1
|
Wang Y, Wang J, Li Q, Xuan R, Guo Y, He P, Duan Q, Du S, Chao T. Transcriptomic and metabolomic data of goat ovarian and uterine tissues during sexual maturation. Sci Data 2024; 11:777. [PMID: 39003290 PMCID: PMC11246480 DOI: 10.1038/s41597-024-03565-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/24/2024] [Indexed: 07/15/2024] Open
Abstract
The ovaries and uterus are crucial reproductive organs in mammals, and their coordinated development ensures the normal development of sexual maturity and reproductive capacity. This study aimed to comprehensively capture the different physiological stages of the goat's sexual maturation by selecting four specific time points. We collected samples of ovarian and uterine tissues from five female Jining Gray goats at each time point: after birth (D1), 2-month-old (M2), 4-month-old (M4), and 6-month-old (M6). By combining transcriptomic sequencing of 40 samples (including rRNA-depleted RNA-seq libraries with 3607.8 million reads and miRNA-seq libraries with 444.0 million reads) and metabolomics analysis, we investigated the transcriptomic mechanisms involved in reproductive regulation in the ovary and uterus during sexual maturation, as well as the changes in metabolites and their functional potential. Additionally, we analyzed blood hormone indices and uterine tissue sections to examine temporal changes. These datasets will provide a valuable reference for the reproductive regulation of the ovary and uterus, as well as the regulation of metabolites during sexual maturation in goats.
Collapse
Affiliation(s)
- Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qingling Duan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shanfeng Du
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
2
|
Liu J, Guo C, Fu J, Liu D, Liu G, Sun B, Deng M, Guo Y, Li Y. Identification and Functional Analysis of circRNAs during Goat Follicular Development. Int J Mol Sci 2024; 25:7548. [PMID: 39062792 PMCID: PMC11277404 DOI: 10.3390/ijms25147548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/24/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Litter size is a crucial quantitative trait in animals, closely linked to follicular development. Circular RNA (circRNA), a type of single-stranded closed-loop endogenous RNA with stable expression, plays pivotal roles in various biological processes, yet its function in goat follicular development remains unclear. In this study, we collected large (follicle diameter > 3 mm) and small (1 mm < follicle diameter < 3 mm) follicles from black goats in the Chuanzhong region for circRNA sequencing, with the aim of elucidating the functional circRNAs that influence follicle development in goats. Differential analysis revealed that 17 circRNAs were upregulated in large follicles, and 28 circRNAs were upregulated in small follicles. Functional enrichment analysis revealed significant enrichment of pathways related to reproduction, including cellular response to follicle-stimulating hormone stimulus, the PI3K-Akt signaling pathway, the MAPK signaling pathway, and the Notch signaling pathway. Based on the ceRNA mechanism, 45 differentially expressed circRNAs were found to target and bind a total of 418 miRNAs, and an intercalation network including miR-324-3p (circRNA2497, circRNA5650), miR-202-5p (circRNA3333, circRNA5501), and miR-493-3p (circRNA4995, circRNA5508) was constructed. In addition, conservation analysis revealed that 2,239 circRNAs were conserved between goats and humans. Prediction of translation potential revealed that 154 circRNAs may potentially utilize both N6-methyladenosine (m6A) and internal ribosome entry site (IRES) translation mechanisms. Furthermore, the differential expression and circularization cleavage sites of five circRNAs were validated through RT-qPCR and DNA sequencing. Our study constructed a circRNA map in goat follicle development, offering a theoretical foundation for enhancing goat reproductive performance.
Collapse
Affiliation(s)
- Jie Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Conghui Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Fu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (J.L.); (C.G.); (B.S.); (M.D.); (Y.G.)
- National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Chen W, Li Z, Zhong R, Sun W, Chu M. Expression profiles of oviductal mRNAs and lncRNAs in the follicular phase and luteal phase of sheep (Ovis aries) with 2 fecundity gene (FecB) genotypes. G3 (BETHESDA, MD.) 2023; 14:jkad270. [PMID: 38051961 PMCID: PMC10755197 DOI: 10.1093/g3journal/jkad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
FecB (also known as BMPR1B) is a crucial gene in sheep reproduction, which has a mutation (A746G) that was found to increase the ovulation rate and litter size. The FecB mutation is associated with reproductive endocrinology, such mutation can control external estrous characteristics and affect follicle-stimulating hormone during the estrous cycle. Previous researches showed that the FecB mutation can regulate the transcriptomic profiles in the reproductive-related tissues including hypothalamus, pituitary, and ovary during the estrous cycle of small-tailed Han (STH) sheep. However, little research has been reported on the correlation between FecB mutation and the estrous cycle in STH sheep oviduct. To investigate the coding and noncoding transcriptomic profiles involved in the estrous cycle and FecB in the sheep oviduct, RNA sequencing was performed to analyze the transcriptomic profiles of mRNAs and long noncoding RNAs (lncRNAs) in the oviduct during the estrous cycle of STH sheep with mutant (FecBBB) and wild-type (FecB++) genotypes. In total, 21,863 lncRNAs and 43,674 mRNAs were screened, the results showed that mRNAs had significantly higher expression levels than the lncRNAs, and the expression levels of these screened transcripts were lower in the follicular phase than they were in the luteal phase. Among them, the oviductal glycoprotein gene (OVGP1) had the highest expression level. In the comparison between the follicular and luteal phases, 57 differentially expressed (DE) lncRNAs and 637 DE mRNAs were detected, including FSTL5 mRNA and LNC_016628 lncRNA. In the comparison between the FecBBB and FecB++ genotypes, 26 DE lncRNAs and 421 DE mRNAs were detected, including EEF1D mRNA and LNC_006270 lncRNA. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis indicated that the DE mRNAs were enriched mainly in terms related to reproduction such as the tight junction, SAGA complex, ATP-binding cassette, nestin, and Hippo signaling pathway. The interaction network between DE lncRNAs and DE mRNAs indicated that LNC_018420 may be the key regulator in sheep oviduct. Together, our results can provide novel insights into the oviductal transcriptomic function against a FecB mutation background in sheep reproduction.
