1
|
Dong B, Liu W, Zhao Y, Quan W, Hao L, Wang D, Zhou H, Zhao M, Hao J. Genome Sequencing and Comparative Genomic Analysis of Attenuated Strain Gibellulopsis nigrescens GnVn.1 Causing Mild Wilt in Sunflower. J Fungi (Basel) 2024; 10:838. [PMID: 39728334 DOI: 10.3390/jof10120838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Gibellulopsis nigrescens, previously classified in the Verticillium genus until 2007, is an attenuated pathogen known to provide cross-protection against Verticillium wilt in various crops. To investigate the potential mechanisms underlying its reduced virulence, we conducted genome sequencing, annotation, and a comparative genome analysis of G. nigrescens GnVn.1 (GnVn.1), an attenuated strain isolated from sunflower. The genome sequencing and annotation results revealed that the GnVn.1 genome consists of 22 contigs, with a total size of 31.79 Mb. We predicted 10,876 genes, resulting in a gene density of 342 genes per Mb. The pathogenicity gene prediction results indicated 1733 high-confidence pathogenicity factors (HCPFs), 895 carbohydrate-active enzymes (CAZys), and 359 effectors. Moreover, we predicted 40 secondary metabolite clusters (SMCs). The comparative genome analysis indicated that GnVn.1 contains more CAZys, SMCs, predicted effectors, and HCPF genes than Verticillium dahliae (VdLs.17) and Verticillium alfalfae (VaMas.102). The core-pan analysis results showed that GnVn.1 had more specific HCPFs, effectors, CAZys, and secreted protein (SP) genes, and lost many critical pathogenic genes compared to VdLs.17 and VaMs.102. Our results indicate that the GnVn.1 genome harbors more pathogenicity-related genes than the VdLs.17 and VaMs.102 genomes. These abundant genes may play critical roles in regulating virulence. The loss of critical pathogenic genes causes weak virulence and confers biocontrol strategies to GnVn.1.
Collapse
Affiliation(s)
- Baozhu Dong
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| | - Wanyou Liu
- Grassland Research Center, Chinese Academy of Forestry, Beijing 100091, China
| | - Yingjie Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| | - Wei Quan
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| | - Lijun Hao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| | - Dong Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| | - Jianxiu Hao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010010, China
- Key Laboratory of Biological Pesticide Creation and Resource Utilization, Education Department of Inner Mongolia, Hohhot 010011, China
| |
Collapse
|
2
|
Cai G, Lopes da Silva L, Piñeros-Guerrero N, Telenko DEP. Population Structure and Mating Type Distribution of Cercospora sojina from Soybeans in Indiana, United States. J Fungi (Basel) 2024; 10:802. [PMID: 39590721 PMCID: PMC11595534 DOI: 10.3390/jof10110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/08/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Frogeye leaf spot on soybeans is traditionally considered as a southern disease in the United States but its impact in North Central USA has been rising in recent years. In this study, we investigated the population structure and mating type distribution in the C. sojina population from Indiana, USA. Based on 27 single nucleotide polymorphism markers, 49 multi-locus genotypes (MLGs) were identified in 234 isolates collected from 29 counties in Indiana in 2020. Bayesian analysis grouped the 49 MLGs into three clusters. This grouping was supported by principal coordinate analysis and, in large part, by the unweighted pair group method with arithmetic mean and minimal spanning tree. Only one mating-type idiomorph was found in each isolate and in each MLG. The MAT1-1 idiomorph was found in 22 MLGs and the MAT1-2 idiomorph was found in 27 MLGs. Based on clone-corrected data, the distribution of mating-type idiomorphs did not deviate significantly from 1:1 ratio in Indiana as a whole and in 22 out of 24 counties where two or more MLGs were found. Thirty MLGs contained QoI-resistant isolates and 22 MLGs contained QoI-sensitive isolates, with three MLGs containing both types of isolates. MLG1, the most common MLG with 90 isolates, contained mostly QoI-resistant isolates. Interestingly, MLG1 was also the dominant genotype in the Tennessee population collected in 2015, suggesting that MLG1 has been a dominant genotype in a wider region for many years. Based on the standard index of association (r¯d), the Indiana population as a whole was in significant linkage disequilibrium. However, in five out of 16 counties where three or more MLGs were found, the null hypothesis of linkage equilibrium was not rejected. Tests of linkage disequilibrium between locus pairs showed that 33.3% of locus pairs on the same contigs were in significant disequilibrium and 17.7% of locus pairs on different contigs were in significant disequilibrium. The possibility of a cryptic sexual stage was discussed.
