1
|
Xin Y, Liang J, Ren C, Song W, Huang B, Liu Y, Zhang S. Physiological and transcriptomic responses of silkworms to graphene oxide exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116434. [PMID: 38728944 DOI: 10.1016/j.ecoenv.2024.116434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
The growing use of nanomaterials has sparked significant interest in assessing the insect toxicities of nanoparticles. The silkworm, as an economically important insect, serves as a promising model for studying how insects respond to harmful substances. Here, we conducted a comprehensive investigation on the impact of graphene oxide (GO) on silkworms using a combination of physiological and transcriptome analyses. GO can enter the midguts and posterior silk glands of silkworms. High GO concentrations (> 25 mg/L) significantly (P < 0.01) inhibited larval growth. Additionally, GO (> 5 mg/L) significantly reduced the cocooning rate, and GO (> 15 mg/L) hindered oviduct development and egg laying in silkworms. GO increased the reactive oxygen species content and regulated catalase activity, suggesting that it may affect insect growth by regulating reactive oxygen detoxification. The transcriptome data analysis showed that 35 metabolism-related genes and 20 ribosome biogenesis-related genes were differentially expressed in response to GO, and their expression levels were highly correlated. Finally, we propose that a Ribosome biogenesis-Metabolic signaling network is involved in responses to GO. The research provides a new perspective on the molecular responses of insects to GO.
Collapse
Affiliation(s)
- Youchao Xin
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Jiawen Liang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Chunjiu Ren
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Wenhui Song
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Bokai Huang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Yangyang Liu
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China
| | - Shengxiang Zhang
- College of Forestry, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
2
|
Wang H, Jia Y, Bai X, Wang J, Liu G, Wang H, Wu Y, Xin J, Ma H, Liu Z, Zou D, Zhao H. Whole-transcriptome profiling and identification of cold tolerance-related ceRNA networks in japonica rice varieties. FRONTIERS IN PLANT SCIENCE 2024; 15:1260591. [PMID: 38567126 PMCID: PMC10985246 DOI: 10.3389/fpls.2024.1260591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 02/02/2024] [Indexed: 04/04/2024]
Abstract
Introduction Low-temperature stress negatively impacts rice yield, posing a significant risk to food security. While previous studies have explored the physiological and linear gene expression alterations in rice under low-temperature conditions, the changes in competing endogenous RNA (ceRNA) networks remain largely unexamined. Methods We conducted RNA sequencing on two japonica rice varieties with differing cold-tolerance capabilities to establish ceRNA networks. This enabled us to investigate the transcriptional regulatory network and molecular mechanisms that rice employs in response to low-temperature stress. Results We identified 364 differentially expressed circular RNAs (circRNAs), 224 differentially expressed microRNAs (miRNAs), and 12,183 differentially expressed messenger RNAs (mRNAs). WRKY family was the most prominent transcription factor family involved in cold tolerance. Based on the expression patterns and targeted relationships of these differentially expressed RNAs, we discerned five potential ceRNA networks related to low-temperature stress in rice: osa-miR166j-5p from the miR166 family was associated with cold tolerance; osa-miR528-3p and osa-miR156j-3p were linked to stress response; and osa-miR156j-3p was involved in the antioxidant system. In addition, Os03g0152000 in the antioxidant system, as well as Os12g0491800 and Os05g0381400, correlated with the corresponding stress response and circRNAs in the network. A gene sequence difference analysis and phenotypic validation of Os11g0685700 (OsWRKY61) within the WRKY family suggested its potential role in regulating cold tolerance in rice. Discussion and conclusion We identified Os11g0685700 (OsWRKY61) as a promising candidate gene for enhancing cold tolerance in japonica rice. The candidate miRNAs, mRNAs, and circRNAs uncovered in this study are valuable targets for researchers and breeders. Our findings will facilitate the development of cold-tolerant rice varieties from multiple angles and provide critical directions for future research into the functions of cold-tolerance-related miRNAs, mRNAs, and circRNAs in rice.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yan Jia
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xu Bai
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jin Wang
- Bei Da Huang Kenfeng Seed Limited Company, Research and Breeding Center, Harbin, China
| | - Ge Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Haixing Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Yulong Wu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Junying Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Huimiao Ma