Collapse
Affiliation(s)
- Weihao Chen
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhifeng Li
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Rongzhen Zhong
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Wang Y, Wang J, Li Q, Xuan R, Guo Y, He P, Chao T. Characterization of MicroRNA expression profiles in the ovarian tissue of goats during the sexual maturity period. J Ovarian Res 2023; 16:234. [PMID: 38062510 PMCID: PMC10704810 DOI: 10.1186/s13048-023-01318-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The ovary is an important reproductive organ in mammals, and its development directly affects the sexual maturity and reproductive capacity of individuals. MicroRNAs (miRNAs) are recognized as regulators of reproductive physiological processes in various animals and have been shown to regulate ovarian development through typical targeting and translational repression. However, little is known about the regulatory role of miRNAs in ovarian tissue development during sexual maturity in goats. To comprehensively profile the different physiological stages of sexual maturation in goats, we performed small-RNA sequencing of ovarian tissue samples collected at four specific time points (1 day after birth (D1), 2 months old (M2), 4 months old (M4), and 6 months old (M6)). In addition, we used ELISAs to measure serum levels of reproductive hormones to study their temporal changes. RESULTS The results showed that serum levels of gonadotropin-releasing hormone, follicle-stimulating hormone, luteinizing hormone, oestradiol, progesterone, oxytocin, and prolactin were lower in goats at the D1 stage than at the other three developmental stages (P < 0.05). The secretion patterns of these seven hormones show a similar trend, with hormone levels reaching their peaks at 4 months of age. A total of 667 miRNAs were detected in 20 libraries, and 254 differentially expressed miRNAs and 3 groups of miRNA clusters that had unique expression patterns were identified (|log2-fold change|> 1, FDR < 0.05) in the 6 comparison groups. RT‒qPCR was employed to confirm that the expression pattern of the 15 selected miRNAs was consistent with the Illumina sequencing results. Gene ontology analyses revealed significant enrichment of GO terms such as cell proliferation regulation, epithelial cell development, and amino acid transport, as well as important signaling pathways including the MAPK signaling pathway, the PI3K-Akt signaling pathway, and the oestrogen signaling pathway. Further miRNA‒mRNA regulation network analysis revealed that 8 differentially expressed miRNAs (chi-miR-1343, chi-miR-328-3p, chi-miR-877-3p, chi-miR-296-3p, chi-miR-128-5p, chi-miR-331-3p, chi-miR-342-5p and chi-miR-34a) have important regulatory roles in ovarian cell proliferation, hormone secretion and metabolism-related biological processes. CONCLUSIONS Overall, our study investigated the changes in serum hormone and miRNA levels in the ovaries. These data provide a valuable resource for understanding the molecular regulatory mechanisms of miRNAs in ovarian tissue during the sexual maturity period in goats.
Collapse
Affiliation(s)
- Yanyan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yanfei Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Peipei He
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
5
|
Zou Y, Chen X, Tian X, Guo W, Ruan Y, Tang W, Fu K, Ji T. Transcriptomic Analysis of the Developing Testis and Spermatogenesis in Qianbei Ma Goats. Genes (Basel) 2023; 14:1334. [PMID: 37510239 PMCID: PMC10379175 DOI: 10.3390/genes14071334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Reproductive competence in male mammals depends on testicular function. Testicular development and spermatogenesis in goats involve highly complex physiological processes. In this study, six testes were, respectively, obtained from each age group, immature (1 month), sexually mature (6 months) and physically mature (12 months old) Qianbei Ma goats. RNA-Seq was performed to assess testicular mRNA expression in Qianbei Ma goats at different developmental stages. Totally, 18 libraries were constructed to screen genes and pathways involved in testis development and spermatogenesis. Totally, 9724 upregulated and 4153 downregulated DEGs were found between immature (I) and sexually mature (S) samples; 7 upregulated and 3 downregulated DEGs were found between sexually mature (S) and physically mature (P) samples, and about 4% of the DEGs underwent alternative splicing events between I and S. Select genes were assessed by qRT-PCR, corroborating RNA-Seq findings. The detected genes have key roles in multiple developmental stages of goat testicular development and spermatogenesis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to determine differentially expressed genes (DEGs). GO analysis revealed DEGs between S and P contributed to "reproduction process", "channel activity" and "cell periphery part" between I and S, and in "ion transport process", "channel activity" and "transporter complex part". KEGG analysis suggested the involvement of "glycerolipid metabolism", "steroid hormone biosynthesis" and "MAPK signaling pathway" in testis development and spermatogenesis. Genes including IGF1, TGFB1, TGFBR1 and EGFR may control the development of the testis from immature to sexually mature, which might be important candidate genes for the development of goat testis. The current study provides novel insights into goat testicular development and spermatogenesis.
Collapse
Affiliation(s)
- Yue Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xingzhou Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wen Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Kaibin Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Taotao Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Chen R, Wu X, Qiu H, Yang B, Chen Y, Chen X, Li Y, Yuan S, Liu D, Xiao L, Yu Y. Obesity-induced inflammatory miR-133a mediates apoptosis of granulosa cells and causes abnormal folliculogenesis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1234-1246. [PMID: 37337633 PMCID: PMC10448043 DOI: 10.3724/abbs.2023089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/15/2023] [Indexed: 06/21/2023] Open
Abstract
Obesity has been reported to promote disordered folliculogenesis, but the exact molecular mechanisms are still not fully understood. In this study, we find that miR-133a is involved in obesity-induced follicular development disorder. After feeding with a high-fat diet (HFD) and fructose water for nine weeks, the mouse body weight is significantly increased, accompanied by an inflammatory state and increased expression of miR-133a in the adipose tissues and ovaries as well as accelerated follicle depletion. Although miR-133a is increased in the fat and ovaries of HFD mice, the increased miR-133a in the HFD ovaries is not derived from exosome transferred from obese adipose tissues but is synthesized by ovarian follicular cells in response to HFD-induced inflammation. In vivo experiments show that intrabursal injection of miR-133a agomir induces a decrease in primordial follicles and an increase in antral follicles and atretic follicles, which is similar to HFD-induced abnormal folliculogenesis. Overexpression of miR-133a modestly promotes granulosa cell apoptosis by balancing the expression of anti-apoptotic proteins such as C1QL1 and XIAP and pro-apoptotic proteins such as PTEN. Overall, this study reveals the function of miR-133a in obesity-induced ovarian folliculogenesis dysfunction and sheds light on the etiology of female reproductive disorders.
