1
|
Argentel-Martínez L, Peñuelas-Rubio O, Herrera-Sepúlveda A, González-Aguilera J, Sudheer S, Salim LM, Lal S, Pradeep CK, Ortiz A, Sansinenea E, Hathurusinghe SHK, Shin JH, Babalola OO, Azizoglu U. Biotechnological advances in plant growth-promoting rhizobacteria for sustainable agriculture. World J Microbiol Biotechnol 2024; 41:21. [PMID: 39738995 DOI: 10.1007/s11274-024-04231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025]
Abstract
The rhizosphere, the soil zone surrounding plant roots, serves as a reservoir for numerous beneficial microorganisms that enhance plant productivity and crop yield, with substantial potential for application as biofertilizers. These microbes play critical roles in ecological processes such as nutrient recycling, organic matter decomposition, and mineralization. Plant growth-promoting rhizobacteria (PGPR) represent a promising tool for sustainable agriculture, enabling green management of crop health and growth, being eco-friendly alternatives to replace chemical fertilizers and pesticides. In this sense, biotechnological advancements respecting genomics and gene editing have been crucial to develop microbiome engineering which is pivotal in developing microbial consortia to improve crop production. Genome mining, which involves comprehensive analysis of the entire genome sequence data of PGPR, is crucial for identifying genes encoding valuable bacterial enzymes and metabolites. The CRISPR-Cas system, a cutting-edge genome-editing technology, has shown significant promise in beneficial microbial species. Advances in genetic engineering, particularly CRISPR-Cas, have markedly enhanced grain output, plant biomass, resistance to pests, and the sensory and nutritional quality of crops. There has been a great advance about the use of PGPR in important crops; however, there is a need to go further studying synthetic microbial communities, microbiome engineering, and gene editing approaches in field trials. This review focuses on future research directions involving several factors and topics around the use of PGPR putting special emphasis on biotechnological advances.
Collapse
Affiliation(s)
- Leandris Argentel-Martínez
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico.
| | - Ofelda Peñuelas-Rubio
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico
| | - Angélica Herrera-Sepúlveda
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico
| | - Jorge González-Aguilera
- Department of Agronomy, Universidad Estadual de Mato Grosso Do Sul (UEMS), Cassilândia, MS, 79540-000, Brazil
| | - Surya Sudheer
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, 51005, Tartu, Estonia
| | - Linu M Salim
- Faculty of Fisheries Engineering, Kerala University of Fisheries and Ocean Studies, Cochin, India
| | - Sunaina Lal
- Department of Biochemistry, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim, India
| | - Chittethu Kunjan Pradeep
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden & Research Institute, Palode, Thiruvananthapuram, Kerala, 695562, India
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, México
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, México
| | | | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye.
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
2
|
Zhang Y, Zhang N, Bi X, Bi T, Baloch FB, Miao J, Zeng N, Li B, An Y. Growth promotion on maize and whole-genome sequence analysis of Bacillus velezensis D103. Microbiol Spectr 2024; 12:e0114724. [PMID: 39508572 PMCID: PMC11619478 DOI: 10.1128/spectrum.01147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/02/2024] [Indexed: 11/15/2024] Open
Abstract
Root-associated microorganisms, particularly plant growth-promoting rhizobacteria (PGPR) from the Bacillus genus, play a crucial role in enhancing crop yield and health. In this study, a Bacillus strain was isolated from the rhizosphere soil of maize and identified as Bacillus velezensis D103. The primary objective of this research was to evaluate the potential of D103 as a PGPR. Laboratory tests demonstrated that D103 is capable of nitrogen fixation, inorganic phosphorus solubilization, potassium solubilization, and the synthesis of indole-3-acetic acid, ammonia, siderophores, amylase, protease, cellulase, β-1,3-glucanase, and 1-aminocyclopropane-1-carboxylate deaminase. Additionally, D103 exhibited swimming and swarming motility, biofilm formation, and an antagonistic activity against pathogenic fungi. Genome mining identified genes associated with growth promotion and biocontrol activities. In a hydroponics experiment, maize plants treated with a D103 suspension at a cell density of 103 CFU·mL-1 resulted in the most pronounced showed significant growth stimulation, with shoot length and total root length increasing by 43% and 148%, respectively. These results support the potential of D103 as an effective PGPR for promoting maize crop growth. IMPORTANCE In this study, we assessed the capacity of D103 to promote plant growth and examined the effects of hydroponic experiments inoculated with this strain on the growth of maize seedlings. We sequenced and analyzed the complete genome of D103, identifying several genes and gene clusters associated with plant growth promotion and resistance to pathogenic fungi, thus revealing the plant growth-promoting mechanisms of this strain. The isolation and characterization of new strains with beneficial traits are essential for expanding microbial resources available for biofertilizer production. Collectively, these findings highlight the promising potential of Bacillus velezensis D103 as a biofertilizer for agricultural applications.