Collapse
Affiliation(s)
- Guohong Cai
- Crop Production and Pest Control Research Unit, Agricultural Research Service, United States Department of Agriculture, West Lafayette, IN 47907, USA;
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907, USA; (N.P.-G.); (D.E.P.T.)
| | - Leandro Lopes da Silva
- Crop Production and Pest Control Research Unit, Agricultural Research Service, United States Department of Agriculture, West Lafayette, IN 47907, USA;
| | - Natalia Piñeros-Guerrero
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907, USA; (N.P.-G.); (D.E.P.T.)
| | - Darcy E. P. Telenko
- Botany and Plant Pathology Department, Purdue University, West Lafayette, IN 47907, USA; (N.P.-G.); (D.E.P.T.)
| |
Collapse
|
3
|
Zambounis A, Boutsika A, Gray N, Hossain M, Chatzidimopoulos M, Tsitsigiannis DI, Paplomatas E, Hane J. Pan-genome survey of Septoria pistaciarum, causal agent of Septoria leaf spot of pistachios, across three Aegean sub-regions of Greece. Front Microbiol 2024; 15:1396760. [PMID: 38919498 PMCID: PMC11196620 DOI: 10.3389/fmicb.2024.1396760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024] Open
Abstract
Septoria pistaciarum, a causal agent of Septoria leaf spot disease of pistachio, is a fungal pathogen that causes substantial losses in the cultivation, worldwide. This study describes the first pan-genome-based survey of this phytopathogen-comprising a total of 27 isolates, with 9 isolates each from 3 regional units of Greece (Pieria, Larissa and Fthiotida). The reference isolate (SPF8) assembled into a total of 43.1 Mb, with 38.6% contained within AT-rich regions of approximately 37.5% G:C. The genomes of the 27 isolates exhibited on average 42% gene-coding and 20% repetitive regions. The genomes of isolates from the southern Fthiotida region appeared to more diverged from each other than the other regions based on SNP-derived trees, and also contained isolates similar to both the Pieria and Larissa regions. In contrast, isolates of the Pieria and Larissa were less diverse and distinct from one another. Asexual reproduction appeared to be typical, with no MAT1-2 locus detected in any isolate. Genome-based prediction of infection mode indicated hemibiotrophic and saprotrophic adaptations, consistent with its long latent phase. Gene prediction and orthology clustering generated a pan-genome-wide gene set of 21,174 loci. A total of 59 ortholog groups were predicted to contain candidate effector proteins, with 36 (61%) of these either having homologs to known effectors from other species or could be assigned predicted functions from matches to conserved domains. Overall, effector prediction suggests that S. pistaciarum employs a combination of defensive effectors with roles in suppression of host defenses, and offensive effectors with a range of cytotoxic activities. Some effector-like ortholog groups presented as divergent versions of the same protein, suggesting region-specific adaptations may have occurred. These findings provide insights and future research directions in uncovering the pathogenesis and population dynamics of S. pistaciarum toward the efficient management of Septoria leaf spot of pistachio.
