1
|
Chan HY, Robertson SA. Seminal fluid effects on uterine receptivity to embryo implantation: transcriptomic strategies to define molecular mechanisms. Reprod Fertil Dev 2025; 37:RD24162. [PMID: 40100824 DOI: 10.1071/rd24162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
Embryo implantation requires both a developmentally competent embryo and a receptive uterus. Impaired uterine receptivity is a common constraint on implantation success and reproductive outcome. Ovarian steroid hormones oestrogen and progesterone play a central role in establishing uterine receptivity, but other factors also contribute. One additional regulating factor is male partner seminal fluid. However, the full physiological impacts of seminal fluid on uterine receptivity and the specific molecular pathways involved are not yet completely defined. New advances in RNA-sequencing technologies provide a powerful means to examine how uterine tissues and cells respond to seminal fluid contact. Findings utilising sequencing technology provide strong cellular and molecular evidence in humans and mice that seminal fluid contact around the time of ovulation drives immune and vascular changes with potential to affect endometrial receptivity in the peri-implantation phase. This approach has led to the discovery of novel mediators and regulatory factors subsequently shown to facilitate embryo implantation in genetic mouse models, enabling functional validation. Here, we summarise the evidence from recent microarray and RNA-sequencing findings that seminal fluid contact can directly and indirectly impact the transcriptional state of endometrial tissue during the implantation window in mice and also in humans. Progress in elucidating the female reproductive tract response to seminal fluid will improve understanding of male partner effects on endometrial receptivity, and the knowledge gained will have practical applications for achieving healthy pregnancy and offspring outcomes.
Collapse
Affiliation(s)
- Hon Y Chan
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Luo P, Guo H, Liu B, Zhang Z, Xie Y, Yao J, Li X, Bian J, Zhuang J, Ouyang B, Wu J. Transcriptome analyses reveal key features of mouse seminal vesicle during aging. Syst Biol Reprod Med 2024; 70:249-260. [PMID: 39167124 DOI: 10.1080/19396368.2024.2388121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Despite the significant morphological changes that occur in the seminal vesicles with aging, the transcriptomic characteristics remain largely unexplored. To address this, we performed bulk RNA sequencing on seminal vesicle samples from mice aged 3, 13, and 21 months to uncover transcriptomic alterations. Our findings reveal that aged seminal vesicles display cystic dilatation, epithelial hypoplasia, disordered muscle layers, fibrosis, and reduced proliferation capability. A comparison between 3-month-old and 21-month-old mice indicated that leukocyte-mediated immunity and leukocyte migration were the most significantly upregulated biological processes among differentially expressed genes (DEGs). Notably, several DEGs associated with "leukocyte migration," such as Vcam1, Cxcl13, and Ccl8, exhibited an increasing trend in transcriptomic and protein expression at three different time points in the seminal vesicles of mice. Additionally, we identified multiple aging-associated DEGs, including P21 and Tnfrsf1b. Two genes (Cd209f and Ccl8) were consistently upregulated across all six regions of the male reproductive glands (testis, epididymis, and seminal vesicle) in the comparison of bulk RNA datasets from 3-month-old and 21-month-old mice. These analyses highlight an enhanced state of immune and inflammatory response in aged seminal vesicles. This study represents the first exploration of the overall transcriptome landscape of seminal vesicles in a murine model of natural aging, offering new insights into the mechanisms underlying aging-related seminal vesicle dysfunction.