Collapse
Affiliation(s)
- Yating Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Bi
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Tong Bi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Faryal Babar Baloch
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Jianjia Miao
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Yingfeng An
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
3
|
Thombare VJ, Swarbrick JD, Azad MAK, Zhu Y, Lu J, Yu HY, Wickremasinghe H, He X, Bandiatmakur M, Li R, Bergen PJ, Velkov T, Wang J, Roberts KD, Li J, Patil NA. Exploring Structure-Activity Relationships and Modes of Action of Laterocidine. ACS CENTRAL SCIENCE 2024; 10:1703-1717. [PMID: 39345814 PMCID: PMC11428279 DOI: 10.1021/acscentsci.4c00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 10/01/2024]
Abstract
A significant increase in life-threatening infections caused by Gram-negative "superbugs" is a serious threat to global health. With a dearth of new antibiotics in the developmental pipeline, antibiotics with novel mechanisms of action are urgently required to prevent a return to the preantibiotic era. A key strategy to develop novel anti-infective treatments is to discover new natural scaffolds with distinct mechanisms of action. Laterocidine is a unique cyclic lipodepsipeptide with activity against multiple problematic multidrug-resistant Gram-negative pathogens, including Pseudomonas aeruginosa, Acinetobacter baumannii, and Enterobacterales. Here, we developed a total chemical synthesis methodology for laterocidine and undertook systematic structure-activity relationship studies with chemical biology and NMR. We discovered important structural features that drive the antimicrobial activity of laterocidine, leading to the discovery of an engineered peptide surpassing the efficacy of the original peptide. This engineered peptide demonstrated complete inhibition of the growth of a polymyxin-resistant strain of Pseudomonas aeruginosa in static time-kill experiments.
Collapse
Affiliation(s)
- Varsha J Thombare
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - James D Swarbrick
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Mohammad A K Azad
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Yan Zhu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jing Lu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Heidi Y Yu
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Hasini Wickremasinghe
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Xiaoji He
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Mahimna Bandiatmakur
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Rong Li
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Tony Velkov
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jiping Wang
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Kade D Roberts
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| | - Nitin A Patil
- Biomedicine Discovery Institute, Infection Program and Department of Pharmacology and Infection Program and Department of Microbiology, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
4
|
Naranjo HD, Rat A, De Zutter N, De Ridder E, Lebbe L, Audenaert K, Willems A. Uncovering Genomic Features and Biosynthetic Gene Clusters in Endophytic Bacteria from Roots of the Medicinal Plant Alkanna tinctoria Tausch as a Strategy To Identify Novel Biocontrol Bacteria. Microbiol Spectr 2023; 11:e0074723. [PMID: 37436171 PMCID: PMC10434035 DOI: 10.1128/spectrum.00747-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023] Open
Abstract
The world's population is increasing at a rate not seen in the past. Agriculture, providing food for this increasing population, is reaching its boundaries of space and natural resources. In addition, changing legislation and increased ecological awareness are forcing agriculture to reduce its environmental impact. This entails the replacement of agrochemicals with nature-based solutions. In this regard, the search for effective biocontrol agents that protect crops from pathogens is in the spotlight. In this study, we have investigated the biocontrol activity of endophytic bacteria isolated from the medicinal plant Alkanna tinctoria Tausch. To do so, an extensive collection of bacterial strains was initially genome sequenced and in silico screened for features related to plant stimulation and biocontrol. Based on this information, a selection of bacteria was tested in vitro for antifungal activity using direct antagonism in a plate assay and in planta with a detached-leaf assay. Bacterial strains were tested individually and in combinations to assess the best-performing treatments. The results revealed that many bacteria could produce metabolites that efficiently inhibit the proliferation of several fungi, especially Fusarium graminearum. Among these, Pseudomonas sp. strain R-71838 showed a strong antifungal effect, in both dual-culture and in planta assays, making it the most promising candidate for biocontrol application. Using microbes from medicinal plants, this study highlights the opportunities of using genomic information to speed up the screening of a taxonomically diverse set of bacteria with biocontrol properties. IMPORTANCE Phytopathogenic fungi are a major threat to global food production. The most common management practice to prevent plant infections involves the intensive use of fungicides. However, with the growing awareness of the ecological and human impacts of chemicals, there is a need for alternative strategies, such as the use of bacterial biocontrol agents. Limitations in the design of bacterial biocontrol included the need for labor-intensive and time-consuming experiments to test a wide diversity of strains and the lack of reproducibility of their activity against pathogens. Here, we show that genomic information is an effective tool to select bacteria of interest quickly. Also, we highlight that the strain Pseudomonas sp. R-71838 produced a reproducible antifungal effect both in vitro and in planta. These findings build a foundation for designing a biocontrol strategy based on Pseudomonas sp. R-71838.