Collapse
Affiliation(s)
- Ruizhi Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Xueqing Wu
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Han Qiu
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Baiming Yang
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yao Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Xiang Chen
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yingshan Li
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Shaochun Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional GenesCollege of Life SciencesSun Yat-Sen UniversityGuangzhou510275China
| | - Dan Liu
- Department of Women’s HealthCareAffiliated Foshan Women and Children’s HospitalSouthern Medical UniversityFoshan528000China
| | - Luanjuan Xiao
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yanhong Yu
- Key Laboratory of Regenerative Medicine (JNU-CUHK)Ministry of EducationDepartment of Developmental and Regenerative BiologyCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| |
Collapse
|
7
|
Liu W, Du C, Nan L, Li C, Wang H, Fan Y, Zhou A, Zhang S. Influence of Estrus on Dairy Cow Milk Exosomal miRNAs and Their Role in Hormone Secretion by Granulosa Cells. Int J Mol Sci 2023; 24:ijms24119608. [PMID: 37298559 DOI: 10.3390/ijms24119608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Estrus is crucial for cow fertility in modern dairy farms, but almost 50% of cows do not show the behavioral signs of estrus due to silent estrus and lack of suitable and high-accuracy methods to detect estrus. MiRNA and exosomes play essential roles in reproductive function and may be developed as novel biomarkers in estrus detection. Thus, we analyzed the miRNA expression patterns in milk exosomes during estrus and the effect of milk exosomes on hormone secretion in cultured bovine granulosa cells in vitro. We found that the number of exosomes and the exosome protein concentration in estrous cow milk were significantly lower than in non-estrous cow milk. Moreover, 133 differentially expressed exosomal miRNAs were identified in estrous cow milk vs. non-estrous cow milk. Functional enrichment analyses indicated that exosomal miRNAs were involved in reproduction and hormone-synthesis-related pathways, such as cholesterol metabolism, FoxO signaling pathway, Hippo signaling pathway, mTOR signaling pathway, steroid hormone biosynthesis, Wnt signaling pathway and GnRH signaling pathway. Consistent with the enrichment signaling pathways, exosomes derived from estrous and non-estrous cow milk both could promote the secretion of estradiol and progesterone in cultured bovine granulosa cells. Furthermore, genes related to hormonal synthesis (CYP19A1, CYP11A1, HSD3B1 and RUNX2) were up-regulated after exosome treatment, while exosomes inhibited the expression of StAR. Moreover, estrous and non-estrous cow-milk-derived exosomes both could increase the expression of bcl2 and decrease the expression of p53, and did not influence the expression of caspase-3. To our knowledge, this is the first study to investigate exosomal miRNA expression patterns during dairy cow estrus and the role of exosomes in hormone secretion by bovine granulosa cells. Our findings provide a theoretical basis for further investigating milk-derived exosomes and exosomal miRNA effects on ovary function and reproduction. Moreover, bovine milk exosomes may have effects on the ovaries of human consumers of pasteurized cow milk. These differential miRNAs might provide candidate biomarkers for the diagnosis of dairy cow estrus and will assist in developing new therapeutic targets for cow infertility.
Collapse
Affiliation(s)
- Wenju Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Life and Health Science, Anhui Science and Technology University, Fengyang 233100, China
| | - Chao Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangkang Nan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunfang Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Haitong Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yikai Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shujun Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Paulino LRFM, de Assis EIT, Azevedo VAN, Silva BR, da Cunha EV, Silva JRV. Why Is It So Difficult To Have Competent Oocytes from In vitro Cultured Preantral Follicles? Reprod Sci 2022; 29:3321-3334. [PMID: 35084715 DOI: 10.1007/s43032-021-00840-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022]
Abstract
The developmental competence of oocytes is acquired gradually during follicular development, mainly through oocyte accumulation of RNA molecules and proteins that will be used during fertilization and early embryonic development. Several attempts to develop in vitro culture systems to support preantral follicle development up to maturation are reported in the literature, but oocyte competence has not yet been achieved in human and domestic animals. The difficulties to have fertilizable oocytes are related to thousands of mRNAs and proteins that need to be synthesized, long-term duration of follicular development, size of preovulatory follicles, composition of in vitro culture medium, and the need of multi-step culture systems. The development of a culture system that maintains bidirectional communication between the oocyte and granulosa cells and that meets the metabolic demands of each stage of follicle growth is the key to sustain an extended culture period. This review discusses the physiological and molecular mechanisms that determine acquisition of oocyte competence in vitro, like oocyte transcriptional activity, follicle and oocyte sizes, and length and regulation of follicular development in murine, human, and domestic animal species. The state of art of in vitro follicular development and the challenges to have complete follicular development in vitro are also highlighted.
Collapse
Affiliation(s)
- Laís R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Ernando I T de Assis
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Venância A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - Ellen V da Cunha
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Av. Comandante Maurocélio Rocha Ponte 100, Sobral, CE, CEP 62041-040, Brazil.
| |
Collapse
|
9
|
Yang X, Wang K, Lang J, Guo D, Gao H, Qiu Y, Jin X, Zhang M, Shi J, Ma Q, Ma Q, Wen Z. Up-regulation of miR-133a-3p promotes ovary insulin resistance on granulosa cells of obese PCOS patients via inhibiting PI3K/AKT signaling. BMC Womens Health 2022; 22:412. [PMID: 36209087 PMCID: PMC9548189 DOI: 10.1186/s12905-022-01994-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Background MicroRNAs are a type of non-coding single-stranded RNA, which is involved in the regulation of ovary insulin resistance (IR). This study aims to explore the underlying mechanisms of miR-133a-3p regulating ovary IR in obese polycystic ovary syndrome (PCOS).
Methods Granulosa cells (GCs) were extracted from follicular fluids of PCOS patients (obese PCOS group and non-obese PCOS group) and healthy women (control group). The expression of miR-133a-3p in GCs was detected by qRT-PCR. The targets and pathways of miR-133a-3p were predicted by bioinformatics analyses. The protein levels of PI3K, p-AKT, GLUT4, p-GSK-3β, and p-FOXO1 were measured by Western blotting. Results MiR-133a-3p was highly expressed in GCs from PCOS patients, especially in obese PCOS patients. The protein levels of PI3K and p-AKT was downregulated in GCs from PCOS patients. There were 11 target genes of miR-133a-3p enriching in PI3K/AKT signaling pathway. miR-133a-3p mimic downregulated the expression of PI3K, p-AKT, and GLUT4, and upregulated the protein levels of p-GSK-3β and p-FOXO1. miR-133a-3p inhibitor presented the opposite effect of miR-133a-3p mimic. Conclusion MiR-133a-3p promotes ovary IR on GCs of obese PCOS patients via inhibiting PI3K/AKT signaling pathway. This study lays a foundation for further research on the mechanism of ovary IR in obese PCOS patients.