Collapse
Affiliation(s)
- Antonios Zambounis
- Hellenic Agricultural Organization - DIMITRA (ELGO - DIMITRA), Institute of Plant Breeding and Genetic Resources, Thessaloniki, Greece
| | - Anastasia Boutsika
- Hellenic Agricultural Organization - DIMITRA (ELGO - DIMITRA), Institute of Plant Breeding and Genetic Resources, Thessaloniki, Greece
| | - Naomi Gray
- Centre for Crop and Disease Management, Department of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Mohitul Hossain
- Centre for Crop and Disease Management, Department of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Michael Chatzidimopoulos
- Laboratory of Plant Pathology, Department of Agriculture, International Hellenic University, Thessaloniki, Greece
| | - Dimitrios I. Tsitsigiannis
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Epaminondas Paplomatas
- Laboratory of Plant Pathology, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - James Hane
- Centre for Crop and Disease Management, Department of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| |
Collapse
|
4
|
Liu S, Chen L, Qiao X, Ren J, Zhou C, Yang Y. Functional Evolution of Pseudofabraea citricarpa as an Adaptation to Temperature Change. J Fungi (Basel) 2024; 10:109. [PMID: 38392781 PMCID: PMC10890082 DOI: 10.3390/jof10020109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Citrus target spot, caused by Pseudofabraea citricarpa, was formerly considered a cold-tolerant fungal disease. However, it has now spread from high-latitude regions to warmer low-latitude regions. Here, we conducted physiological observations on two different strains of the fungus collected from distinct regions, and evaluated their pathogenicity. Interestingly, the CQWZ collected from a low-latitude orchard, exhibited higher temperature tolerance and pathogenicity when compared to the SXCG collected from a high-latitude orchard. To further understand the evolution of temperature tolerance and virulence in these pathogens during the spread process, as well as the mechanisms underlying these differences, we performed genomic comparative analysis. The genome size of CQWZ was determined to be 44,004,669 bp, while the genome size of SXCG was determined to be 45,377,339 bp. Through genomic collinearity analysis, we identified two breakpoints and rearrangements during the evolutionary process of these two strains. Moreover, gene annotation results revealed that the CQWZ possessed 376 annotated genes in the "Xenobiotics biodegradation and metabolism" pathway, which is 79 genes more than the SXCG. The main factor contributing to this difference was the presence of salicylate hydroxylase. We also observed variations in the oxidative stress pathways and core pathogenic genes. The CQWZ exhibited the presence of a heat shock protein (HSP SSB), a catalase (CAT2), and 13 core pathogenic genes, including a LysM effector, in comparison to the SXCG. Furthermore, there were significant disparities in the gene clusters responsible for the production of seven metabolites, such as Fumonisin and Brefeldin. Finally, we identified the regulatory relationship, with the HOG pathway at its core, that potentially contributes to the differences in thermotolerance and virulence. As the global climate continues to warm, crop pathogens are increasingly expanding to new territories. Our findings will enhance understanding of the evolution mechanisms of pathogens under climate change.
Collapse
Affiliation(s)
- Saifei Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Beibei, Chongqing 400716, China
| | - Li Chen
- Plant Protection and Fruit Tree Technology Extension Station of Wanzhou District in Chongqing, Chongqing 404199, China
| | - Xinghua Qiao
- Plant Protection and Fruit Tree Technology Extension Station of Wanzhou District in Chongqing, Chongqing 404199, China
| | - Jiequn Ren
- The Chongqing Three Gorges Academy of Agricultural Sciences, Chongqing 404150, China
| | - Changyong Zhou
- Citrus Research Institute, Southwest University, Beibei, Chongqing 400712, China
| | - Yuheng Yang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Beibei, Chongqing 400716, China
| |
Collapse
|
5
|
Barro JP, Del Ponte EM, Allen TW, Bond JP, Faske TR, Hollier CA, Kandel YR, Mueller DS, Kelly HM, Kleczewski NM, Ames KA, Price PP, Sikora EJ, Bradley CA. Efficacy and Profitability of Fungicides for Managing Frogeye Leaf Spot on Soybean in the United States: A 10-Year Quantitative Summary. PLANT DISEASE 2023; 107:3487-3496. [PMID: 37157104 DOI: 10.1094/pdis-02-23-0291-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Frogeye leaf spot (FLS), caused by Cercospora sojina, is an economically important disease of soybean in the United States. Data from 66 uniform fungicide trials (UFTs) conducted from 2012 to 2021 across eight states (Alabama, Arkansas, Illinois, Iowa, Kentucky, Louisiana, Mississippi, and Tennessee) were gathered and analyzed to determine the efficacy and profitability of the following fungicides applied at the beginning pod developmental stage (R3): azoxystrobin + difenoconazole (AZOX + DIFE), difenoconazole + pydiflumetofen (DIFE + PYDI), pyraclostrobin (PYRA), pyraclostrobin + fluxapyroxad + propiconazole (PYRA + FLUX + PROP), tetraconazole (TTRA), thiophanate-methyl (TMET), thiophanate-methyl + tebuconazole (TMET + TEBU), and trifloxystrobin + prothioconazole (TFLX + PROT). A network meta-analytic model was fitted to the log of the means of FLS severity data and to the nontransformed mean yield for each treatment, including the nontreated. The percent reduction in disease severity (%) and the yield response (kg/ha) relative to the nontreated was the lowest for PYRA (11%; 136 kg/ha) and the greatest for DIFE + PYDI (57%; 441 kg/ha). A significant decline in efficacy over time was detected for PYRA (18 percentage points [p.p.]), TTRA (27 p.p.), AZOX + DIFE (18 p.p.), and TMET + TEBU (19 p.p.) by using year as a continuous covariate in the model. Finally, probabilities of breaking even were the greatest (>65%) for the most effective fungicide DIFE + PYDI and the lowest (<55%) for PYRA. Results of this meta-analysis may be useful to support decisions when planning fungicide programs.