Collapse
Affiliation(s)
- Peng Luo
- Reproductive Medicine Center, The Key Laboratory for Reproductive Medicine of Guangdong Province, The First Affiliated Hospital, SunYat-sen University, Guangzhou, China
| | - Haibin Guo
- Department of Reproductive Medicine, Henan Province People's Hospital, Zhengzhou, China
| | - Baoning Liu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhiqiang Zhang
- Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yun Xie
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Yao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangping Li
- Department of Urology and Andrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Bian
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jintao Zhuang
- Department of Urology, The Eastern Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Ouyang
- Center for Reproductive Medicine, Guangdong Women and Children Hospital, Guangzhou, China
- Department of Andrology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jinhua Wu
- Department of Andrology, Ganzhou People's Hospital of Jiangxi Province, Ganzhou, China
| |
Collapse
|
3
|
Sun F, Desevin K, Fu Y, Parameswaran S, Mayall J, Rinaldi V, Krietenstein N, Manukyan A, Yin Q, Galan C, Yang CH, Shindyapina AV, Gladyshev VN, Garber M, Schjenken JE, Rando OJ. A single cell atlas of the mouse seminal vesicle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588538. [PMID: 38645090 PMCID: PMC11030459 DOI: 10.1101/2024.04.08.588538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
During mammalian reproduction, sperm are delivered to the female reproductive tract bathed in a complex medium known as seminal fluid, which plays key roles in signaling to the female reproductive tract and in nourishing sperm for their onwards journey. Along with minor contributions from the prostate and the epididymis, the majority of seminal fluid is produced by a somewhat understudied organ known as the seminal vesicle. Here, we report the first single-cell RNA-seq atlas of the mouse seminal vesicle, generated using tissues obtained from 23 mice of varying ages, exposed to a range of dietary challenges. We define the transcriptome of the secretory cells in this tissue, identifying a relatively homogeneous population of the epithelial cells which are responsible for producing the majority of seminal fluid. We also define the immune cell populations - including large populations of macrophages, dendritic cells, T cells, and NKT cells - which have the potential to play roles in producing various immune mediators present in seminal plasma. Together, our data provide a resource for understanding the composition of an understudied reproductive tissue with potential implications for paternal control of offspring development and metabolism.
Collapse
Affiliation(s)
- Fengyun Sun
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kathleen Desevin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yu Fu
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shanmathi Parameswaran
- Hunter Medical Research Institute Infertility and Reproduction Research Program, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Jemma Mayall
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Vera Rinaldi
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nils Krietenstein
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Artur Manukyan
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Qiangzong Yin
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Carolina Galan
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Chih-Hsiang Yang
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia V. Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Manuel Garber
- Department of Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - John E. Schjenken
- Hunter Medical Research Institute Infertility and Reproduction Research Program, School of Environmental and Life Sciences, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
4
|
Green ES, Chan HY, Frost E, Griffiths M, Hutchison J, Martin JH, Mihalas BP, Newman T, Dunleavy JEM. Recent advances in reproductive research in Australia and New Zealand: highlights from the Annual Meeting of the Society for Reproductive Biology, 2022. Reprod Fertil Dev 2024; 36:RD23213. [PMID: 38346692 DOI: 10.1071/rd23213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 04/11/2024] Open
Abstract
In 2022, the Society for Reproductive Biology came together in Christchurch New Zealand (NZ), for its first face-to-face meeting since the global COVID-19 pandemic. The meeting showcased recent advancements in reproductive research across a diverse range of themes relevant to human health and fertility, exotic species conservation, and agricultural breeding practices. Here, we highlight the key advances presented across the main themes of the meeting, including advances in addressing opportunities and challenges in reproductive health related to First Nations people in Australia and NZ; increasing conservation success of exotic species, including ethical management of invasive species; improvements in our understanding of developmental biology, specifically seminal fluid signalling, ovarian development and effects of environmental impacts such as endocrine-disrupting chemicals; and leveraging scientific breakthroughs in reproductive engineering to drive solutions for fertility, including in assisted reproductive technologies in humans and agricultural industries, and for regenerative medicine.
Collapse
Affiliation(s)
- Ella S Green
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Hon Y Chan
- Robinson Research Institute, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Emily Frost
- Fertility & Research Centre, Discipline of Women's Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Meaghan Griffiths