Collapse
Affiliation(s)
- Xiaoman Yang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kehua Wang
- grid.479672.9Integrative Medicine Center for Reproductive and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42 Wenhuaxi Road, Jinan, China
| | - Jiajia Lang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danyang Guo
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haixia Gao
- grid.479672.9Integrative Medicine Center for Reproductive and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42 Wenhuaxi Road, Jinan, China
| | - Yue Qiu
- grid.479672.9Integrative Medicine Center for Reproductive and Heredity, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42 Wenhuaxi Road, Jinan, China
| | - Xiaohan Jin
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingyue Zhang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiaxiu Shi
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - QianQian Ma
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Ma
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zixi Wen
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
10
|
Sun Z, Hong Q, Liu Y, He X, Di R, Wang X, Ren C, Zhang Z, Chu M. Characterization of circular RNA profiles of oviduct reveal the potential mechanism in prolificacy trait of goat in the estrus cycle. Front Physiol 2022; 13:990691. [PMID: 36187784 PMCID: PMC9521424 DOI: 10.3389/fphys.2022.990691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/24/2022] [Indexed: 12/29/2022] Open
Abstract
The mammalian oviduct is functionally highly diverse during the estrus cycle. It provides a suitable milieu for oocyte maturation, sperm capacitation, fertilization, early embryo development and transportation. While there have been many studies of molecular mechanisms on the kidding number of goats, a systematic analysis by which the underlying circular RNAs (circRNAs) changes in the oviduct related to prolificacy traits is lacking. Herein, we present a comprehensive circRNA atlas of the oviduct among high- and low-fecundity goats in the follicular phase (FH vs. FL), luteal phase (LH vs. LL), and estrus cycle (FH vs. LH; FL vs. LL) to unravel their potential regulatory mechanisms in improving kidding number. We generated RNA sequencing data, and identified 4,078 circRNAs from twenty sampled Yunshang black goats. Many of these circRNAs are exon-derived and differentially expressed between each comparison group. Subsequently, eight differentially expressed (DE) circRNAs were validated by RT‒qPCR, which was consistent with the RNA-seq data. GO and KEGG enrichment analyses suggested that numerous host genes of DE circRNAs were involved in the hormone secretion, gamete production, fertilization, and embryo development processes. The competing endogenous RNA (ceRNA) interaction network analysis revealed that 2,673 circRNA–miRNA–mRNA axes (including 15 DE circRNAs, 14 miRNAs, and 1,699 mRNAs) were formed, and several target genes derived from the ceRNA network were associated with oviduct functions and reproduction, including SMAD1, BMPR1B, IGF1, REV1, and BMP2K. Furthermore, miR-15a-5p, miR-181b-5p, miR-23b-5p, miR-204-3p, and miR-145-5p might play important roles in reproduction. Finally, a novel circRNA, circIQCG, was identified as potentially involved in embryo development. Overall, our study provides a resource of circRNAs to understand the oviductal function and its connection to prolificacy trait of goats in the differentiation estrus cycle.
Collapse
Affiliation(s)
- Zhipeng Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- *Correspondence: Zijun Zhang, ; Mingxing Chu,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zijun Zhang, ; Mingxing Chu,
| |
Collapse
|
11
|
Screening of Differentially Expressed Genes and miRNAs in Hypothalamus and Pituitary Gland of Sheep under Different Photoperiods. Genes (Basel) 2022; 13:genes13061091. [PMID: 35741853 PMCID: PMC9222358 DOI: 10.3390/genes13061091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/05/2022] Open
Abstract
The reproduction of sheep is affected by many factors such as light, nutrition and genetics. The Hypothalamic-pituitary-gonadal (HPG) axis is an important pathway for sheep reproduction, and changes in HPG axis-related gene expression can affect sheep reproduction. In this study, a model of bilateral ovarian removal and estrogen supplementation (OVX + E2) was applied to screen differentially expressed genes and miRNAs under different photoperiods using whole transcriptome sequencing and reveal the regulatory effects of the photoperiod on the upstream tissues of the HPG axis in sheep. Whole transcriptome sequencing was performed in ewe hypothalamus (HYP) and distal pituitary (PD) tissues under short photoperiod 21st day (SP21) and long photoperiod 21st day (LP21). Compared to the short photoperiod, a total of 1813 differential genes (up-regulation 966 and down-regulation 847) and 145 differential miRNAs (up-regulation 73 and down-regulation 72) were identified in the hypothalamus of long photoperiod group. Similarly, 2492 differential genes (up-regulation 1829 and down-regulation 663) and 59 differential miRNAs (up-regulation 49 and down-regulation 10) were identified in the pituitary of long photoperiod group. Subsequently, GO and KEGG enrichment analysis revealed that the differential genes and target genes of differential miRNA were enriched in GnRH, Wnt, ErbB and circadian rhythm pathways associated with reproduction. Combined with sequence complementation and gene expression correlation analysis, several miRNA-mRNA target combinations (e.g., LHB regulated by novel-414) were obtained. Taken together, these results will help to understand the regulatory effect of the photoperiod on the upstream tissues of HPG in sheep.
Collapse
|
12
|
Naidu Surla G, Kumar LK, Gowdar Vedamurthy V, Singh D, Onteru SK. Salivary TIMP1 and predicted mir-141, possible transcript biomarkers for estrus in the buffalo (Bubalus bubalis). Reprod Biol 2022; 22:100641. [PMID: 35525172 DOI: 10.1016/j.repbio.2022.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 11/20/2022]
Abstract
Successful reproductive management of buffaloes depends primarily upon timely estrus identification. However, 50% of the estrus events are undetected in buffaloes with the available estrus identification methods, leading to huge financial loss to buffalo farmers. Hence, there is an urgent need to develop an alternative and accurate estrus identification method, particularly on the basis of biomarkers in non-invasive fluids. Thus, the present study aimed to identify RNA based estrus biomarkers in cell free saliva in Bubalus bubalis, so that they can be used for future field applicable RT-LAMP colour reactions. RNA-Seq analysis of cell free salivary RNA showed 49 differentially abundant mRNAs between the estrus and diestrus stages. Among five mature miRNAs predicted from the RNA-Seq data, four were found differentially altered at the estrus stage than the diestrus stage. Validation study by direct salivary transcript analysis (DSTA) on 6 selected mRNAs (PPARGC1a, TIMP1, PEBP4, CSPG5, PRHR and ATOH7) and 5 miRNAs (bta-miR-92b, bta-miR-302d, bta-miR-141, bta-miR-27a and bta-let-7a-5p) showed significantly higher levels of TIMP1 (3.46 fold; P < 0.5) and bta-mir-141 (1.33 fold; P < 0.5) in cell-free saliva at the estrus stage compared to the diestrus stage. Hence, TIMP1 and miR-141 appear to be the possible transcript biomarkers for estrus in the cell free saliva of the buffalo. However, further validation studies are required in a large population of buffaloes to determine their estrus biomarker potential before considering them for RT-LAMP colour reaction.