Collapse
Affiliation(s)
- Henry D. Naranjo
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Angélique Rat
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Noémie De Zutter
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Emmelie De Ridder
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Liesbeth Lebbe
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Al Ayed K, Zamarbide Losada D, Machushynets NV, Terlouw B, Elsayed SS, Schill J, Trebosc V, Pieren M, Medema MH, van Wezel GP, Martin NI. Total Synthesis and Structure Assignment of the Relacidine Lipopeptide Antibiotics and Preparation of Analogues with Enhanced Stability. ACS Infect Dis 2023; 9:739-748. [PMID: 37000899 PMCID: PMC10111413 DOI: 10.1021/acsinfecdis.3c00043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The unabated rise of antibiotic resistance has raised the specter of a post-antibiotic era and underscored the importance of developing new classes of antibiotics. The relacidines are a recently discovered group of nonribosomal lipopeptide antibiotics that show promising activity against Gram-negative pathogens and share structural similarities with brevicidine and laterocidine. While the first reports of the relacidines indicated that they possess a C-terminal five-amino acid macrolactone, an N-terminal lipid tail, and an overall positive charge, no stereochemical configuration was assigned, thereby precluding a full structure determination. To address this issue, we here report a bioinformatics guided total synthesis of relacidine A and B and show that the authentic natural products match our predicted and synthesized structures. Following on this, we also synthesized an analogue of relacidine A wherein the ester linkage of the macrolactone was replaced by the corresponding amide. This analogue was found to possess enhanced hydrolytic stability while maintaining the antibacterial activity of the natural product in both in vitro and in vivo efficacy studies.
Collapse
Affiliation(s)
- Karol Al Ayed
- Biological Chemistry Group, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Denise Zamarbide Losada
- Biological Chemistry Group, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Nataliia V. Machushynets
- Molecular Biotechnology Group, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Barbara Terlouw
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Somayah S. Elsayed
- Molecular Biotechnology Group, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Julian Schill
- BioVersys AG, c/o Technologiepark, Hochbergerstrasse 60c, CH-4057 Basel, Switzerland
| | - Vincent Trebosc
- BioVersys AG, c/o Technologiepark, Hochbergerstrasse 60c, CH-4057 Basel, Switzerland
| | - Michel Pieren
- BioVersys AG, c/o Technologiepark, Hochbergerstrasse 60c, CH-4057 Basel, Switzerland
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, Netherlands
| | - Gilles P. van Wezel
- Molecular Biotechnology Group, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Nathaniel I. Martin
- Biological Chemistry Group, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| |
Collapse
|
6
|
Liu GH, Narsing Rao MP, Liu DQ, Tang R, Chen QQ, Shi H, Liu B, Li WJ, Zhou SG. Cytobacillus citreus sp. nov., isolated from citrus rhizosphere soil. Int J Syst Evol Microbiol 2023; 73. [PMID: 36920836 DOI: 10.1099/ijsem.0.005753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
A Gram-stain-positive, rod-shaped and motile strain, designated FJAT-49705T, was isolated from the citrus rhizosphere soil sample. Strain FJAT-49705T grew at 20-40 °C (optimum, 30 °C) and pH 6.0-11.0 (optimum, pH 7.0) with 0-5 % (w/v) NaCl (optimum, 2 %). Strain FJAT-49705T showed high 16S rRNA gene sequence similarity to 'Bacillus dafuensis' FJAT-25496T (99.7 %) and Cytobacillus solani FJAT-18043T (98.0 %). In phylogenetic (based on 16S rRNA gene sequences) and phylogenomic trees (based on 71 bacterial single-copy genes), strain FJAT-49705T clustered with the members of the genus Cytobacillus. MK-7 was the only isoprenoid quinone present. The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. The major fatty acids were anteiso-C15 : 0 and iso-C15 : 0. The genomic DNA G+C content was 36.9 %. The average nucleotide identity (ANI) values between FJAT-49705T and 'B. dafuensis' FJAT-25496T and C. solani FJAT-18043T were below the cut-off level (95-96 %) recommended as the ANI criterion for interspecies identity. Based on the above results, strain FJAT-49705T represents a novel species of the genus Cytobacillus, for which the name Cytobacillus citreus sp. nov. is proposed. The type strain is FJAT-49705T (=CCTCC AB 2019243T= LMG 31580T).