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Vic., Australia; and Gynaecology Research Centre, Royal Women's Hospital, Parkville, Vic., Australia
| | - Jennifer Hutchison
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, Vic., Australia; and Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton Vic., Australia; and Department of Molecular and Translational Science, Monash University, Clayton, Vic., Australia
| | - Jacinta H Martin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia; and Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Bettina P Mihalas
- The Oocyte Biology Research Unit, Discipline of Women's Health, School of Clinical Medicine, Faculty of Medicine and Health, The University of NSW Sydney, Randwick, NSW, Australia
| | - Trent Newman
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, Vic., Australia
| | - Jessica E M Dunleavy
- School of BioSciences and Bio21 Institute, Faculty of Science, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
5
|
Iamsaard S, Kietinun S, Sattayasai J, Bunluepuech K, Wu ATH, Choowong-In P. Prevention of seminal vesicle damage by Mucuna pruriens var. pruriens seed extract in chronic unpredictable mild stress mice. PHARMACEUTICAL BIOLOGY 2023; 61:89-99. [PMID: 36565036 PMCID: PMC9793912 DOI: 10.1080/13880209.2022.2157018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/16/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
CONTEXT Thai Mucuna pruriens (L.) DC. var. pruriens (Fabaceae) or T-MP seed extract has been shown to improve sexual performance and sperm quality. OBJECTIVE This study investigates the preventive effects of T-MP against seminal vesicle damage, apoptotic and Nrf2 protein expression in mice under chronic unpredictable mild stress (CUMS). MATERIALS AND METHODS Forty-eight male ICR mice were divided into four groups: control, CUMS, T-MP300 + CUMS and T-MP600 + CUMS. Mice in control and CUMS groups received distilled water, while those in treated groups were pretreated with T-MP extract (300 or 600 mg/kg BW) for 14 consecutive days. The CMUS and co-treated groups were exposed to one random stressor (of 12 total) each day for 43 days. Components and histopathology of the seminal vesicle were examined, along with localization of androgen receptor (AR) and caspase 3. Expression of seminal AR, tyrosine phosphorylated (TyrPho), heat shock protein 70 (Hsp70), caspases (3 and 9) and nuclear factor erythroid 2-related factor 2 (Nrf2) proteins was investigated. RESULTS T-MP extract at a dose of 600 mg/kg BW improved seminal epithelial damage and secretion of fluid containing essential substances and proteins in CUMS mice. It also increased the expression of AR and TyrPho proteins. Additionally, T-MP increased expression of Nrf2 and inhibited seminal vesicular apoptosis through the suppression of Hsp70 and caspase expression. CONCLUSION T-MP seeds have an antiapoptotic property in chronic stress seminal vesicle. It is possible to apply this extract for the enhancement of seminal plasma quality.
Collapse
Affiliation(s)
- Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen University, Khon Kaen, Thailand
| | - Somboon Kietinun
- Department of Integrative Medicine, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Jintana Sattayasai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kingkan Bunluepuech
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Alexander Tsang-Hsien Wu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- The PhD Program of Translational Medicine, College of Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Pannawat Choowong-In
- Department of Applied Thai Traditional Medicine, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Center of Excellence in Marijuana, Hemp, and Kratom, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
6
|
Li M, Wang R, Wang P. Galaxolide and Irgacure 369 are novel environmental androgens. CHEMOSPHERE 2023; 324:138329. [PMID: 36906002 DOI: 10.1016/j.chemosphere.2023.138329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Endocrine disruptors are environmental chemicals that can interfere with the endocrine system. However, research on endocrine disruptors that interfere with androgen's actions is still limited. The purpose of this study is to use in silico computation, i.e., molecular docking to facilitate the identification of environmental androgens. Computational docking was used to study the binding interactions of environmental/industrial compounds with the three dimensional structure of human androgen receptor (AR). Then reporter assay and cell proliferation assay using AR-expressing LNCaP prostate cancer cells were used to determine their in vitro androgenic activity. Animal studies using immature male rats were also carried out to test their in vivo androgenic activity. Two novel environmental androgens were identified. As a photoinitiator, 2-benzyl-2-(dimethylamino)-4'-morpholinobutyrophenone (Irgacure 369, abbreviated as IC-369) is widely used in the packaging and electronics industries. Galaxolide (HHCB) is widely used in the production of perfume, fabric softeners and detergents. We found that both IC-369 and HHCB could activate AR transcriptional activity and promote cell proliferation in AR-sensitive LNCaP cells. Furthermore, IC-369 and HHCB could induce cell proliferation and histological changes of seminal vesicles in immature rats. RNA sequencing and qPCR analysis showed that androgen-related genes in seminal vesicle tissue were up-regulated by IC-369 and HHCB. In conclusion, IC-369 and HHCB are new environmental androgens that bind AR and induce AR transcriptional activity, thereby exerting toxicological effects on the development of male reproductive organs.
Collapse
Affiliation(s)
- Mingzhao Li
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Ren Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China.