Collapse
Affiliation(s)
- Gangu Naidu Surla
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India
| | - Lal Krishan Kumar
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India
| | - Veerappa Gowdar Vedamurthy
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & Systems Biology Laboratory, Animal Biochemistry Division; ICAR-National Dairy Research Institute, Karnal, Haryana-132001, India.
| |
Collapse
|
13
|
Liu Y, Zhou Z, He X, Jiang Y, Ouyang Y, Hong Q, Chu M. Differentially Expressed Circular RNA Profile Signatures Identified in Prolificacy Trait of Yunshang Black Goat Ovary at Estrus Cycle. Front Physiol 2022; 13:820459. [PMID: 35492611 PMCID: PMC9049588 DOI: 10.3389/fphys.2022.820459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/10/2022] [Indexed: 01/10/2023] Open
Abstract
CircRNAs acting as miRNA sponges play important roles in the growth process of animal individuals. The prolificacy trait of goats is involved in many pathways, however, the variation of circRNA expression profiles in the different phases of the estrus cycle at high and low fecundity groups is still unknown. Here, we analyzed the circRNA profiles of ovarian tissues among high and low fecundity groups in the follicular phase (HF vs LF), high and low fecundity groups in the luteal phase (HL vs LL), and high and low fecundity in the whole estrus cycle (HF vs HL and LF vs LL) using RNA-seq. A total of 283 (114 upregulated and 169 downregulated), 559 (299 upregulated and 260 downregulated), 449 (254 upregulated and 195 downregulated), and 314 (210 upregulated and 104 downregulated) differentially expressed (DE) circRNAs were screened in HF vs LF, HF vs HL, HL vs LL, and LF vs LL groups, respectively. Enrichment analysis suggested that the targeting of DE circRNAs was mainly enriched in oocyte meiosis, the GnRH signaling pathway, and estrogen signaling pathway. After integrating our previous study of miRNA-seq, there were 56 miRNAs that could target to 192 DE circRNAs, including the miR-133 family (including miR-133a-3p and miR-133b), miR-129-3p, and miR-21, which also had important influence on the prolificacy trait of goats. Then, 18 circRNAs with coding potential were obtained by four software predictions, and 9 circRNAs were validated by RT-qPCR. Together, circRNAs play a key role in the prolificacy trait and the transformation of the follicular phase to the luteal phase in the estrus cycle of goats.
Collapse
Affiliation(s)
- Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zuyang Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yina Ouyang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
14
|
Liu Y, Wang P, Zhou Z, He X, Tao L, Jiang Y, Lan R, Hong Q, Chu M. Expression Profile Analysis to Identify Circular RNA Expression Signatures in the Prolificacy Trait of Yunshang Black Goat Pituitary in the Estrus Cycle. Front Genet 2022; 12:801357. [PMID: 35140742 PMCID: PMC8820483 DOI: 10.3389/fgene.2021.801357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022] Open
Abstract
The pituitary gland is an important organ. It is a complex area of the brain involved in endocrine function and reproductive regulation. However, the function of the pituitary in goat reproduction is still unclear. Herein, RNA sequencing was used to explore the expression patterns of circle RNAs (circRNAs) in the pituitary of Yunshang black goats during the various estrus phases. Then the host genes of the circRNAs were predicted, and a competing endogenous RNA (ceRNA) network was constructed. The results showed a total of 6,705 circRNAs in the pituitary of Yunshang black goats, among which 388 differentially expressed (DE) circRNAs (214 were upregulated, while 174 were downregulated) were identified between high- and low-yield Yunshang black goats in the follicular phase (HF vs. LF); moreover, 361 DE circRNAs (136 were upregulated, while 225 were downregulated) were identified between high- and low-yield Yunshang black goats in the luteal phase (HL vs. LL). There were 65 DE circRNAs targeting 40 miRNAs in the HF vs. LF comparison and 46 DE circRNAs targeting 31 miRNAs in the HL vs. LL comparison. We identified chi_circ_0030920, chi_circ_0043017, chi_circ_0008353, chi_circ_0041580, and chi_circ_0016478 as the key circRNAs through functional enrichment analysis. The ceRNA network analysis showed that chi_circ_0031209 and chi_circ_0019448 might play an important role in reproduction by influencing the expression of prolactin receptor (PRLR) in high- and low-yielding goats during the luteal phase, whereas chi_circ_0014542 regulates the expression of WNT5A during the follicular phase. Our study provided the overall expression profiles of circRNAs in the goat pituitary during the estrus phase, which provides new insight into the mechanism of high-yield goats, which can be helpful to guide goat breeding.
Collapse
Affiliation(s)
- Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Peng Wang
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zuyang Zhou
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
- *Correspondence: Qionghua Hong, ; Mingxing Chu,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Qionghua Hong, ; Mingxing Chu,
| |
Collapse
|
15
|
Liu Y, Zhou Z, He X, Tao L, Jiang Y, Lan R, Hong Q, Chu M. Integrated analyses of miRNA-mRNA expression profiles of ovaries reveal the crucial interaction networks that regulate the prolificacy of goats in the follicular phase. BMC Genomics 2021; 22:812. [PMID: 34763659 PMCID: PMC8582148 DOI: 10.1186/s12864-021-08156-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Litter size is an important index of mammalian prolificacy and is determined by the ovulation rate. The ovary is a crucial organ for mammalian reproduction and is associated with follicular development, maturation and ovulation. However, prolificacy is influenced by multiple factors, and its molecular regulation in the follicular phase remains unclear. METHODS Ten female goats with no significant differences in age and weight were randomly selected and divided into either the high-yielding group (n = 5, HF) or the low-yielding group (n = 5, LF). Ovarian tissues were collected from goats in the follicular phase and used to construct mRNA and miRNA sequencing libraries to analyze transcriptomic variation between high- and low-yield Yunshang black goats. Furthermore, integrated analysis of the differentially expressed (DE) miRNA-mRNA pairs was performed based on their correlation. The STRING database was used to construct a PPI network of the DEGs. RT-qPCR was used to validate the results of the predicted miRNA-mRNA pairs. Luciferase analysis and CCK-8 assay were used to detect the function of the miRNA-mRNA pairs and the proliferation of goat granulosa cells (GCs). RESULTS A total of 43,779 known transcripts, 23,067 novel transcripts, 424 known miRNAs and 656 novel miRNAs were identified by RNA-seq in the ovaries from both groups. Through correlation analysis of the miRNA and mRNA expression profiles, 263 negatively correlated miRNA-mRNA pairs were identified in the LF vs. HF comparison. Annotation analysis of the DE miRNA-mRNA pairs identified targets related to biological processes such as "estrogen receptor binding (GO:0030331)", "oogenesis (GO:0048477)", "ovulation cycle process (GO:0022602)" and "ovarian follicle development (GO:0001541)". Subsequently, five KEGG pathways (oocyte meiosis, progesterone-mediated oocyte maturation, GnRH signaling pathway, Notch signaling pathway and TGF-β signaling pathway) were identified in the interaction network related to follicular development, and a PPI network was also constructed. In the network, we found that CDK12, FAM91A1, PGS1, SERTM1, SPAG5, SYNE1, TMEM14A, WNT4, and CAMK2G were the key nodes, all of which were targets of the DE miRNAs. The PPI analysis showed that there was a clear interaction among the CAMK2G, SERTM1, TMEM14A, CDK12, SYNE1 and WNT4 genes. In addition, dual luciferase reporter and CCK-8 assays confirmed that miR-1271-3p suppressed the proliferation of GCs by inhibiting the expression of TXLNA. CONCLUSIONS These results increase the understanding of the molecular mechanisms underlying goat prolificacy. These results also provide a basis for studying interactions between genes and miRNAs, as well as the functions of the pathways in ovarian tissues involved in goat prolificacy in the follicular phase.