Collapse
Affiliation(s)
- Guo-Hong Liu
- Fujian Academy of Agricultural Sciences, Agricultural Bio-resources Institute, Fuzhou, Fujian 350003, PR China
| | - Manik Prabhu Narsing Rao
- Programa de Doctorado en Ciencias Aplicadas, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Ding-Qi Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Rong Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, PR China
| | - Qian-Qian Chen
- Fujian Academy of Agricultural Sciences, Agricultural Bio-resources Institute, Fuzhou, Fujian 350003, PR China
| | - Huai Shi
- Fujian Academy of Agricultural Sciences, Agricultural Bio-resources Institute, Fuzhou, Fujian 350003, PR China
| | - Bo Liu
- Fujian Academy of Agricultural Sciences, Agricultural Bio-resources Institute, Fuzhou, Fujian 350003, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Shun-Gui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou City, Fujian Province, 350002, PR China
| |
Collapse
|
7
|
Wu J, Chen Y, Xu X, Ren W, Zhang X, Cai X, Huang A, Zeng Y, Long H, Xie Z. Screening of bioflocculant and cellulase-producing bacteria strains for biofloc culture systems with fiber-rich carbon source. Front Microbiol 2022; 13:969664. [PMID: 36504821 PMCID: PMC9729547 DOI: 10.3389/fmicb.2022.969664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The biofloc technology (BFT) system has been widely applied in the shrimp and fish culture industry for its advantages in water-saving, growth improvement, and water quality purification. However, The BFT system usually takes a long time to establish, and the extra carbon source input increases the maintenance cost of the system. In this study, we aimed to develop a low-cost and high-efficient BFT system for Litopenaeus vannamei by applying bacteria that could promote the formation of BFT and utilize cheap carbon sources. Three bioflocculant-producing bacteria strains (M13, M15, and M17) have been screened from a cellulolytic strain collection. All three strains have been identified as Bacillus spp. and can use sugarcane bagasse (SB) as a carbon source, which is a cheap byproduct of the sucrose industry in the tropic area of China. Compared to sucrose, the addition of SB and the three strains could improve the biofloc formation rate, biofloc size distribution, ammonia removal rate, and the growth performance of the shrimps. These results suggest that the bioflocculant and cellulase-producing bacteria strains could promote the biofloc formation and the growth of shrimps by using SB as an economic substitute carbon source in the BFT shrimp culture system.
