1
|
Wang G, Huang L, Zhuang S, Han F, Huang Q, Hao M, Lin G, Chen L, Shen B, Li F, Li X, Chen C, Gao Y, Mock T, Liang J. Resting cell formation in the marine diatom Thalassiosira pseudonana. THE NEW PHYTOLOGIST 2024; 243:1347-1360. [PMID: 38402560 DOI: 10.1111/nph.19646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Resting cells represent a survival strategy employed by diatoms to endure prolonged periods of unfavourable conditions. In the oceans, many diatoms sink at the end of their blooming season and therefore need to endure cold and dark conditions in the deeper layers of the water column. How they survive these conditions is largely unknown. We conducted an integrative analysis encompassing methods from histology, physiology, biochemistry, and genetics to reveal the biological mechanism of resting-cell formation in the model diatom Thalassiosira pseudonana. Resting-cell formation was triggered by a decrease in light and temperature with subsequent catabolism of storage compounds. Resting cells were characterised by an acidic and viscous cytoplasm and altered morphology of the chloroplast ultrastructure. The formation of resting cells in T. pseudonana is an energy demanding process required for a biophysical alteration of the cytosol and chloroplasts to endure the unfavourable conditions of the deeper ocean as photosynthetic organisms. However, most resting cells (> 90%) germinate upon return to favorable growth conditions.
Collapse
Affiliation(s)
- Guangning Wang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Lu Huang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shanshan Zhuang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Fang Han
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qianqian Huang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Mengyuan Hao
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guifang Lin
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Longnan Chen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Biying Shen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Feng Li
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xuesong Li
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Changping Chen
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yahui Gao
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
- State Key Laboratory of Marine Environment Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Thomas Mock
- School of Environmental Sciences, University of East Anglia (UEA), Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Junrong Liang
- School of Life Sciences, Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, 361102, Fujian, China
| |
Collapse
|
2
|
Deng Y, Li F, Shang L, Hu Z, Yue C, Tang YZ. The resting cyst of dinoflagellate Scrippsiella acuminata host bacterial microbiomes with more diverse trophic strategies under conditions typically observed in marine sediments. Front Microbiol 2024; 15:1407459. [PMID: 39104580 PMCID: PMC11298437 DOI: 10.3389/fmicb.2024.1407459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Variation in the condition of marine sediments provides selective preservation milieus, which act as a key determinant for the abundance and distribution of dinoflagellate resting cysts in natural sediments. Microbial degradation is an understudied biological factor of potential importance in the processes. However, gaps remain in our knowledge about the fundamental information of the bacterial consortia associated with dinoflagellate resting cysts both in laboratory cultures and in the field. Here we used Scrippsiella acuminata as a representative of cyst-producing dinoflagellates to delineate the diversity and composition of bacterial microbiomes co-existing with the laboratory-cultured resting cysts, and to explore possible impacts of low temperature, darkness, and anoxia (the mock conditions commonly observed in marine sediments) on the associated bacterial consortia. Bacterial microbiome with high diversity were revealed associated with S. acuminata at resting stage. The mock conditions could significantly shift bacterial community structure and exert notably inhibitory effects on growth-promoting bacteria. Resting cysts under conditions typically observed in marine sediments fostered bacterial microbiomes with more diverse trophic strategies, characteristic of prominently enriched anaerobic chemotrophic bacteria generating energy via respiration with several different terminal electron acceptors, which yielded more acidic milieu unfavorable for the preservation of calcareous resting cysts. Our findings suggest that there is complex and dynamic interaction between dinoflagellates resting cysts and the associated bacterial consortia in natural sediments. This intrinsic interaction may influence the maintenance and/or accumulation of dinoflagellate resting cysts with potential of germination and initiation blooms in the field.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fengting Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Caixia Yue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
3
|
Yu Z, Wang Z, Liu L. Electrophysiological techniques in marine microalgae study: A new perspective for harmful algal bloom (HAB) research. HARMFUL ALGAE 2024; 134:102629. [PMID: 38705615 DOI: 10.1016/j.hal.2024.102629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
Electrophysiological techniques, by measuring bioelectrical signals and ion channel activities in tissues and cells, are now widely utilized to study ion channel-related physiological functions and their underlying mechanisms. Electrophysiological techniques have been extensively employed in the investigation of animals, plants, and microorganisms; however, their application in marine algae lags behind that in other organisms. In this paper, we present an overview of current electrophysiological techniques applicable to algae while reviewing the historical usage of such techniques in this field. Furthermore, we explore the potential specific applications of electrophysiological technology in harmful algal bloom (HAB) research. The application prospects in the studies of stress tolerance, competitive advantage, nutrient absorption, toxin synthesis and secretion by HAB microalgae are discussed and anticipated herein with the aim of providing novel perspectives on HAB investigations.