Collapse
Affiliation(s)
- Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056021, China
| | - Zuyang Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056021, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Lin Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
16
|
Li Z, He X, Zhang X, Zhang J, Guo X, Sun W, Chu M. Analysis of Expression Profiles of CircRNA and MiRNA in Oviduct during the Follicular and Luteal Phases of Sheep with Two Fecundity ( FecB Gene) Genotypes. Animals (Basel) 2021; 11:ani11102826. [PMID: 34679847 PMCID: PMC8532869 DOI: 10.3390/ani11102826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
CircRNA and miRNA, as classes of non-coding RNA, have been found to play pivotal roles in sheep reproduction. There are many reports of circRNA and miRNA in the ovary and uterus, but few in the oviduct. In this study, RNA-Seq was performed to analyze the expression profile of circRNA and miRNA in the oviduct during the follicular phase and luteal phase of sheep with FecBBB and FecB++ genotypes. The results showed that a total of 3223 circRNAs and 148 miRNAs were identified. A total of 15 DE circRNAs and 40 DE miRNAs were found in the comparison between the follicular phase and luteal phase, and 1 DE circRNA and 18 DE miRNAs were found in the comparison between the FecBBB genotype and FecB++ genotype. GO and KEGG analyses showed that the host genes of DE circRNAs were mainly enriched in the Rap1 signaling pathway, PI3K-Akt signaling pathway and neuroactive ligand-receptor interactions. Novel_circ_0004065, novel_circ_0005109, novel_circ_0012086, novel_circ_0014274 and novel_circ_0001794 were found to be possibly involved in the oviductal reproduction process. GO and KEGG analyses showed that the target genes of DE miRNAs were mainly enriched in insulin secretion, the cAMP signaling pathway, the cGMP-PKG signaling pathway, the Rap1 signaling pathway and the TGF-β signaling pathway, and the target genes LPAR1, LPAR2, FGF18, TACR3, BMP6, SMAD4, INHBB, SKP1 and TGFBR2 were found to be associated with the reproductive process. Miranda software was used to identify 27 miRNAs that may bind to 13 DE circRNAs, including miR-22-3p (target to novel_circ_0004065), miR-127, miR-136 (target to novel_circ_0000417), miR-27a (target to novel_circ_0014274) and oar-miR-181a (target to novel_circ_ 0017815). The results of this study will help to elucidate the regulatory mechanisms of circRNAs and miRNAs in sheep reproduction. Our study, although not establishing direct causal relationships of the circRNA and miRNA changes, enriches the sheep circRNA and miRNA database and provides a basis for further studies on sheep reproduction.
Collapse
Affiliation(s)
- Zhifeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Xiaofei Guo
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.S.); (M.C.); Tel.: +86-0514-8797-9213 (W.S.); +86-010-6281-9850 (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
- Correspondence: (W.S.); (M.C.); Tel.: +86-0514-8797-9213 (W.S.); +86-010-6281-9850 (M.C.)
| |
Collapse
|
17
|
Ma Z, Yang J, Zhang Q, Xu C, Wei J, Sun L, Wang D, Tao W. miR-133b targets tagln2 and functions in tilapia oogenesis. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110637. [PMID: 34147671 DOI: 10.1016/j.cbpb.2021.110637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
microRNAs (miRNAs) are important components of non-coding RNAs that participate in diverse life activities by regulating gene expression at the post transcriptional level through base complementary pairing with 3'UTRs of target mRNAs. miR-133b is a member of the miR-133 family, which play important roles in muscle differentiation and tumorigenesis. Recently, miR-133b was reported to affect estrogen synthesis by targeting foxl2 in mouse, while its role in fish reproduction remains to be elucidated. In the present study, we isolated the complete sequence of miR-133b, which was highly expressed in tilapia ovary at 30 and 90 dah (days after hatching) and subsequently decreased at 120 to 150 dah by qPCR. Interestingly, only a few oogonia were remained in the antagomir-133b treated tilapia ovary, while phase I and II oocytes were observed in the ovaries of the control group. Unexpectedly, the expression of foxl2 and cyp19a1a, as well as estradiol levels in serum were increased in the treated group. Furthermore, tagln2, an important factor for oogenesis, was predicted as the target gene of miR-133b, which was confirmed by dual luciferase reporter vector experiments. miR-133b and tagln2 were co-expressed in tilapia ovaries. Taken together, miR-133b may be involved in the early oogenesis of tilapia by regulating tagln2 expression. This study enriches the understanding of miR-133b function during oogenesis and lays a foundation for further study of the regulatory network during oogenesis.
Collapse
Affiliation(s)
- Zhisheng Ma
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qingqing Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunmei Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Di R, Liu QY, Song SH, Tian DM, He JN, Ge Y, Wang XY, Hu WP, Mwacharo JM, Pan ZY, Wang JD, Ma Q, Cao GL, Jin HH, Liang XJ, Chu MX. Expression characteristics of pineal miRNAs at ovine different reproductive stages and the identification of miRNAs targeting the AANAT gene. BMC Genomics 2021; 22:217. [PMID: 33765915 PMCID: PMC7992348 DOI: 10.1186/s12864-021-07536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022] Open
Abstract
Background Many recent studies have shown that miRNAs play important roles in the regulation of animal reproduction, including seasonal reproduction. The pineal gland is a crucial hub in the regulation of seasonal reproduction. However, little is known about the expression characteristics of pineal miRNAs in different reproductive seasons (anestrus and breeding season). Therefore, the expression profiles and regulatory roles of ovine pineal miRNAs were investigated during different reproductive stages using Solexa sequencing technology and dual luciferase reporter assays. Results A total of 427 miRNAs were identified in the sheep pineal gland. Significant differences in miRNA expression were demonstrated between anestrus and the breeding season in terms of the frequency distributions of miRNA lengths, number of expressed miRNAs, and specifically and highly expressed miRNAs in each reproductive stage. KEGG analysis of the differentially expressed (DE) miRNAs between anestrus and the breeding season indicated that they are significantly enriched in pathways related to protein synthesis, secretion and uptake. Furthermore, transcriptome analysis revealed that many target genes of DE miRNAs in the ribosome pathway showed relatively low expression in the breeding season. On the other hand, analyses combining miRNA-gene expression data with target relationship validation in vitro implied that miR-89 may participate in the negative regulation of aralkylamine N-acetyltransferase (AANAT) mRNA expression by targeting its 3’UTR at a unique binding site. Conclusions Our results provide new insights into the expression characteristics of sheep pineal miRNAs at different reproductive stages and into the negative regulatory effects of pineal miRNAs on AANAT mRNA expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07536-y.