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Zhenyu Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hongwei Zhao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Song X, Wang H, Wang Y, Zeng Q, Zheng X. Metabolomics combined with physiology and transcriptomics reveal how Nicotiana tabacum leaves respond to cold stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108464. [PMID: 38442629 DOI: 10.1016/j.plaphy.2024.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Low temperature-induced cold stress is a major threat to plant growth, development and distribution. Unraveling the responses of temperature-sensitive crops to cold stress and the mechanisms of cold acclimation are critical for food demand. In this study, combined physiological, transcriptomic, and metabolomic analyses were conducted on Nicotiana tabacum suffering short-term 4 °C cold stress. Our results showed that cold stress destroyed cellular membrane stability, decreased the chlorophyll (Chl) and carotenoid contents, and closed stomata, resulting in lipid peroxidation and photosynthesis restriction. Chl fluorescence measurements revealed that primary photochemistry, photoelectrochemical quenching and photosynthetic electron transport in Nicotiana tabacum leaves were seriously suppressed upon exposer to cold stress. Enzymatic and nonenzymatic antioxidants, including superoxide dismutase, catalase, peroxidase, reduced glutathione, proline, and soluble sugar, were all profoundly increased to trigger the cold acclimation defense against oxidative damage. A total of 178 metabolites and 16,204 genes were differentially expressed in cold-stressed Nicotiana tabacum leaves. MEturquoise and MEblue modules identified by WGCNA were highly correlated with physiological indices, and the corresponding hub genes were significantly enriched in pathways related to photosynthesis - antenna proteins and flavonoid biosynthesis. Untargeted metabolomic analysis identified specific metabolites, including sucrose, phenylalanine, glutamine, glutamate, and proline, that enhance plant cold acclimation. Combined transcriptomics and metabolomic analysis highlight the vital roles of carbohydrate and amino acid metabolism in enhancing the cold tolerance of Nicotiana tabacum. Our comprehensive investigation provides novel insights for efforts to alleviate low temperature-induced oxidative damage to Nicotiana tabacum plants and proposes a breeding target for cold stress-tolerant cultivars.
Collapse
Affiliation(s)
- Xiliang Song
- College of Life Sciences, Dezhou University, De'zhou, 253023, China
| | - Hui Wang
- Henan Tobacco Company, Luoyang Branch, Luoyang, 471000, China
| | - Yujie Wang
- Henan Tobacco Company, Luoyang Branch, Luoyang, 471000, China
| | - Qiangcheng Zeng
- College of Life Sciences, Dezhou University, De'zhou, 253023, China.
| | - Xuebo Zheng
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences China, Qingdao, 266101, China.
| |
Collapse
|
4
|
Lin WL, Huang H, Liu YQ, Liu HX, Wei Y, Zhao YQ, Wang YQ, Wu YY, Chen SJ, Li LH. Integrated 4D label-free proteomics and data mining to elucidate the effects of thermal processing on crisp grass carp protein profiles. Curr Res Food Sci 2024; 8:100681. [PMID: 38304000 PMCID: PMC10832373 DOI: 10.1016/j.crfs.2024.100681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/08/2024] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
The crisp grass carp (CGC; Ctenopharyngodon idellus C. et V.), known for its unique texture and flavour, is a culinary delicacy whose quality is significantly influenced by thermal processing. This study employed 4D label-free proteomics and data mining techniques to investigate the proteomic changes in CGC muscle tissue induced by various heating temperatures. CGC samples were subjected to a series of heat treatments at increasing temperatures from 20 °C to 90 °C. Proteins were extracted, digested, and analysed using high-resolution mass spectrometry. The proteomic data were then subjected to extensive bioinformatics analysis, including GO and KEGG pathway enrichment. We identified a total of 1085 proteins, 516 of which were shared across all the temperature treatments, indicating a core proteome responsible for CGC textural properties. Differential expression analysis revealed temperature-dependent changes, with significant alterations observed at 90 °C, suggesting denaturation or aggregation of proteins at higher temperatures. Functional enrichment analysis indicated that proteins involved in amino acid metabolism, glutathione metabolism, and nucleotide metabolism were particularly affected by heat. Textural analysis correlated these proteomic changes with alterations in CGC quality attributes, pinpointing 70 °C as the optimum temperature for maintaining the desired texture. A strong positive correlation between specific upregulated proteins was identified, such as the tubulin alpha chain and collagen alpha-1(IV) chain, and the improved textural properties of CGC during thermal processing, suggesting their potential as the potential biomarkers. This study offers a comprehensive proteomic view of the thermal stability and functionality of CGC proteins, delivering invaluable insights for both the culinary processing and scientific management of CGC. Our findings not only deepen the understanding of the molecular mechanisms underpinning the textural alterations in CGC during thermal processing but also furnish practical insights for the aquaculture industry. These insights could be leveraged to optimize cooking techniques, thereby enhancing the quality and consumer appeal of CGC products.