Collapse
Affiliation(s)
- Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Zhongshi Wang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lidong Liu
- The Djavad Mowafaghian Centre for Brian Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Wang Y, Liu Y, Wang Y, Zhang A, Xie W, Zhang H, Weng Q, Xu M. Investigation of seasonal changes in lipid synthesis and metabolism-related genes in the oviduct of Chinese brown frog (<em>Rana dybowskii</em>). Eur J Histochem 2023; 67:3890. [PMID: 38116875 PMCID: PMC10773197 DOI: 10.4081/ejh.2023.3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
A peculiar physiological characteristic of the Chinese brown frog (Rana dybowskii) is that its oviduct dilates during pre-brumation rather than during the breeding season. This research aimed to examine the expression of genes connected with lipid synthesis and metabolism in the oviduct of R. dybowskii during both the breeding season and pre-brumation. We observed significant changes in the weight and size of the oviduct between the breeding season and pre-brumation. Furthermore, compared to the breeding season, pre-brumation exhibited significantly lower triglyceride content and a marked increase in free fatty acid content. Immunohistochemical results revealed the spatial distribution of triglyceride synthase (Dgat1), triglyceride hydrolase (Lpl and Hsl), fatty acid synthase (Fasn), and fatty acid oxidases (Cpt1a, Acadl, and Hadh) in oviductal glandular cells and epithelial cells during both the breeding season and pre-brumation. While the mRNA levels of triglycerides and free fatty acid synthesis genes (dgat1 and fasn) did not show a significant difference between the breeding season and pre-brumation, the mRNA levels of genes involved in triglycerides and free fatty acid metabolism (lpl, cpt1a, acadl, acox and hadh) were considerably higher during pre-brumation. Furthermore, the R. dybowskii oviduct's transcriptomic and metabolomic data confirmed differential expression of genes and metabolites enriched in lipid metabolism signaling pathways during both the breeding season and pre-brumation. Overall, these results suggest that alterations in lipid synthesis and metabolism during pre-brumation may potentially influence the expanding size of the oviduct, contributing to the successful overwintering of R. dybowskii.
Collapse
Affiliation(s)
- Yankun Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yuning Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yawei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Ao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Wenqian Xie
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Meiyu Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| |
Collapse
|
5
|
Gene expression during the formation of resting spores induced by nitrogen starvation in the marine diatom Chaetoceros socialis. BMC Genomics 2023; 24:106. [PMID: 36899305 PMCID: PMC9999646 DOI: 10.1186/s12864-023-09175-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Dormancy is widespread in both multicellular and unicellular organisms. Among diatoms, unicellular microalgae at the base of all aquatic food webs, several species produce dormant cells (spores or resting cells) that can withstand long periods of adverse environmental conditions. RESULTS We present the first gene expression study during the process of spore formation induced by nitrogen depletion in the marine planktonic diatom Chaetoceros socialis. In this condition, genes related to photosynthesis and nitrate assimilation, including high-affinity nitrate transporters (NTRs), were downregulated. While the former result is a common reaction among diatoms under nitrogen stress, the latter seems to be exclusive of the spore-former C. socialis. The upregulation of catabolic pathways, such as tricarboxylic acid cycle, glyoxylate cycle and fatty acid beta-oxidation, suggests that this diatom could use lipids as a source of energy during the process of spore formation. Furthermore, the upregulation of a lipoxygenase and several aldehyde dehydrogenases (ALDHs) advocates the presence of oxylipin-mediated signaling, while the upregulation of genes involved in dormancy-related pathways conserved in other organisms (e.g. serine/threonine-protein kinases TOR and its inhibitor GATOR) provides interesting avenues for future explorations. CONCLUSIONS Our results demonstrate that the transition from an active growth phase to a resting one is characterized by marked metabolic changes and provides evidence for the presence of signaling pathways related to intercellular communication.
