T.); (Y.L.); (J.X.)
| | - Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.T.); (Y.L.); (J.X.)
- Correspondence: (X.H.); (X.Y.); (K.Y.)
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Correspondence: (X.H.); (X.Y.); (K.Y.)
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (S.T.); (Y.L.); (J.X.)
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou 571101, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, China
- Correspondence: (X.H.); (X.Y.); (K.Y.)
| |
Collapse
|
12
|
McMahon J, Sayre R, Zidenga T. Cyanogenesis in cassava and its molecular manipulation for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1853-1867. [PMID: 34905020 DOI: 10.1093/jxb/erab545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
While cassava is one of the most important staple crops worldwide, it has received the least investment per capita consumption of any of the major global crops. This is in part due to cassava being a crop of subsistence farmers that is grown in countries with limited resources for crop improvement. While its starchy roots are rich in calories, they are poor in protein and other essential nutrients. In addition, they contain potentially toxic levels of cyanogenic glycosides which must be reduced to safe levels before consumption. Furthermore, cyanogens compromise the shelf life of harvested roots due to cyanide-induced inhibition of mitochondrial respiration, and associated production of reactive oxygen species that accelerate root deterioration. Over the past two decades, the genetic, biochemical, and developmental factors that control cyanogen synthesis, transport, storage, and turnover have largely been elucidated. It is now apparent that cyanogens contribute substantially to whole-plant nitrogen metabolism and protein synthesis in roots. The essential role of cyanogens in root nitrogen metabolism, however, has confounded efforts to create acyanogenic varieties. This review proposes alternative molecular approaches that integrate accelerated cyanogen turnover with nitrogen reassimilation into root protein that may offer a solution to creating a safer, more nutritious cassava crop.
Collapse
|
13
|
Xiao Y, Li M, Wang J. The impacts of allopolyploidization on Methyl-CpG-Binding Domain (MBD) gene family in Brassica napus. BMC PLANT BIOLOGY 2022; 22:103. [PMID: 35255818 PMCID: PMC8900393 DOI: 10.1186/s12870-022-03485-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Polyploidization promotes species formation and is widespread in angiosperms. Genome changes dramatically bring opportunities and challenges to plants after polyploidy. Methyl-CpG-Binding Domain (MBD) proteins can recognize and bind to methylation sites and they play an important role in the physiological process related to methylation in animals and plants. However, research on the influence of the allopolyploidization process on the MBD gene family is still lacking, so it is necessary to conduct a comprehensive analysis. RESULTS In this study, twenty-two, ten and eleven MBD genes were identified in the genome of allotetraploid B. napus and its diploid ancestors, B. rapa and B. oleracea, respectively. Based on the clades of the MBD gene in Arabidopsis, rice and maize, we divided the new phylogenetic tree into 8 clades. Among them, the true MBD genes in Brassica existed in only 5 clades. Clade IV and Clade VI were unique in term of MBD genes in dicotyledons. Ka/Ks calculations showed that MBD genes underwent purifying selection in Brassica and may retain genes through sequence or functional differentiation early in evolution. In the process of allopolyploidization, the number of MBD gene introns increased, and the protein motifs changed. The MBD proteins had their own special motifs in each clade, and the MBD domains were only conserved in their clades. At the same time, the MBD genes were expressed in flower, leaf, silique, and stem tissues, and the expression levels of the different genes were significantly different, while the tissue specificity was not obvious. The allopolyploidization process may increase the number of cis-acting elements and activate the transposable elements. During allopolyploidization, the expression pattern of the MBD gene changes, which may be regulated by cis-acting elements and transposable elements. The number imbalance of cis-acting elements and transposable elements in An and Cn subgenomes may also lead to biased An subgenome expression of the MBD gene in B. napus. CONCLUSIONS In this study, by evaluating the number, structure, phylogeny and expression of the MBD gene in B. napus and its diploid ancestors, we increased the understanding of MBD genes in allopolyploids and provided a reference for future analysis of allopolyploidization.
Collapse
Affiliation(s)
- Yafang Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengdi Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
14
|
Nogia P, Pati PK. Plant Secondary Metabolite Transporters: Diversity, Functionality, and Their Modulation. FRONTIERS IN PLANT SCIENCE 2021; 12:758202. [PMID: 34777438 PMCID: PMC8580416 DOI: 10.3389/fpls.2021.758202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/01/2021] [Indexed: 05/04/2023]
Abstract
Secondary metabolites (SMs) play crucial roles in the vital functioning of plants such as growth, development, defense, and survival via their transportation and accumulation at the required site. However, unlike primary metabolites, the transport mechanisms of SMs are not yet well explored. There exists a huge gap between the abundant presence of SM transporters, their identification, and functional characterization. A better understanding of plant SM transporters will surely be a step forward to fulfill the steeply increasing demand for bioactive compounds for the formulation of herbal medicines. Thus, the engineering of transporters by modulating their expression is emerging as the most viable option to achieve the long-term goal of systemic metabolic engineering for enhanced metabolite production at minimum cost. In this review article, we are updating the understanding of recent advancements in the field of plant SM transporters, particularly those discovered in the past two decades. Herein, we provide notable insights about various types of fully or partially characterized transporters from the ABC, MATE, PUP, and NPF families including their diverse functionalities, structural information, potential approaches for their identification and characterization, several regulatory parameters, and their modulation. A novel perspective to the concept of "Transporter Engineering" has also been unveiled by highlighting its potential applications particularly in plant stress (biotic and abiotic) tolerance, SM accumulation, and removal of anti-nutritional compounds, which will be of great value for the crop improvement program. The present study creates a roadmap for easy identification and a better understanding of various transporters, which can be utilized as suitable targets for transporter engineering in future research.
Collapse
Affiliation(s)
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
15
|
The Expression Characteristics of NPF Genes and Their Response to Vernalization and Nitrogen Deficiency in Rapeseed. Int J Mol Sci 2021; 22:ijms22094944. [PMID: 34066572 PMCID: PMC8125141 DOI: 10.3390/ijms22094944] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022] Open
Abstract
The NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY (NPF) genes, initially characterized as nitrate or peptide transporters in plants, are involved in the transport of a large variety of substrates, including amino acids, nitrate, auxin (IAA), jasmonates (JAs), abscisic acid (ABA) and gibberellins (GAs) and glucosinolates. A total of 169 potential functional NPF genes were excavated in Brassica napus, and they showed diversified expression patterns in 90 different organs or tissues based on transcriptome profile data. The complex time-serial expression changes were found for most functional NPF genes in the development process of leaves, silique walls and seeds, which indicated that the expression of Brassica napus NPF (BnaNPF) genes may respond to altered phytohormone and secondary metabolite content through combining with promoter element enrichment analysis. Furthermore, many BnaNPF genes were detected to respond to vernalization with two different patterns, and 20 BnaNPF genes responded to nitrate deficiency. These results will provide useful information for further investigation of the biological function of BnaNPF genes for growth and development in rapeseed.
Collapse
|