Collapse
Affiliation(s)
- Wan-ling Lin
- School of Life Sciences and Food Technology, Hanshan Normal University, Chaozhou, 521041, China
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Guangdong Provincial Key Laboratory of Functional Substances in Medicinal Edible Resources and Healthcare Products, Chaozhou, 521041, China
| | - Hui Huang
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Ya-qun Liu
- School of Life Sciences and Food Technology, Hanshan Normal University, Chaozhou, 521041, China
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Han-xu Liu
- School of Life Sciences and Food Technology, Hanshan Normal University, Chaozhou, 521041, China
| | - Ya Wei
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Yong-qiang Zhao
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Yue-qi Wang
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Yan-yan Wu
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Sheng-jun Chen
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Lai-hao Li
- Ministry of Agriculture Key Laboratory of Aquatic Products Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| |
Collapse
|
5
|
Li B, Hua W, Zhang S, Xu L, Yang C, Zhu Z, Guo Y, Zhou M, Jiao C, Xu Y. Physiological, Epigenetic, and Transcriptome Analyses Provide Insights into the Responses of Wheat Seedling Leaves to Different Water Depths under Flooding Conditions. Int J Mol Sci 2023; 24:16785. [PMID: 38069108 PMCID: PMC10706670 DOI: 10.3390/ijms242316785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Flooding stress, including waterlogging and submergence, is one of the major abiotic stresses that seriously affects the growth and development of plants. In the present study, physiological, epigenetic, and transcriptomic analyses were performed in wheat seedling leaves under waterlogging (WL), half submergence (HS), and full submergence (FS) treatments. The results demonstrate that FS increased the leaves' hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents and reduced their chlorophyll contents (SPAD), photosynthetic efficiency (Fv/Fm), and shoot dry weight more than HS and WL. In addition, FS increased catalase (CAT) and peroxidase (POD) activities more than HS and WL. However, there were no significant differences in the contents of H2O2, MDA, SPAD, and Fv/Fm, and the activities of superoxide dismutase (SOD) and POD between the HS and WL treatments. The changes in DNA methylation were related to stress types, increasing under the WL and HS treatments and decreasing under the FS treatment. Additionally, a total of 9996, 10,619, and 24,949 genes were differentially expressed under the WL, HS, and FS treatments, respectively, among which the 'photosynthesis', 'phenylpropanoid biosynthesis', and 'plant hormone signal transduction' pathways were extensively enriched under the three flooding treatments. The genes involved in these pathways showed flooding-type-specific expression. Moreover, flooding-type-specific responses were observed in the three conditions, including the enrichment of specific TFs and response pathways. These results will contribute to a better understanding of the molecular mechanisms underlying the responses of wheat seedling leaves to flooding stress and provide valuable genetic and epigenetic information for breeding flood-tolerant varieties of wheat.
Collapse
Affiliation(s)
- Bo Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Wei Hua
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Shuo Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Le Xu
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Caixian Yang
- Hubei Collaborative Innovation Centre for the Industrialization of Major Grain Crops, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Zhanwang Zhu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Ying Guo
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, TAS 7250, Australia
| | - Chunhai Jiao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement and Key Laboratory of Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (B.L.)