Collapse
|
6
|
Characterizing the Status of Energetic Metabolism of Dinoflagellate Resting Cysts under Mock Conditions of Marine Sediments via Physiological and Transcriptional Measurements. Int J Mol Sci 2022; 23:ijms232315033. [PMID: 36499364 PMCID: PMC9739985 DOI: 10.3390/ijms232315033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022] Open
Abstract
Similar to the seeds of higher plants, resting cysts, a non-motile, benthic, and dormant stage in the life history of many dinoflagellate species, play vital roles via germination in the seasonal dynamics and particularly the initiation of harmful algal blooms (HABs) of dinoflagellates. It is thus crucial for resting cysts to balance between the energetic catabolism for viability maintenance and the energy preservation for germination during their dormancy. Despite this importance, studies on how resting cysts of dinoflagellates accomplish energetic metabolism in marine sediment have been virtually absent. In this study, using the cosmopolitan HABs-causing species Scrippsiella acuminata as a representative, we measured the transcriptional activity of the most efficient pathway of the energy catabolism tricarboxylic acid (TCA) cycle, cell viability (via neutral red staining), and the cellular ATP content of resting cysts under a set of mock conditions in marine sediments (e.g., 4 °C, darkness, and anoxia) for a maximum period of one year. Based on the correlation analyses among the expression levels of genes, cyst viability, and ATP content, we revealed that the TCA cycle was still a crucial pathway of energetic catabolism for resting cysts under aerobic conditions, and its expression was elevated at higher temperatures, light irradiation, and the early stage of dormancy. Under anaerobic conditions, however, the TCA cycle pathway ceased expression in resting cysts, as also supported by ATP measurements. Our results have laid a cornerstone for the comprehensive revelation of the energetic metabolism and biochemical processes of dormancy of resting cysts in marine sediments.
Collapse
|
7
|
Feng J, Jia T, Wang Z, Zhu W. Differences of energy adaptation strategies in Tupaia belangeri between Pianma and Tengchong region by metabolomics of liver: Role of warmer temperature. Front Physiol 2022; 13:1068636. [PMID: 36467696 PMCID: PMC9713704 DOI: 10.3389/fphys.2022.1068636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Global warming is becoming the future climate trend and will have a significant impact on small mammals, and they will also adapt at the physiological levels in response to climate change, among which the adaptation of energetics is the key to their survival. In order to investigate the physiological adaptation strategies in Tupaia belangeri affected by the climate change and to predict their possible fate under future global warming, we designed a metabonomic study in T. belangeri between two different places, including Pianma (PM, annual average temperature 15.01°C) and Tengchong (TC, annual average temperature 20.32°C), to analyze the differences of liver metabolite. Moreover, the changes of resting metabolic rate, body temperature, uncoupling protein 1content (UCP1) and other energy indicators in T. belangeri between the two places were also measured. The results showed that T. belangeri in warm areas (TC) reduced the concentrations of energy metabolites in the liver, such as pyruvic acid, fructose 6-phosphate, citric acid, malic acid, fumaric acid etc., so their energy metabolism intensity was also reduced, indicating that important energy metabolism pathway of glycolysis and tricarboxylic acid cycle (TCA) pathway reduced in T. belangeri from warmer habitat. Furthermore, brown adipose tissue (BAT) mass, UCP1 content and RMR in TC also decreased significantly, but their body temperature increased. All of the results suggested that T. belangeri adapt to the impact of warm temperature by reducing energy expenditure and increasing body temperature. In conclusion, our research had broadened our understanding of the physiological adaptation strategies to cope with climate change, and also provided a preliminary insight into the fate of T. belangeri for the future global warming climate.
Collapse
Affiliation(s)
- Jiahong Feng
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Ting Jia
- Yunnan College of Business Management, Kunming, China
| | - Zhengkun Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| | - Wanlong Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| |
Collapse
|
8
|
Yue C, Chai Z, Hu Z, Shang L, Deng Y, Tang YZ. Deficiency of nitrogen but not phosphorus triggers the life cycle transition of the dinoflagellate Scrippsiella acuminata from vegetative growth to resting cyst formation. HARMFUL ALGAE 2022; 118:102312. [PMID: 36195426 DOI: 10.1016/j.hal.2022.102312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) and phosphorus (P) are essential elements for algal growth. When N and P are deficient, dinoflagellates will take a series of measures to achieve population continuation including formation of resting cysts, an important ecological strategy of dinoflagellates that plays a key role in the initiation and termination of harmful algal blooms (HABs). How the deficiency of N and P affects algal growth and cyst formation has been investigated in some dinoflagellate species, but how it affects the life cycle transition in dinoflagellates has been poorly understood. In this study, we further explored the effect of N and P deficiency on the algal growth and resting cyst production in the cosmopolitan HABs-causing species Scrippsiella acuminata via refining the N and P concentration gradients. Further, we tracked the expression patterns of one CyclinB and one CDK1 genes of S. acuminata at different growth stages under three deficiency concentrations (1/1000 dilutions of N, P, and both N and P). The results suggest that N deficiency always triggered the cyst formation but P deficiency mainly inhibited the vegetative growth instead of inducing cyst formation. We also observed the highest cyst production when S. acuminata was cultured in the f/2-Si medium that was a one-thousandth dilution of N and P (N∼ 0.882 μM; P∼ 0.0362 μM). Our results for the expressions of CyclinB and CDK1 were well consistent with the results of algal growth and cyst formation at different deficiencies of N and P in terms of that higher expressions of these two genes were corresponding to higher rates of vegetative cell growth, while their expressions in resting cysts maintained to be moderate but significantly lower than that in fast-growing vegetative cells. Although we are still not sure whether the changing expressions of the two genes did regulate the transition of life cycle (i.e. cyst formation), or happened as parallels to the expressions of other truly regulating genes, our observations are surely inspirational for further investigations on the genetic regulation of life cycle transition in dinoflagellates. Our work will provide clues to probe the physiological and molecular mechanisms underlying the nutrient deficiency-induced alternation between life cycle stages in dinoflagellates.