Collapse
Affiliation(s)
- Jhonatan P Barro
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, U.S.A
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil
| | - Emerson M Del Ponte
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Brazil
| | - Tom W Allen
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776, U.S.A
| | - Jason P Bond
- Department of Plant, Soil Science, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, U.S.A
| | - Travis R Faske
- Department of Entomology and Plant Pathology, Division of Agriculture, Lonoke Extension Center, University of Arkansas, Lonoke, AR 72086, U.S.A
| | - Clayton A Hollier
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Yuba R Kandel
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Daren S Mueller
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Heather M Kelly
- Department of Entomology and Plant Pathology, University of Tennessee, Jackson, TN 38301, U.S.A
| | - Nathan M Kleczewski
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Keith A Ames
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Paul P Price
- Macon Ridge Research Station, LSU AgCenter, Winnsboro, LA 71295, U.S.A
| | - Edward J Sikora
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Carl A Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, U.S.A
| |
Collapse
|
6
|
Zhang M, Xu W, Mei H, Song G, Ge N, Tao Y, Liu W, Liang G. Comparative genomics predict specific genes in potential mucorales identification. Arch Microbiol 2023; 205:320. [PMID: 37640972 DOI: 10.1007/s00203-023-03659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
Mucoralean fungi could cause mucormycosis in humans, particularly in immunodeficient individuals and those with diabetes mellitus or trauma. With plenty of species and genera, their molecular identification and pathogenicity have a large deviation. Reported cases of mucormycosis showed frequent occurrence in Rhizopus species, Mucor species, and Lichtheimia species. We analyzed the whole genome sequences of 25 species of the top 10 Mucorales genera, along with another 22 important pathogenic non-Mucorales species, to dig the target genes for monitoring Mucorales species and identify potential genomic imprints of virulence in them. Mucorales-specific genes have been found in various orthogroups extracted by Python script, while genus-specific genes were annotated covering cellular structure, biochemistry metabolism, molecular processing, and signal transduction. Proteins related to the virulence of Mucorales species varied with distinct significance in copy numbers, in which Orthofinder was conducted. Based on our fresh retrospective analysis of mucormycosis, a comparative genomic analysis of pathogenic Mucorales was conducted in more frequent pathogens. Specific orthologs between Mucorales and non-Mucoralean pathogenic fungi were discussed in detail. Referring to the previously reported virulence proteins, we included more frequent pathogenic Mucorales and compared them in Mucorales species and non-Mucorales species. Besides, more samples are needed to further verify the potential target genes.
Collapse
Affiliation(s)
- Meijie Zhang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wenqi Xu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Huan Mei
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Ge Song
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Department of Dermatology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Naicen Ge
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
- CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, 210042, China
| | - Ye Tao
- Shanghai Biozeron Biotechnology Co., Ltd, Shanghai, 201800, China
| | - Weida Liu
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China.
- CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, 210042, China.
| | - Guanzhao Liang
- Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, 210042, China.
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China.