| |
Collapse
|
6
|
Gu S, Zhuang J, Zhang Z, Chen W, Xu H, Zhao M, Ma D. Multi-omics approach reveals the contribution of OsSEH1 to rice cold tolerance. FRONTIERS IN PLANT SCIENCE 2023; 13:1110724. [PMID: 36714747 PMCID: PMC9880419 DOI: 10.3389/fpls.2022.1110724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
As low environmental temperature adversely affects the growth, development and geographical distribution, plants have evolved multiple mechanisms involving changing physiological and metabolic processes to adapt to cold stress. In this study, we revealed that nucleoporin-coding gene OsSEH1 was a positive regulator of cold stress in rice. Physiological assays showed that the activity of antioxidant enzymes showed a significant difference between osseh1 knock-out lines and wild type under cold stress. Metabolome analysis revealed that the contents of large-scale flavonoids serving as ROS scavengers were lower in osseh1 mutants compared with wild type under cold stress. Transcriptome analysis indicated that the DEGs between osseh1 knock-out lines and wild type plants were enriched in defense response, regulation of hormone levels and oxidation-reduction process. Integration of transcriptomic and metabolic profiling revealed that OsSEH1 plays a role in the oxidation-reduction process by coordinately regulating genes expression and metabolite accumulation involved in phenylpropanoid and flavonoid biosynthetic pathway. In addition, Exogenous ABA application assays indicated that osseh1 lines had hypersensitive phenotypes compared with wild type plants, suggesting that OsSEH1 may mediate cold tolerance by regulating ABA levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dianrong Ma
- *Correspondence: Minghui Zhao, ; Dianrong Ma,
| |
Collapse
|
7
|
Liu D, Zeng M, Wu Y, Du Y, Liu J, Luo S, Zeng Y. Comparative transcriptomic analysis provides insights into the molecular basis underlying pre-harvest sprouting in rice. BMC Genomics 2022; 23:771. [PMID: 36434522 PMCID: PMC9701047 DOI: 10.1186/s12864-022-08998-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Pre-harvest sprouting (PHS) is one of the most serious rice production constraints in areas where prolonged rainfall occurs during harvest. However, the molecular mechanisms of transcriptional regulation underlying PHS remain largely unknown. RESULTS In the current study, comparative transcriptome analyses were performed to characterize the similarities and differences between two rice varieties: PHS-sensitive Jiuxiangzhan (JXZ) and PHS-resistant Meixiangxinzhan (MXXZ). The physiological experimental results indicated that PHS causes a significant decrease in starch content and, in contrast, a significant increase in soluble sugar content and amylase activity. The extent of change in these physiological parameters in the sensitive variety JXZ was greater than that in the resistant variety MXXZ. A total of 9,602 DEGs were obtained from the transcriptome sequencing data, and 5,581 and 4,021 DEGs were identified in JXZ and MXXZ under high humidity conditions, respectively. The KEGG pathway enrichment analysis indicated that many DEGs under high humidity treatment were mainly linked to plant hormone signal transduction, carbon metabolism, starch and sucrose metabolism, and phenylpropanoid biosynthesis. Furthermore, the number of upregulated genes involved in these pathways was much higher in JXZ than in MXXZ, while the number of downregulated genes was higher in MXXZ than in JXZ. These results suggest that the physiological and biochemical processes of these pathways are more active in the PHS-sensitive JXZ than in the PHS-resistant MXXZ. CONCLUSION Based on these results, we inferred that PHS in rice results from altered phytohormone regulation, more active carbon metabolism and energy production, and enhanced phenylpropanoid biosynthesis. Our study provides a theoretical foundation for further elucidation of the complex regulatory mechanism of PHS in rice and the molecular breeding of PHS-resistant rice varieties.