Collapse
Affiliation(s)
- Jinping Wu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Yifeng Chen
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Xueni Xu
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Wei Ren
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Xiang Zhang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Xiaoni Cai
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Aiyou Huang
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Yanhua Zeng
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China
| | - Hao Long
- State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China,*Correspondence: Hao Long, ; Zhenyu Xie,
| | - Zhenyu Xie
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou, Hainan, China,College of Marine Sciences, Hainan University, Haikou, Hainan, China,State Key Laboratory of Marine Resource Utilization in the South China Sea, Hainan University, Haikou, Hainan, China,Laboratory of Development and Utilization of Marine Microbial Resource, Hainan University, Haikou, Hainan, China,*Correspondence: Hao Long, ; Zhenyu Xie,
| |
Collapse
|
8
|
Genome mining reveals polysaccharide-degrading potential and new antimicrobial gene clusters of novel intestinal bacterium Paenibacillus jilinensis sp. nov. BMC Genomics 2022; 23:380. [PMID: 35590262 PMCID: PMC9118873 DOI: 10.1186/s12864-022-08623-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background Drug-resistant bacteria have posed a great threat to animal breeding and human health. It is obviously urgent to develop new antibiotics that can effectively combat drug-resistant bacteria. The commensal flora inhabited in the intestines become potential candidates owing to the production of a wide range of antimicrobial substances. In addition, host genomes do not encode most of the enzymes needed to degrade dietary structural polysaccharides. The decomposition of these polysaccharides mainly depends on gut commensal-derived CAZymes. Results We report a novel species isolated from the chicken intestine, designated as Paenibacillus jilinensis sp. nov. and with YPG26T (= CCTCC M2020899T) as the type strain. The complete genome of P. jilinensis YPG26T is made up of a single circular chromosome measuring 3.97 Mb in length and containing 49.34% (mol%) G + C. It carries 33 rRNA genes, 89 tRNA genes, and 3871 protein-coding genes, among which abundant carbohydrate-degrading enzymes (CAZymes) are encoded. Moreover, this strain has the capability to antagonize multiple pathogens in vitro. We identified putative 6 BGCs encoding bacteriocin, NRPs, PKs, terpenes, and protcusin by genome mining. In addition, antibiotic susceptibility testing showed sensitivity to all antibiotics tested. Conclusions This study highlights the varieties of CAZymes genes and BGCs in the genome of Paenibacillus jilinensis. These findings confirm the beneficial function of the gut microbiota and also provide a promising candidate for the development of new carbohydrate degrading enzymes and antibacterial agents. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08623-4.
Collapse
|
9
|
Dukare A, Mhatre P, Maheshwari HS, Bagul S, Manjunatha BS, Khade Y, Kamble U. Delineation of mechanistic approaches of rhizosphere microorganisms facilitated plant health and resilience under challenging conditions. 3 Biotech 2022; 12:57. [PMID: 35186654 PMCID: PMC8817020 DOI: 10.1007/s13205-022-03115-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/12/2022] [Indexed: 12/27/2022] Open
Abstract
Sustainable agriculture demands the balanced use of inorganic, organic, and microbial biofertilizers for enhanced plant productivity and soil fertility. Plant growth-enhancing rhizospheric bacteria can be an excellent biotechnological tool to augment plant productivity in different agricultural setups. We present an overview of microbial mechanisms which directly or indirectly contribute to plant growth, health, and development under highly variable environmental conditions. The rhizosphere microbiomes promote plant growth, suppress pathogens and nematodes, prime plants immunity, and alleviate abiotic stress. The prospective of beneficial rhizobacteria to facilitate plant growth is of primary importance, particularly under abiotic and biotic stresses. Such microbe can promote plant health, tolerate stress, even remediate soil pollutants, and suppress phytopathogens. Providing extra facts and a superior understanding of microbial traits underlying plant growth promotion can stir the development of microbial-based innovative solutions for the betterment of agriculture. Furthermore, the application of novel scientific approaches for facilitating the design of crop-specific microbial biofertilizers is discussed. In this context, we have highlighted the exercise of "multi-omics" methods for assessing the microbiome's impact on plant growth, health, and overall fitness via analyzing biochemical, physiological, and molecular facets. Furthermore, the role of clustered regularly interspaced short palindromic repeats (CRISPR) based genome alteration and nanotechnology for improving the agronomic performance and rhizosphere microbiome is also briefed. In a nutshell, the paper summarizes the recent vital molecular processes that underlie the different beneficial plant-microbe interactions imperative for enhancing plant fitness and resilience under-challenged agriculture.
