1
|
Konecny T, Asatryan A, Nikoghosyan M, Binder H. Unveiling Iso- and Aniso-Hydric Disparities in Grapevine-A Reanalysis by Transcriptome Portrayal Machine Learning. PLANTS (BASEL, SWITZERLAND) 2024; 13:2501. [PMID: 39273985 PMCID: PMC11396901 DOI: 10.3390/plants13172501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mechanisms underlying grapevine responses to water(-deficient) stress (WS) are crucial for viticulture amid escalating climate change challenges. Reanalysis of previous transcriptome data uncovered disparities among isohydric and anisohydric grapevine cultivars in managing water scarcity. By using a self-organizing map (SOM) transcriptome portrayal, we elucidate specific gene expression trajectories, shedding light on the dynamic interplay of transcriptional programs as stress duration progresses. Functional annotation reveals key pathways involved in drought response, pinpointing potential targets for enhancing drought resilience in grapevine cultivation. Our results indicate distinct gene expression responses, with the isohydric cultivar favoring plant growth and possibly stilbenoid synthesis, while the anisohydric cultivar engages more in stress response and water management mechanisms. Notably, prolonged WS leads to converging stress responses in both cultivars, particularly through the activation of chaperones for stress mitigation. These findings underscore the importance of understanding cultivar-specific WS responses to develop sustainable viticultural strategies in the face of changing climate.
Collapse
Affiliation(s)
- Tomas Konecny
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Armine Asatryan
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia
- Group of Plant Genomics, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - Maria Nikoghosyan
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia
- Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences of Armenia, Yerevan 0014, Armenia
| | - Hans Binder
- Armenian Bioinformatics Institute, Yerevan 0014, Armenia
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| |
Collapse
|
2
|
Zhang ZY, Xia HX, Yuan MJ, Gao F, Bao WH, Jin L, Li M, Li Y. Multi-omics analyses provide insights into the evolutionary history and the synthesis of medicinal components of the Chinese wingnut. PLANT DIVERSITY 2024; 46:309-320. [PMID: 38798724 PMCID: PMC11119516 DOI: 10.1016/j.pld.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/22/2024] [Accepted: 03/31/2024] [Indexed: 05/29/2024]
Abstract
Chinese wingnut (Pterocarya stenoptera) is a medicinally and economically important tree species within the family Juglandaceae. However, the lack of high-quality reference genome has hindered its in-depth research. In this study, we successfully assembled its chromosome-level genome and performed multi-omics analyses to address its evolutionary history and synthesis of medicinal components. A thorough examination of genomes has uncovered a significant expansion in the Lateral Organ Boundaries Domain gene family among the winged group in Juglandaceae. This notable increase may be attributed to their frequent exposure to flood-prone environments. After further differentiation between Chinese wingnut and Cyclocarya paliurus, significant positive selection occurred on the genes of NADH dehydrogenase related to mitochondrial aerobic respiration in Chinese wingnut, enhancing its ability to cope with waterlogging stress. Comparative genomic analysis revealed Chinese wingnut evolved more unique genes related to arginine synthesis, potentially endowing it with a higher capacity to purify nutrient-rich water bodies. Expansion of terpene synthase families enables the production of increased quantities of terpenoid volatiles, potentially serving as an evolved defense mechanism against herbivorous insects. Through combined transcriptomic and metabolomic analysis, we identified the candidate genes involved in the synthesis of terpenoid volatiles. Our study offers essential genetic resources for Chinese wingnut, unveiling its evolutionary history and identifying key genes linked to the production of terpenoid volatiles.
Collapse
Affiliation(s)
- Zi-Yan Zhang
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - He-Xiao Xia
- College of Landscape and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Meng-Jie Yuan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Feng Gao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Wen-Hua Bao
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Lan Jin
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Min Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
| | - Yong Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010020, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
3
|
Ding M, Zhou D, Ye Y, Wen S, Zhang X, Tian Q, Zhang X, Mou W, Dang C, Fang Y, Xue D. Genome-Wide Identification and Expression Analysis of the Stearoyl-Acyl Carrier Protein Δ9 Desaturase Gene Family under Abiotic Stress in Barley. Int J Mol Sci 2023; 25:113. [PMID: 38203283 PMCID: PMC10778905 DOI: 10.3390/ijms25010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Stearoyl-acyl carrier protein (ACP) Δ9 desaturase (SAD) is a critical fatty acid dehydrogenase in plants, playing a prominent role in regulating the synthesis of unsaturated fatty acids (UFAs) and having a significant impact on plant growth and development. In this study, we conducted a comprehensive genomic analysis of the SAD family in barley (Hordeum vulgare L.), identifying 14 HvSADs with the FA_desaturase_2 domain, which were divided into four subgroups based on sequence composition and phylogenetic analysis, with members of the same subgroup possessing similar genes and motif structures. Gene replication analysis suggested that tandem and segmental duplication may be the major reasons for the expansion of the SAD family in barley. The promoters of HvSADs contained various cis-regulatory elements (CREs) related to light, abscisic acid (ABA), and methyl jasmonate (MeJA). In addition, expression analysis indicated that HvSADs exhibit multiple tissue expression patterns in barley as well as different response characteristics under three abiotic stresses: salt, drought, and cold. Briefly, this evolutionary and expression analysis of HvSADs provides insight into the biological functions of barley, supporting a comprehensive analysis of the regulatory mechanisms of oil biosynthesis and metabolism in plants under abiotic stress.
Collapse
Affiliation(s)
- Mingyu Ding
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
| | - Danni Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
| | - Yichen Ye
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
| | - Shuting Wen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
| | - Xian Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Quanxiang Tian
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Wangshu Mou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Cong Dang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (M.D.); (D.Z.); (Y.Y.); (S.W.); (X.Z.); (Q.T.); (X.Z.); (W.M.); (C.D.); (Y.F.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Zhang W, Wang SC, Li Y. Molecular mechanism of thiamine in mitigating drought stress in Chinese wingnut (Pterocarya stenoptera): Insights from transcriptomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115307. [PMID: 37499386 DOI: 10.1016/j.ecoenv.2023.115307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Urban garden plants are frequently affected by drought, which can hinder their growth, development, and greening effect. Previous studies have indicated that Chinese wingnut (Pterocarya stenoptera) responds to drought stress by increasing the expression of thiamine synthesis genes. In this study, it was found that exogenous thiamine can effectively alleviate the negative effects of drought stress on plants. Forward transcriptome sequencing and physiological tests were further conducted to reveal the molecular mechanism of thiamine in alleviating drought stress. Results showed that exogenous thiamine activated the expression of eight chlorophyll synthesis genes in Chinese wingnut under drought stress. Moreover, physiological indicators proved that chlorophyll content increased in leaves of Chinese wingnut with thiamine treatment under drought stress. Photosynthesis genes were also activated in Chinese wingnut treated with exogenous thiamine under drought stress, as supported by photosynthetic indicators PIabs and PItotal. Additionally, exogenous thiamine stimulated the expression of genes in the auxin-activated signaling pathway, thus attenuating the effects of drought stress. This study demonstrates the molecular mechanism of thiamine in mitigating the effects of drought stress on non-model woody plants lacking transgenic systems. This study also provides an effective method to mitigate the negative impacts of drought stress on plants.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Shu-Chen Wang
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Yong Li
- College of Life Science and Technology, Inner Mongolia Normal University, Huhehaote, China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|