Collapse
Affiliation(s)
- Dong Liu
- grid.411859.00000 0004 1808 3238Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Mingyang Zeng
- grid.411859.00000 0004 1808 3238Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Yan Wu
- grid.411859.00000 0004 1808 3238Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Yanli Du
- grid.411859.00000 0004 1808 3238Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Jianming Liu
- grid.411859.00000 0004 1808 3238Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Shaoqiang Luo
- grid.411859.00000 0004 1808 3238Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| | - Yongjun Zeng
- grid.411859.00000 0004 1808 3238Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045 China
| |
Collapse
|
8
|
Wang H, Zhong L, Fu X, Huang S, Fu H, Shi X, Hu L, Cai Y, He H, Chen X. Physiological and Transcriptomic Analyses Reveal the Mechanisms of Compensatory Growth Ability for Early Rice after Low Temperature and Weak Light Stress. PLANTS 2022; 11:plants11192523. [PMID: 36235390 PMCID: PMC9570567 DOI: 10.3390/plants11192523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
“Late spring coldness” (T) is a frequent meteorological disaster in the spring in southern China, often causing severe yield losses of direct-seeded early rice. In this study, we investigated the mechanisms underlying the differences in the compensatory growth ability of different rice genotypes by focusing on agronomic traits, physiological indicators, and transcriptome. The results showed that there were significant differences in the compensatory growth recovery ability of different genotypes after a combination of four days of low temperature and weak light stress. Only the strong compensatory growth genotype B116 was able to grow rapidly and reduce soluble protein and H2O2 concentrations rapidly after stress. By analyzing enzyme activity as well as endogenous hormone concentration, we found that the high superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities and high levels of abscisic acid (ABA) could reduce the damage of B116 during stress. Meanwhile, higher glutamine synthetase (GS) and nitrate reductase (NR) activity and higher levels of gibberellin A3(GA3), indoleacetic acid (IAA), and zeatin nucleoside (ZR) could enable B116 to grow rapidly after stress. The identified differentially expressed genes (DEGs) indicated that there were large differences in POD-related genes and gibberellin metabolism between B116 and B144 after stress; RT-PCR quantification also showed a trend consistent with RNA-seq, which may be an important reason for the differences in compensatory growth ability.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lei Zhong
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoquan Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shiying Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haihui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiang Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lifang Hu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yicong Cai
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaorong Chen
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang 330045, China
- Jiangxi Super Rice Engineering Technology Center, Jiangxi Agricultural University, Nanchang 330045, China
- College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence:
| |
Collapse
|
9
|
Zhuan Q, Du X, Bai J, Zhou D, Luo Y, Liu H, Sun W, Wan P, Hou Y, Li J, Fu X. Proteomic profile of mouse oocytes after vitrification: A quantitative analysis based on 4D label-free technique. Theriogenology 2022; 187:64-73. [DOI: 10.1016/j.theriogenology.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
10
|
Xu K, Zhao Y, Gu J, Zhou M, Gao L, Sun RX, Wang WW, Zhang SH, Yang XJ. Proteomic analysis reveals the molecular mechanism underlying the cold acclimation and freezing tolerance of wheat (Triticum aestivum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111242. [PMID: 35351310 DOI: 10.1016/j.plantsci.2022.111242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 05/27/2023]
Abstract
Cold acclimation (CA) is an important evolutionary adaptive mechanism for wheat freezing resistence. To clarify the molecular basis of wheat CA and freezing tolerance, the effects of CA (4 °C) and non-CA (20 °C) treatments and freezing stress (-5 °C) on the proteins in the wheat crown were characterized via an iTRAQ-based proteomic analysis. A total of 669 differentially accumulated proteins (DAPs) were identified after the CA, of which seven were also DAPs in the CA plants exposed to freezing stress. Additionally, the 15 DAPs in the CA group and the 23 DAPs in the non-CA group after the freezing treatment differed substantially. Functional analyses indicated that CA enhanced freezing tolerance by regulating proteins involved in signal transduction, carbohydrate metabolism, stress and defense responses, and phenylpropanoid biosynthesis. An integrated transcriptomic, proteomic, and metabolomic analysis revealed significant changes in various components of the glutathione metabolic pathway. The overexpression and silencing of Wdhn13 in Arabidopsis and wheat resulted in increased tolerance and sensitivity to freezing stress, respectively, suggesting Wdhn13 promotes freezing tolerance. Overall, our study offers insights into the regulatory network underlying the CA and freezing tolerance of wheat, which may be useful for elucidating wheat freezing resistance.
Collapse
Affiliation(s)
- Ke Xu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Yong Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China.
| | - Jia Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Meng Zhou
- Hebei University, Baoding 071000, Hebei, China
| | - Le Gao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Ruo-Xi Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Wei-Wei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China; Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou 061001, Hebei, China
| | - Shu-Hua Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China
| | - Xue-Ju Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Hebei Agricultural University, Baoding 071000, Hebei, China.
| |
Collapse
|