Collapse
Affiliation(s)
- Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Qiu-Yue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Shu-Hui Song
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Dong-Mei Tian
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Jian-Ning He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Ying Ge
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiang-Yu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Wen-Ping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Joram-Mwashigadi Mwacharo
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Zhang-Yuan Pan
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Jian-Dong Wang
- Research Center of Grass and Livestock, NingXia Academy of Agricultural and Forestry Sciences, No. 590, East Yellow River Road, Yinchuan, 750002, China
| | - Qing Ma
- Research Center of Grass and Livestock, NingXia Academy of Agricultural and Forestry Sciences, No. 590, East Yellow River Road, Yinchuan, 750002, China
| | - Gui-Ling Cao
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Hui-Hui Jin
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiao-Jun Liang
- Research Center of Grass and Livestock, NingXia Academy of Agricultural and Forestry Sciences, No. 590, East Yellow River Road, Yinchuan, 750002, China.
| | - Ming-Xing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2, Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
19
|
Zang X, Zhou C, Wang W, Gan J, Li Y, Liu D, Liu G, Hong L. Differential MicroRNA Expression Involved in Endometrial Receptivity of Goats. Biomolecules 2021; 11:biom11030472. [PMID: 33810054 PMCID: PMC8004627 DOI: 10.3390/biom11030472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Endometrial receptivity represents one of the leading factors affecting the successful implantation of embryos during early pregnancy. However, the mechanism of microRNAs (miRNAs) to establish goat endometrial receptivity remains unclear. This study was intended to identify potential miRNAs and regulatory mechanisms associated with establishing endometrial receptivity through integrating bioinformatics analysis and experimental verification. MiRNA expression profiles were obtained by high-throughput sequencing, resulting in the detection of 33 differentially expressed miRNAs (DEMs), followed by their validation through quantitative RT-PCR. Furthermore, 10 potential transcription factors (TFs) and 1316 target genes of these DEMs were obtained, and the TF–miRNA and miRNA–mRNA interaction networks were constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these miRNAs were significantly linked to establishing endometrial receptivity. Moreover, the fluorescence in situ hybridization (FISH) analysis, dual-luciferase report assay, and immunohistochemistry (IHC) analysis corroborated that chi-miR-483 could directly bind to deltex E3 ubiquitin ligase 3L (DTX3L) to reduce its expression level. In conclusion, our findings contribute to a better understanding of molecular mechanisms regulating the endometrial receptivity of goats, and they provide a reference for improving embryo implantation efficiency.
Collapse
Affiliation(s)
- Xupeng Zang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Chen Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Wenjing Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jianyu Gan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (G.L.); (L.H.); Tel.: +86-02085281859 (L.H.)
| | - Linjun Hong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (G.L.); (L.H.); Tel.: +86-02085281859 (L.H.)
| |
Collapse
|
20
|
Du X, Li Q, Yang L, Zeng Q, Wang S, Li Q. Transcriptomic Data Analyses Reveal That Sow Fertility-Related lincRNA NORFA Is Essential for the Normal States and Functions of Granulosa Cells. Front Cell Dev Biol 2021; 9:610553. [PMID: 33708768 PMCID: PMC7940361 DOI: 10.3389/fcell.2021.610553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
NORFA, the first lincRNA associated with sow fertility, has been shown to control granulosa cell (GC) functions and follicular atresia. However, the underlying mechanism is not fully understood. In this study, RNA-seq was performed and we noticed that inhibition of NORFA led to dramatic transcriptomic alterations in porcine GCs. A total of 1,272 differentially expressed transcripts were identified, including 1167 DEmRNAs and 105 DEmiRNAs. Furthermore, protein-protein interaction, gene-pathway function, and TF-miRNA-mRNA regulatory networks were established and yielded four regulatory modules with multiple hub genes, such as AR, ATG5, BAK1, CENPE, NR5A1, NFIX, WNT5B, ssc-miR-27b, and ssc-miR-126. Functional assessment showed that these hub DEGs were mainly enriched in TGF-β, PI3K-Akt, FoxO, Wnt, MAPK, and ubiquitin pathways that are essential for GC states (apoptosis and proliferation) and functions (hormone secretion). In vitro, we also found that knockdown of NORFA in porcine GCs significantly induced cell apoptosis, impaired cell viability, and suppressed 17β-estradiol (E2) synthesis. Notably, four candidate genes for sow reproductive traits (INHBA, NCOA1, TGFβ-1, and TGFBR2) were also identified as potential targets of NORFA. These findings present a panoramic view of the transcriptome in NORFA-reduced GCs, highlighting that NORFA, a candidate lincRNA for sow fertility, is crucial for the normal states and functions of GCs.
Collapse
Affiliation(s)
- Xing Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | - Qifa Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
21
|
Zhao Z, Zou X, Lu T, Deng M, Li Y, Guo Y, Sun B, Liu G, Liu D. Identification of mRNAs and lncRNAs Involved in the Regulation of Follicle Development in Goat. Front Genet 2020; 11:589076. [PMID: 33391342 PMCID: PMC7773919 DOI: 10.3389/fgene.2020.589076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Follicular development and maturation has a significant impact on goat reproductive performance, and it is therefore important to understand the molecular basis of this process. The importance of long non-coding RNAs (lncRNAs) in mammalian reproduction has been established, but little is known about the roles of lncRNAs in different follicular stages, especially in goats. In this study, RNA sequencing (RNA-seq) of large follicles (>10 mm) and small follicles (<3 mm) of Chuanzhong black goats was performed to investigate the regulatory mechanisms of lncRNAs and mRNAs in follicular development and maturation. A total of 8 differentially expressed lncRNAs (DElncRNAs) and 1,799 DEmRNAs were identified, and the majority of these were upregulated in small follicles. MRO, TC2N, CDO1, and NTRK1 were potentially associated with follicular maturation. KEGG pathway analysis showed that the DEmRNAs involved in ovarian steroidogenesis (BMP6, CYP11A1, CYP19A1, 3BHSD, STAR, LHCGR, and CYP51A1) and cAMP signaling play roles in regulating follicular maturation and developmental inhibition respectively. Five target pairs of DElncRNA-DEmRNA, namely, ENSCHIT00000001255-OTX2, ENSCHIT00000006005-PEG3, ENSCHIT00000009455-PIWIL3, ENSCHIT00000007977-POMP, and ENSCHIT00000000834-ACTR3 in co-expression analysis provide a clue in follicular development and maturation of lncRNA-mRNA interaction. Our findings provide a valuable resource for lncRNA studies, and could potentially provide a deeper understanding of the genetic basis and molecular mechanisms of goat follicular development and maturation.