- CAMS Collection Center of Pathogen Microorganisms-D (CAMS-CCPM-D), Nanjing, 210042, China.
| |
Collapse
|
7
|
Whole Genome Sequencing and Comparative Genomics of Indian Isolates of Wheat Spot Blotch Pathogen Bipolaris sorokiniana Reveals Expansion of Pathogenicity Gene Clusters. Pathogens 2022; 12:pathogens12010001. [PMID: 36678349 PMCID: PMC9865733 DOI: 10.3390/pathogens12010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Spot blotch is a highly destructive disease in wheat caused by the fungal pathogen Bipolaris sorokiniana (teleomorph, Cochliobolus sativus). It is prevalent in warm and humid areas, including Africa, Asia, Latin America, and the USA. In the present study, twelve isolates of B. sorokiniana were collected from wheat fields in three different geographical locations in India. The pathogenicity of seven sporulating isolates was assessed on 'DDK 1025', a spot blotch-susceptible wheat variety under greenhouse conditions. The isolate 'D2' illustrated the highest virulence, followed by 'SI' and 'BS52'. These three isolates were sequenced using the Illumina HiSeq1000 platform. The estimated genome sizes of the isolates BS52, D2, and SI were 35.19 MB, 39.32 MB, and 32.76 MB, with GC contents of 48.48%, 50.43%, and 49.42%, respectively. The numbers of pathogenicity genes identified in BS52, D2, and SI isolates were 2015, 2476, and 2018, respectively. Notably, the isolate D2 exhibited a relatively larger genome with expanded arsenals of Biosynthetic Gene Clusters (BGCs), CAZymes, secretome, and pathogenicity genes, which could have contributed to its higher virulence among the tested isolates. This study provides the first comparative genome analysis of the Indian isolates of B. sorokiniana using whole genome sequencing.
Collapse
|
8
|
Lin Z, Wang W, Chen J. Genome Sequence Resource for Cercospora rodmanii J1, a Potential Biological Control Agent for Water Hyacinth. PHYTOPATHOLOGY 2022; 112:2462-2465. [PMID: 36415126 DOI: 10.1094/phyto-04-22-0119-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Zhenyue Lin
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- Fujian Provincial Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, 350108, China
- Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou, 350108, China
| | - Wei Wang
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- Fujian Provincial Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, 350108, China
| | - Jianming Chen
- Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China
- Fujian Provincial Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, 350108, China
- Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fuzhou, 350108, China
| |
Collapse
|
9
|
Sun M, Na C, Jing Y, Cui Z, Li N, Zhan Y, Teng W, Li Y, Li W, Zhao X, Han Y. Genome-Wide Association Analysis and Gene Mining of Resistance to China Race 1 of Frogeye Leaf Spot in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:867713. [PMID: 35812941 PMCID: PMC9257224 DOI: 10.3389/fpls.2022.867713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Soybean frogeye leaf spot (FLS) is a worldwide fungal disease. Its higher occurrence frequency and wider distribution range always led to severe yield losses of soybean, therefore, breeding new cultivars with FLS resistance has been an important breeding goal for soybean breeders. In this study, an association panel of 183 representative soybean accessions was used to evaluate their resistance to FLS race 1, and to identify quantitative trait nucleotides (QTNs) and candidate genes based on genome-wide association study (GWAS) and high-throughput single-nucleotide polymorphisms (SNPs). A total of 23,156 high-quality SNPs were developed using the specific locus-amplified fragment sequencing (SLAF-seq) approach. Finally, 13 novel association signals associated with FLS race 1 resistance were identified by the compressed mixed linear model (CMLM). In addition, 119 candidate genes were found within the 200-kb flanking genomic region of these 13 peak SNPs. Based on the gene-based association analysis, haplotype analysis, expression pattern analysis, and virus-induced gene silencing (VIGS) systems, four genes (Glyma.05G121100, Glyma.17G228300, Glyma.19G006900, and Glyma.19G008700) were preliminarily proved to play an important role in the soybean resistance to FLS race 1.