Collapse
Affiliation(s)
- Ajinath Dukare
- ICAR-Central Institute for Research on Cotton Technology (CIRCOT), Mumbai, Maharashtra India
| | - Priyank Mhatre
- ICAR-Central Potato Research Institute (Regional Station), Udhagamandalam, Tamil Nadu India
| | - Hemant S. Maheshwari
- ICAR-Indian Institute of Soybean Research (IISR), Indore, Madhya Pradesh India
- Present Address: Ecophysiology of Plants, Faculty of Science and Engineering, GELIFES-Groningen Institute for Evolutionary Life Sciences, The University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Samadhan Bagul
- ICAR-Directorate of Medicinal and Aromatic Plant Research, Anand, Gujarat India
| | - B. S. Manjunatha
- ICAR-National Institute of Natural Fibre Engineering and Technology, Kolkata, West Bengal India
| | - Yogesh Khade
- ICAR- Directorate of Onion and Garlic Research, Pune, Maharashtra India
| | - Umesh Kamble
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana India
| |
Collapse
|
10
|
Plant Growth-Promoting Rhizobacteria as Antifungal Antibiotics Producers. Fungal Biol 2022. [DOI: 10.1007/978-3-031-04805-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
11
|
González-Pérez CJ, Aispuro-Hernández E, Vargas-Arispuro I, Hernández-Mendoza A, Ayala Zavala JF, Martínez-Téllez MA. Are Bacteriocins a Feasible Solution for Current Diverse Global Problems? Protein Pept Lett 2021; 28:1330-1337. [PMID: 34629038 DOI: 10.2174/0929866528666211008154430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022]
Abstract
The development of effective technologies to cope with persistent and progressive global problems in the areas of human health and sustainable development has become an imperative worldwide challenge. The search for natural alternatives has led to the discovery of bacteriocins, which are potent protein antimicrobial compounds produced by most bacteria. The relevance of these molecules is evidenced by the more than 4,500 papers published in the last decade in Scopus index journals highlighting their versatility and potential to impact various aspects of daily life, including the food industry, medicine, and agriculture. Bacteriocins have demonstrated antibacterial, antifungal, antiviral, and anticancer activity, and they also act as microbiota regulators and plant growth promoters. This mini-review aims to provide insights into the current state and emerging roles of bacteriocins, as well as their potential and limitations as feasible solutions against current diverse global problems.
Collapse
Affiliation(s)
- C J González-Pérez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas #46, 83304, Hermosillo, Sonora. Mexico
| | - E Aispuro-Hernández
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas #46, 83304, Hermosillo, Sonora. Mexico
| | | | | | - J F Ayala Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas #46, 83304, Hermosillo, Sonora. Mexico
| | - M A Martínez-Téllez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas #46, 83304, Hermosillo, Sonora. Mexico
| |
Collapse
|
12
|
Ngashangva N, Mukherjee P, Sharma KC, Kalita MC, Indira S. Analysis of Antimicrobial Peptide Metabolome of Bacterial Endophyte Isolated From Traditionally Used Medicinal Plant Millettia pachycarpa Benth. Front Microbiol 2021; 12:656896. [PMID: 34149644 PMCID: PMC8208310 DOI: 10.3389/fmicb.2021.656896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
Increasing prevalence of antimicrobial resistance (AMR) has posed a major health concern worldwide, and the addition of new antimicrobial agents is diminishing due to overexploitation of plants and microbial resources. Inevitably, alternative sources and new strategies are needed to find novel biomolecules to counter AMR and pandemic circumstances. The association of plants with microorganisms is one basic natural interaction that involves the exchange of biomolecules. Such a symbiotic relationship might affect the respective bio-chemical properties and production of secondary metabolites in the host and microbes. Furthermore, the discovery of taxol and taxane from an endophytic fungus, Taxomyces andreanae from Taxus wallachiana, has stimulated much research on endophytes from medicinal plants. A gram-positive endophytic bacterium, Paenibacillus peoriae IBSD35, was isolated from the stem of Millettia pachycarpa Benth. It is a rod-shaped, motile, gram-positive, and endospore-forming bacteria. It is neutralophilic as per Joint Genome Institute’s (JGI) IMG system analysis. The plant was selected based on its ethnobotany history of traditional uses and highly insecticidal properties. Bioactive molecules were purified from P. peoriae IBSD35 culture broth using 70% ammonium sulfate and column chromatography techniques. The biomolecule was enriched to 151.72-fold and the yield percentage was 0.05. Peoriaerin II, a highly potent and broad-spectrum antimicrobial peptide against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Candida albicans ATCC 10231 was isolated. LC-MS sequencing revealed that its N-terminal is methionine. It has four negatively charged residues (Asp + Glu) and a total number of two positively charged residues (Arg + Lys). Its molecular weight is 4,685.13 Da. It is linked to an LC-MS/MS inferred biosynthetic gene cluster with accession number A0A2S6P0H9, and blastp has shown it is 82.4% similar to fusaricidin synthetase of Paenibacillus polymyxa SC2. The 3D structure conformation of the BGC and AMP were predicted using SWISS MODEL homology modeling. Therefore, combining both genomic and proteomic results obtained from P. peoriae IBSD35, associated with M. pachycarpa Benth., will substantially increase the understanding of antimicrobial peptides and assist to uncover novel biological agents.