Collapse
Affiliation(s)
- Caixia Yue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoyang Chai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
9
|
Wu X, Li L, Lin S. Energy metabolism and genetic information processing mark major transitions in the life history of Scrippsiella acuminata (Dinophyceae). HARMFUL ALGAE 2022; 116:102248. [PMID: 35710202 DOI: 10.1016/j.hal.2022.102248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Many dinoflagellates perform sexual reproduction and form cysts as a life history strategy to survive adverse environmental conditions and seed annual harmful algal blooms (HABs). The molecular mechanisms underpinning the life stage transitions can provide clues about how key environmental factors induce encystment and initiation of a HAB but are still poorly understood. Here, we conducted an integrated physiological and transcriptomic study to unravel the mechanisms in Scrippsiella acuminata. We established a culture from a bloom, induced cyst formation, and divided the process into four life stages. Transcriptomic analysis of these stages revealed 19,900 differentially expressed genes (DEGs). The expression of genes related to photosynthesis was significantly up-regulated from vegetative stage to immature cyst stage, consistent with the marked increase in cell contents of energy-storing macromolecules (carbohydrates and lipids). When proceeding to resting cysts, most photosynthesis genes were down-regulated while "genetic information processing" related genes were up-regulated. Comparing germinating cysts with resting cysts revealed 100 DEGs involved in energy metabolism, indicating a high energy requirement of germination. In addition, the transition from germinating cysts to vegetative cells featured up-regulation of photosynthesis. Our results demonstrate that energy storage and consumption play a pivotal role in cyst formation and germination respectively and genetic information processing is crucial in cyst dormancy.
Collapse
Affiliation(s)
- Xiaomei Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
10
|
Wang Z, Xie C, Zhang J, Ji S, Zhao J, Nie X. The responses of Scrippsiella acuminata to the stresses of darkness: antioxidant activities and formation of pellicle cysts. HARMFUL ALGAE 2022; 115:102239. [PMID: 35623691 DOI: 10.1016/j.hal.2022.102239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/03/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
In order to understand the strategy of Scrippsiella acuminata to cold dark environment, the antioxidant responses and the formation of pellicle cysts of S. acuminata to darkness at 8°C and 20°C were investigated. Cell densities decreased significantly after 96 h dark treatment, and no live cells were observed after 9-days dark treatments. The darkness stress generally resulted in an increase of antioxidant defenses, including soluble protein, superoxide dismutase (SOD), glutathione (GSH), and malondialdehyde (MDA). Cellular soluble protein and SOD activity increased sharply under 20°C darkness, which protected algal cells against the oxidative stress from darkness, and resulted in relatively lower MDA levels. Soluble protein and SOD activity were enhanced under 8°C darkness as well however not in a sharp rise, and higher levels of MDA and GSH were recorded. The results suggested high SOD and protein levels protected cells against harsh darkness stress, while high GSH not only helped algae cells resist dark stress, but also played an important role in low temperature stress. Darkness promoted the formation of pellicle cysts of S. acuminata, and the maximum formation rates were 16.06% to 21.74% at 8°C and 20°C, respectively. Germination of pellicle cysts occurred within 24 h after light exposure, however pellicle cysts could not withstand long-time darkness stress, and all pellicle cysts died after 9-days darkness exposure. The results of this study suggest that S. acuminata is able to overcome temporary cold darkness through forming pellicle cysts.
Collapse
Affiliation(s)
- Zhaohui Wang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Changliang Xie
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jianneng Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Shuanghui Ji
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jiangang Zhao
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Xiangping Nie
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|