Collapse
Affiliation(s)
- Maolin Sun
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, China
| | - Chen Na
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, China
| | - Yan Jing
- College of Tropical Crops, Hainan University, Haikou, China
| | - Zhihui Cui
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, China
| | - Na Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, China
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, China
| | - Yongguang Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, China
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding, Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Gu X, Huang S, Zhu Z, Ma Y, Yang X, Yao L, Gao X, Zhang M, Liu W, Qiu L, Zhao H, Wang Q, Li Z, Li Z, Meng Q, Yang S, Wang C, Hu X, Ding J. Genome-wide association of single nucleotide polymorphism loci and candidate genes for frogeye leaf spot (Cercospora sojina) resistance in soybean. BMC PLANT BIOLOGY 2021; 21:588. [PMID: 34895144 PMCID: PMC8665500 DOI: 10.1186/s12870-021-03366-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Frogeye leaf spot (FLS) is a destructive fungal disease that affects soybean production. The most economical and effective strategy to control FLS is the use of resistant cultivars. However, the use of a limited number of resistant loci in FLS management will be countered by the emergence of new high-virulence Cercospora sojina races. Therefore, we identified quantitative trait loci (QTL) that control resistance to FLS and identified novel resistant genes using a genome-wide association study (GWAS) on 234 Chinese soybean cultivars. RESULTS A total of 30,890 single nucleotide polymorphism (SNP) markers were used to estimate linkage disequilibrium (LD) and population structure. The GWAS results showed four loci (p < 0.0001) distributed over chromosomes (Chr.) 5 and 20, that are significantly associated with FLS resistance. No previous studies have reported resistance loci in these regions. Subsequently, 45 genes in the two resistance-related haplotype blocks were annotated. Among them, Glyma20g31630 encoding pyruvate dehydrogenase (PDH), Glyma05g28980, which encodes mitogen-activated protein kinase 7 (MPK7), and Glyma20g31510, Glyma20g31520 encoding calcium-dependent protein kinase 4 (CDPK4) in the haplotype blocks deserves special attention. CONCLUSIONS This study showed that GWAS can be employed as an effective strategy for identifying disease resistance traits in soybean and narrowing SNPs and candidate genes. The prediction of candidate genes in the haplotype blocks identified by disease resistance loci can provide a useful reference to study systemic disease resistance.
Collapse
Affiliation(s)
- Xin Gu
- Wuhu Institute of Technology, Wuhu, 241003, China
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture Harmful Biology of Crop Scientific Monitoring Station Jiamusi Experiment Station, China Agriculture Research System of MOF and MARA, Jiamusi, 154007, China
| | - Shanshan Huang
- Key Laboratory of Crop Biotechnology Breeding of the Ministry of Agriculture, Beidahuang Kenfeng Seed Co., Ltd., Harbin, 150030, China
| | - Zhiguo Zhu
- Wuhu Institute of Technology, Wuhu, 241003, China
| | - Yansong Ma
- Key Laboratory of Crop Biotechnology Breeding of the Ministry of Agriculture, Beidahuang Kenfeng Seed Co., Ltd., Harbin, 150030, China
| | - Xiaohe Yang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture Harmful Biology of Crop Scientific Monitoring Station Jiamusi Experiment Station, China Agriculture Research System of MOF and MARA, Jiamusi, 154007, China
| | - Liangliang Yao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture Harmful Biology of Crop Scientific Monitoring Station Jiamusi Experiment Station, China Agriculture Research System of MOF and MARA, Jiamusi, 154007, China
| | - Xuedong Gao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture Harmful Biology of Crop Scientific Monitoring Station Jiamusi Experiment Station, China Agriculture Research System of MOF and MARA, Jiamusi, 154007, China
| | - Maoming Zhang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture Harmful Biology of Crop Scientific Monitoring Station Jiamusi Experiment Station, China Agriculture Research System of MOF and MARA, Jiamusi, 154007, China
| | - Wei Liu
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture Harmful Biology of Crop Scientific Monitoring Station Jiamusi Experiment Station, China Agriculture Research System of MOF and MARA, Jiamusi, 154007, China
| | - Lei Qiu
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture Harmful Biology of Crop Scientific Monitoring Station Jiamusi Experiment Station, China Agriculture Research System of MOF and MARA, Jiamusi, 154007, China