Collapse
Affiliation(s)
- Ng Ngashangva
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| | - Pulok Mukherjee
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| | - K Chandradev Sharma
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| | - M C Kalita
- Department of Biotechnology, Gauhati University, Guwahati, India
| | - Sarangthem Indira
- A National Institute of Department of Biotechnology, Institute of Bioresources and Sustainable Development (IBSD), Govt. of India, Imphal, India
| |
Collapse
|
13
|
WoldemariamYohannes K, Wan Z, Yu Q, Li H, Wei X, Liu Y, Wang J, Sun B. Prebiotic, Probiotic, Antimicrobial, and Functional Food Applications of Bacillus amyloliquefaciens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14709-14727. [PMID: 33280382 DOI: 10.1021/acs.jafc.0c06396] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Bacillus amyloliquefaciens belongs to the genus Bacillus and family Baciliaceae. It is ubiquitously found in food, plants, animals, soil, and in different environments. In this review, the application of B. amyloliquefaciens in probiotic and prebiotic microbes in fermentation, synthesis, and hydrolysis of food compounds is discussed as well as further insights into its potential application and gaps. B. amyloliquefaciens is also a potential microbe in the synthesis of bioactive compounds including peptides and exopolysaccharides. In addition, it can synthesize antimicrobial compounds (e.g., Fengycin, and Bacillomycin Lb), which makes its novelty in the food sector greater. Moreover, it imparts and improves the functional, sensory, and shelf life of the end products. The hydrolysis of complex compounds including insoluble proteins, carbohydrates, fibers, hemicellulose, and lignans also shows that B. amyloliquefaciens is a multifunctional and potential microbe which can be applied in the food industry and in functional food processing.
Collapse
Affiliation(s)
- Kalekristos WoldemariamYohannes
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhen Wan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qinglin Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingli Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
14
|
Novel Modifications of Nonribosomal Peptides from Brevibacillus laterosporus MG64 and Investigation of Their Mode of Action. Appl Environ Microbiol 2020; 86:AEM.01981-20. [PMID: 32978140 DOI: 10.1128/aem.01981-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Nonribosomal peptides (NRPs) are a class of secondary metabolites usually produced by microorganisms. They are of paramount importance in different applications, including biocontrol and pharmacy. Brevibacillus spp. are a rich source of NRPs yet have received little attention. In this study, we characterize four novel bogorol variants (bogorols I to L, cationic linear lipopeptides) and four succilins (succilins I to L, containing a succinyl group that is attached to the Orn3/Lys3 in bogorols I to L) from the biocontrol strain Brevibacillus laterosporus MG64. Further investigation revealed that the bogorol family of peptides employs an adenylation pathway for lipoinitiation, different from the usual pattern, which is based on an external ligase and coenzyme A. Moreover, the formation of valinol was proven to be mediated by a terminal reductase domain and a reductase encoded by the bogI gene. Furthermore, succinylation, which is a novel type of modification in the family of bogorols, was discovered. Its occurrence requires a high concentration of the substrate (bogorols), but its responsible enzyme remains unknown. Bogorols display potent activity against both Gram-positive and Gram-negative bacteria. Investigation of their mode of action reveals that bogorols form pores in the cell membrane of both Gram-positive and Gram-negative bacteria. The combination of bogorols and relacidines, another class of NRPs produced by B. laterosporus MG64, displays a synergistic effect on different pathogens, suggesting the great potential of both peptides as well as their producer B. laterosporus MG64 for broad applications. Our study provides a further understanding of the bogorol family of peptides as well as their applications.IMPORTANCE NRPs form a class of secondary metabolites with biocontrol and pharmaceutical potential. This work describes the identification of novel bogorol variants and succinylated bogorols (namely, succilins) and further investigates their biosynthetic pathway and mode of action. Adenylation domain-mediated lipoinitiation of bogorols represents a novel pathway by which NRPs incorporate fatty acid tails. This pathway provides the possibility to engineer the lipid tail of NRPs without identifying a fatty acid coenzyme ligase, which is usually not present in the biosynthetic gene cluster. The terminal reductase domain (TD) and BogI-mediated valinol formation and their effect on the biological activity of bogorols are revealed. Succinylation, which is rarely reported in NRPs, was discovered in the bogorol family of peptides. We demonstrate that bogorols combat bacterial pathogens by forming pores in the cell membrane. We also report the synergistic effect of two natural products (relacidine B and bogorol K) produced by the same strain, which is relevant for competition for a niche.