| |
Collapse
|
7
|
Nixon B, Schjenken JE, Burke ND, Skerrett-Byrne DA, Hart HM, De Iuliis GN, Martin JH, Lord T, Bromfield EG. New horizons in human sperm selection for assisted reproduction. Front Endocrinol (Lausanne) 2023; 14:1145533. [PMID: 36909306 PMCID: PMC9992892 DOI: 10.3389/fendo.2023.1145533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Male infertility is a commonly encountered pathology that is estimated to be a contributory factor in approximately 50% of couples seeking recourse to assisted reproductive technologies. Upon clinical presentation, such males are commonly subjected to conventional diagnostic andrological practices that rely on descriptive criteria to define their fertility based on the number of morphologically normal, motile spermatozoa encountered within their ejaculate. Despite the virtual ubiquitous adoption of such diagnostic practices, they are not without their limitations and accordingly, there is now increasing awareness of the importance of assessing sperm quality in order to more accurately predict a male's fertility status. This realization raises the important question of which characteristics signify a high-quality, fertilization competent sperm cell. In this review, we reflect on recent advances in our mechanistic understanding of sperm biology and function, which are contributing to a growing armory of innovative approaches to diagnose and treat male infertility. In particular we review progress toward the implementation of precision medicine; the robust clinical adoption of which in the setting of fertility, currently lags well behind that of other fields of medicine. Despite this, research shows that the application of advanced technology platforms such as whole exome sequencing and proteomic analyses hold considerable promise in optimizing outcomes for the management of male infertility by uncovering and expanding our inventory of candidate infertility biomarkers, as well as those associated with recurrent pregnancy loss. Similarly, the development of advanced imaging technologies in tandem with machine learning artificial intelligence are poised to disrupt the fertility care paradigm by advancing our understanding of the molecular and biological causes of infertility to provide novel avenues for future diagnostics and treatments.
Collapse
Affiliation(s)
- Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- *Correspondence: Brett Nixon,
| | - John E. Schjenken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Nathan D. Burke
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - David A. Skerrett-Byrne
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Hanah M. Hart
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Geoffry N. De Iuliis
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jacinta H. Martin
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
8
|
Su D, Lei A, Nie C, Chen Y. The protective effect of Ganoderma atrum polysaccharide on intestinal barrier function damage induced by acrylamide in mice through TLR4/MyD88/NF-κB based on the iTRAQ analysis. Food Chem Toxicol 2023; 171:113548. [PMID: 36502997 DOI: 10.1016/j.fct.2022.113548] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 10/10/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
The potential mechanism for the protective effect of Ganoderma atrum (G. atrum) polysaccharide (PSG-1) on acrylamide (AA) induced intestinal damage in mice was explored. Results showed that PSG-1 pretreatment prevented AA-induced injury by decreasing intestinal permeability and serum D-lactate acid (D-Lac) levels and increasing the number of small intestinal goblet cells and IgA secreting cells. In addition, PSG-1 pretreatment effectively reduced malondialdehyde (MDA) level and raised superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activities in the intestine. Furthermore, PSG-1 administration decreased the levels of pro-inflammatory factors including IL-1β, TNF-α, and IL-6, while the anti-inflammatory factor IL-10 was elevated. Meanwhile, PSG-1 could increase the performance of tight junction (TJ) proteins such as Occludin, Claudin-1 and ZO-1. Moreover, according to the isobaric tag for relative and absolute quantitation (iTRAQ) and Western blot results, PSG-1 could reduce AA-induced intestinal injury through TLR4/MyD88/NF-κB signaling pathway. Overall, the present study suggested that PSG-1 protected intestinal permeability and barrier function in mice via reducing inflammation and oxidative stress, and effectively prevented AA-induced intestinal injury in mice.
Collapse
Affiliation(s)
- Dan Su
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Aitong Lei
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Chunchao Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, People's Republic of China.
| |
Collapse
|
9
|
Patlar B. On the Role of Seminal Fluid Protein and Nucleic Acid Content in Paternal Epigenetic Inheritance. Int J Mol Sci 2022; 23:ijms232314533. [PMID: 36498858 PMCID: PMC9739459 DOI: 10.3390/ijms232314533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The evidence supports the occurrence of environmentally-induced paternal epigenetic inheritance that shapes the offspring phenotype in the absence of direct or indirect paternal care and clearly demonstrates that sperm epigenetics is one of the major actors mediating these paternal effects. However, in most animals, while sperm makes up only a small portion of the seminal fluid, males also have a complex mixture of proteins, peptides, different types of small noncoding RNAs, and cell-free DNA fragments in their ejaculate. These seminal fluid contents (Sfcs) are in close contact with the reproductive cells, tissues, organs, and other molecules of both males and females during reproduction. Moreover, their production and use are adjusted in response to environmental conditions, making them potential markers of environmentally- and developmentally-induced paternal effects on the next generation(s). Although there is some intriguing evidence for Sfc-mediated paternal effects, the underlying molecular mechanisms remain poorly defined. In this review, the current evidence regarding the links between seminal fluid and environmental paternal effects and the potential pathways and mechanisms that seminal fluid may follow in mediating paternal epigenetic inheritance are discussed.
Collapse
Affiliation(s)
- Bahar Patlar
- Animal Ecology, Department of Zoology, Martin-Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|