| | - Haihong Zhao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture Harmful Biology of Crop Scientific Monitoring Station Jiamusi Experiment Station, China Agriculture Research System of MOF and MARA, Jiamusi, 154007, China
| | - Qingsheng Wang
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture Harmful Biology of Crop Scientific Monitoring Station Jiamusi Experiment Station, China Agriculture Research System of MOF and MARA, Jiamusi, 154007, China
| | - Zengjie Li
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture Harmful Biology of Crop Scientific Monitoring Station Jiamusi Experiment Station, China Agriculture Research System of MOF and MARA, Jiamusi, 154007, China
| | - Zhimin Li
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture Harmful Biology of Crop Scientific Monitoring Station Jiamusi Experiment Station, China Agriculture Research System of MOF and MARA, Jiamusi, 154007, China
| | - Qingying Meng
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture Harmful Biology of Crop Scientific Monitoring Station Jiamusi Experiment Station, China Agriculture Research System of MOF and MARA, Jiamusi, 154007, China
| | - Shuai Yang
- Potato Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Chao Wang
- Key Laboratory of Crop Biotechnology Breeding of the Ministry of Agriculture, Beidahuang Kenfeng Seed Co., Ltd., Harbin, 150030, China
| | - Xiping Hu
- Key Laboratory of Crop Biotechnology Breeding of the Ministry of Agriculture, Beidahuang Kenfeng Seed Co., Ltd., Harbin, 150030, China.
| | - Junjie Ding
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Ministry of Agriculture Harmful Biology of Crop Scientific Monitoring Station Jiamusi Experiment Station, China Agriculture Research System of MOF and MARA, Jiamusi, 154007, China.
| |
Collapse
|
11
|
Kashiwa T, Suzuki T. High-quality genome assembly of the soybean fungal pathogen Cercospora kikuchii. G3 (BETHESDA, MD.) 2021; 11:jkab277. [PMID: 34568928 PMCID: PMC8496228 DOI: 10.1093/g3journal/jkab277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/29/2021] [Indexed: 11/12/2022]
Abstract
Plant diseases caused by the Cercospora genus of ascomycete fungi are a major concern for commercial agricultural practices. Several Cercospora species can affect soybeans, such as Cercospora kikuchii which causes soybean leaf blight. Speciation in Cercospora on soybean has not been adequately studied. Some cryptic groups of Cercospora also cause diseases on soybean. Moreover, it has been known C. kikuchii population genetic structure is different between countries. Consequently, further genomic information could help to elucidate the covert differentiation of Cercospora diseases in soybean. Here, we report for the first time, a chromosome-level genome assembly for C. kikuchii. The genome assembly of 9 contigs was 34.44 Mb and the N50 was 4.19 Mb. Based on ab initio gene prediction, several candidates for pathogenicity-related genes, including 242 genes for putative effectors, 55 secondary metabolite gene clusters, and 399 carbohydrate-active enzyme genes were identified. The genome sequence and the features described in this study provide a solid foundation for comparative and evolutionary genomic analysis for Cercospora species that cause soybean diseases worldwide.
Collapse
Affiliation(s)
- Takeshi Kashiwa
- Biological Resources and Post-harvest Division, Japan International Research
Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki 305-8686,
Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya
University, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|
12
|
Draft Genome Sequences of Three Fusarium oxysporum f. sp. niveum Isolates Used in Designing Markers for Race Differentiation. Microbiol Resour Announc 2020; 9:9/42/e01004-20. [PMID: 33060278 PMCID: PMC7561697 DOI: 10.1128/mra.01004-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Here, we report the draft genome sequences of three Fusarium oxysporum f. sp. niveum isolates that were used to design markers for molecular race differentiation. The isolates were collected from watermelon fields in Georgia (USA) and were determined to be different races of F. oxysporum f. sp. niveum using a traditional bioassay. Here, we report the draft genome sequences of three Fusarium oxysporum f. sp. niveum isolates that were used to design markers for molecular race differentiation. The isolates were collected from watermelon fields in Georgia (USA) and were determined to be different races of F. oxysporum f. sp. niveum using a traditional bioassay.
Collapse
|