Collapse
|
15
|
Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140682. [PMID: 32758827 DOI: 10.1016/j.scitotenv.2020.140682] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
New eco-friendly approaches are required to improve plant biomass production. Beneficial plant growth-promoting (PGP) bacteria may be exploited as excellent and efficient biotechnological tools to improve plant growth in various - including stressful - environments. We present an overview of bacterial mechanisms which contribute to plant health, growth, and development. Plant growth promoting rhizobacteria (PGPR) can interact with plants directly by increasing the availability of essential nutrients (e.g. nitrogen, phosphorus, iron), production and regulation of compounds involved in plant growth (e.g. phytohormones), and stress hormonal status (e.g. ethylene levels by ACC-deaminase). They can also indirectly affect plants by protecting them against diseases via competition with pathogens for highly limited nutrients, biocontrol of pathogens through production of aseptic-activity compounds, synthesis of fungal cell wall lysing enzymes, and induction of systemic responses in host plants. The potential of PGPR to facilitate plant growth is of fundamental importance, especially in case of abiotic stress, where bacteria can support plant fitness, stress tolerance, and/or even assist in remediation of pollutants. Providing additional evidence and better understanding of bacterial traits underlying plant growth-promotion can inspire and stir up the development of innovative solutions exploiting PGPR in times of highly variable environmental and climatological conditions.
Collapse
Affiliation(s)
- Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Małgorzata Wójcik
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Izabela Swiecicka
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Sofie Thijs
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| | - Jaco Vangronsveld
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| |
Collapse
|
16
|
Role of plant growth-promoting bacteria in sustainable agriculture. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101842] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Li Z, Chakraborty P, de Vries RH, Song C, Zhao X, Roelfes G, Scheffers DJ, Kuipers OP. Characterization of two relacidines belonging to a novel class of circular lipopeptides that act against Gram-negative bacterial pathogens. Environ Microbiol 2020; 22:5125-5136. [PMID: 32608161 PMCID: PMC7818431 DOI: 10.1111/1462-2920.15145] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
The development of sustainable agriculture and the increasing antibiotic resistance of human pathogens call for novel antimicrobial compounds. Here, we describe the extraction and characterization of a class of cationic circular lipopeptides, for which we propose the name relacidines, from the soil bacterium Brevibacillus laterosporus MG64. Relacidines are composed of a fatty acid side chain (4‐methylhexanoic acid) and 13 amino acid residues. A lactone ring is formed by the last five amino acid residues and three positively charged ornithines are located in the linear fragment. Relacidines selectively combat Gram‐negative pathogens, including phytopathogens and human pathogens. Further investigation of the mode of action revealed that relacidine B binds to the lipopolysaccharides but does not form pores in the cell membrane. We also provide proof to show that relacidine B does not affect the biosynthesis of the cell wall and RNA. Instead, it affects the oxidative phosphorylation process of cells and diminishes the biosynthesis of ATP. Transcription of relacidines is induced by plant pathogens, which strengthens the potential of B. laterosporus MG64 to be used as a biocontrol agent. Thus, we identified a new group of potent antibiotic compounds for combating Gram‐negative pathogens of plants or animals.
Collapse
Affiliation(s)
- Zhibo Li
- Department of Molecular Genetics, University of Groningen, Groningen, the Netherlands
| | - Parichita Chakraborty
- Department of Molecular Microbiology, University of Groningen, Groningen, the Netherlands
| | - Reinder H de Vries
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Chunxu Song
- College of Resources and Environmental Science, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interaction, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xinghong Zhao
- Department of Molecular Genetics, University of Groningen, Groningen, the Netherlands
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Dirk-Jan Scheffers
- Department of Molecular Microbiology, University of Groningen, Groningen, the Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, the Netherlands
| |
Collapse
|