Collapse
Affiliation(s)
- Zhifeng Zhao
- College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xian Zou
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tingting Lu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
22
|
Zhang Z, Tang J, He X, Di R, Zhang X, Zhang J, Hu W, Chu M. Identification and Characterization of Hypothalamic Alternative Splicing Events and Variants in Ovine Fecundity-Related Genes. Animals (Basel) 2020; 10:ani10112111. [PMID: 33203033 PMCID: PMC7698220 DOI: 10.3390/ani10112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Previous studies revealed that alternative splicing (AS) events and gene variants played key roles in reproduction. However, their location and distribution in hypothalamic fecundity-related genes in sheep without the FecB mutation remain largely unknown. In this study, we performed a correlation analysis of transcriptomics and proteomics, and the results suggested several differentially expressed genes (DEGs)/differentially expressed proteins (DEPs), including galectin 3 (LGALS3), aspartoacylase (ASPA) and transthyretin (TTR), could be candidate genes influencing ovine litter size. Further analysis suggested that AS events, single nucleotide polymorphisms (SNPs) and microRNA (miRNA)-binding sites existed in key DEGs/DEPs, such as ASPA and TTR. This study provides a new insight into ovine and even other mammalian reproduction. Abstract Previous studies revealed that alternative splicing (AS) events and gene variants played key roles in reproduction; however, their location and distribution in hypothalamic fecundity-related genes in sheep without the FecB mutation remain largely unknown. Therefore, in this study, we described the hypothalamic AS events and variants in differentially expressed genes (DEGs) in Small Tail Han sheep without the FecB mutation at polytocous sheep in the follicular phase vs. monotocous sheep in the follicular phase (PF vs. MF) and polytocous sheep in the luteal phase vs. monotocous sheep in the luteal phase (PL vs. ML) via an RNA-seq study for the first time. We found 39 DEGs with AS events (AS DEGs) in PF vs. MF, while 42 AS DEGs were identified in PL vs. ML. No DEGs with single nucleotide polymorphisms (SNPs) were observed in PF vs. MF, but five were identified in PL vs. ML. We also performed a correlation analysis of transcriptomics and proteomics, and the results suggested several key DEGs/differentially expressed proteins (DEPs), such as galectin 3 (LGALS3) in PF vs. MF and aspartoacylase (ASPA) and transthyretin (TTR) in PL vs. ML, could be candidate genes influencing ovine litter size. In addition, further analyses suggested that AS events, SNPs and miRNA-binding sites existed in key DEGs/DEPs, such as ASPA and TTR. All in all, this study provides a new insight into ovine and even other mammalian reproduction.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Correspondence: (W.H.); (M.C.); Tel.: +86-010-6281-6002 (W.H.); +86-010-6281-9850 (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Correspondence: (W.H.); (M.C.); Tel.: +86-010-6281-6002 (W.H.); +86-010-6281-9850 (M.C.)
| |
Collapse
|
23
|
Gad A, Sánchez JM, Browne JA, Nemcova L, Laurincik J, Prochazka R, Lonergan P. Plasma extracellular vesicle miRNAs as potential biomarkers of superstimulatory response in cattle. Sci Rep 2020; 10:19130. [PMID: 33154526 PMCID: PMC7645755 DOI: 10.1038/s41598-020-76152-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The ability to predict superstimulatory response would be a beneficial tool in assisted reproduction. Using small RNAseq technology, we profiled extracellular vesicle microRNA (EV-miRNA) abundance in the blood plasma of heifers exhibiting variable responses to superstimulation. Estrous synchronized crossbred beef heifers (n = 25) were superstimulated and blood samples were collected from each heifer on Day 7 of consecutive unstimulated (U) and superstimulated (S) cycles. A subset of high (H) and low (L) responders was selected depending on their response to superstimulation and EV-miRNA profiles were analysed at both time-points in each heifer. Approximately 200 known miRNAs were detected in each sample with 144 commonly detected in all samples. A total of 12 and 14 miRNAs were dysregulated in UH vs. UL and in SH vs. SL heifers, respectively. Interestingly, miR-206 and miR-6517 exhibited the same differential expression pattern in H compared to L heifers both before and after superstimulation. Pathway analysis indicated that circadian rhythm and signaling pathways were among the top pathways enriched with genes targeted by dysregulated miRNAs in H vs. L responding heifers. In conclusion, heifers with divergent ovarian responses exhibited differential expression of plasma EV-miRNAs which may be used as a potential biomarker to predict superstimulation response.
Collapse
Affiliation(s)
- Ahmed Gad
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.,Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - José María Sánchez
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - John A Browne
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Lucie Nemcova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Jozef Laurincik
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.,Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Radek Prochazka
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
24
|
Lu T, Zou X, Liu G, Deng M, Sun B, Guo Y, Liu D, Li Y. A Preliminary Study on the Characteristics of microRNAs in Ovarian Stroma and Follicles of Chuanzhong Black Goat during Estrus. Genes (Basel) 2020; 11:genes11090970. [PMID: 32825655 PMCID: PMC7564575 DOI: 10.3390/genes11090970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 02/08/2023] Open
Abstract
microRNAs (miRNAs) play a significant role in ovarian follicular maturity, but miRNA expression patterns in ovarian stroma (OS), large follicles (LF), and small follicles (SF) have been rarely explored. We herein aimed to identify miRNAs, their target genes and signaling pathways, as well as their interaction networks in OS, LF, and SF of Chuanzhong black goats at the estrus phase using small RNA-sequencing. We found that the miRNA expression profiles of LF and SF were more similar than those of OS—32, 16, and 29 differentially expressed miRNAs were identified in OS vs. LF, OS vs. SF, and LF vs. SF, respectively. Analyses of functional enrichment and the miRNA-targeted gene interaction network suggested that miR-182 (SMC3), miR-122 (SGO1), and miR-206 (AURKA) were involved in ovarian organogenesis and hormone secretion by oocyte meiosis. Furthermore, miR-202-5p (EREG) and miR-485-3p (FLT3) were involved in follicular maturation through the MAPK signaling pathway, and miR-2404 (BMP7 and CDKN1C) played a key role in follicular development through the TGF-β signaling pathway and cell cycle; nevertheless, further research is warranted. To our knowledge, this is the first study to investigate miRNA expression patterns in OS, LF, and SF of Chuanzhong black goats during estrus. Our findings provide a theoretical basis to elucidate the role of miRNAs in follicular maturation. These key miRNAs might provide candidate biomarkers for the diagnosis of follicular maturation and will assist in developing new therapeutic targets for female goat infertility.
Collapse
Affiliation(s)
- Tingting Lu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Xian Zou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Ming Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Baoli Sun
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Yongqing Guo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (T.L.); (X.Z.); (G.L.); (M.D.); (B.S.); (Y.G.); (D.L.)
- Correspondence: ; Tel.: +86-1862-019-3682
| |
Collapse
|