1
|
Yin F, Hu Y, Cao X, Xiao X, Zhang M, Xiang Y, Wang L, Yao Y, Sui M, Shi W. JmjC domain-containing histone demethylase gene family in Chinese cabbage: Genome-wide identification and expressional profiling. PLoS One 2024; 19:e0312798. [PMID: 39546552 PMCID: PMC11567544 DOI: 10.1371/journal.pone.0312798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
The Jumonji C (JmjC) structural domain-containing gene family plays essential roles in stress responses. However, descriptions of this family in Brassica rapa ssp. pekinensis (Chinese cabbage) are still scarce. In this study, we identified 29 members of the BrJMJ gene family, with cis-acting elements related to light, low temperature, anaerobic conditions, and phytohormone responses. Most BrJMJs were highly expressed in the siliques and flowers, suggesting that histone demethylation may play a crucial role in reproductive organ development. The expression of BrJMJ1, BrJMJ2, BrJMJ5, BrJMJ13, BrJMJ21 and BrJMJ24 gradually increased with higher Cd concentration under Cd stress, while BrJMJ4 and BrJMJ29 could be induced by osmotic, salt, cold, and heat stress. These results demonstrate that BrJMJs are responsive to abiotic stress and support future analysis of their biological functions.
Collapse
Affiliation(s)
- Fengrui Yin
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Yuanfeng Hu
- Agricultural Sciences Research Center, Pingxiang, Jiangxi Province, P. R. China
| | - Xiaoqun Cao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Xufeng Xiao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Ming Zhang
- Department of Biotechnology, Jiangxi Biotech Vocational College, Nanchang, Jiangxi Province, P. R. China
| | - Yan Xiang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Liangdeng Wang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Yuekeng Yao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Meilan Sui
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, P. R. China
| | - Wenling Shi
- Department of Biotechnology, Jiangxi Biotech Vocational College, Nanchang, Jiangxi Province, P. R. China
| |
Collapse
|
2
|
An B, Cai H, Li B, Zhang S, He Y, Wang R, Jiao C, Guo Y, Xu L, Xu Y. Molecular Evolution of Histone Methylation Modification Families in the Plant Kingdom and Their Genome-Wide Analysis in Barley. Int J Mol Sci 2023; 24:ijms24098043. [PMID: 37175750 PMCID: PMC10178440 DOI: 10.3390/ijms24098043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, based on the OneKP database and through comparative genetic analysis, we found that HMT and HDM may originate from Chromista and are highly conserved in green plants, and that during the evolution from algae to land plants, histone methylation modifications gradually became complex and diverse, which is more conducive to the adaptation of plants to complex and variable environments. We also characterized the number of members, genetic similarity, and phylogeny of HMT and HDM families in barley using the barley pangenome and the Tibetan Lasa Goumang genome. The results showed that HMT and HDM were highly conserved in the domestication of barley, but there were some differences in the Lasa Goumang SDG subfamily. Expression analysis showed that HvHMTs and HvHDMs were highly expressed in specific tissues and had complex expression patterns under multiple stress treatments. In summary, the amplification and variation of HMT and HDM facilitate plant adaptation to complex terrestrial environments, while they are highly conserved in barley and play an important role in barley growth and development with abiotic stresses. In brief, our findings provide a novel perspective on the origin and evolutionary history of plant HvHMTs and HvHDMs, and lay a foundation for further investigation of their functions in barley.
Collapse
Affiliation(s)
- Bingzhuang An
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Haiya Cai
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Bo Li
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Shuo Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yonggang He
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Rong Wang
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Chunhai Jiao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Ying Guo
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Le Xu
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Ministry of Agriculture and Rural Affairs for Crop Molecular Breeding, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Scientific Observation and Experiment Station for Crop Gene Resources and Germplasm Enhancement in Hubei, Ministry of Agriculture and Rural Affairs, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
3
|
Cheng YZ, He GQ, Yang SD, Ma SH, Ma JP, Shang FHZ, Li XF, Jin HY, Guo DL. Genome-wide identification and expression analysis of JmjC domain-containing genes in grape under MTA treatment. Funct Integr Genomics 2022; 22:783-795. [PMID: 35854188 DOI: 10.1007/s10142-022-00885-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 12/31/2022]
Abstract
Histone demethylases containing the JmjC domain play an extremely important role in maintaining the homeostasis of histone methylation and are closely related to plant growth and development. Currently, the JmjC domain-containing proteins have been reported in many species; however, they have not been systematically studied in grapes. In this paper, 21 VviJMJ gene family members were identified from the whole grape genome, and the VviJMJ genes were classified into five subfamilies: KDM3, KDM4, KDM5, JMJD6, and JMJ-only based on the phylogenetic relationship and structural features of Arabidopsis and grape. After that, the conserved sites of VviJMJ genes were revealed by protein sequence analysis. In addition, chromosomal localization and gene structure analysis revealed the heterogeneous distribution of VviJMJ genes on grape chromosomes and the structural features of VviJMJ genes, respectively. Analysis of promoter cis-acting elements demonstrated numerous hormone, light, and stress response elements in the promoter region of the VviJMJ genes. Subsequently, the grape fruit was treated with MTA (an H3K4 methylation inhibitor), which significantly resulted in the early ripening of grape fruits. The qRT-PCR analysis showed that VviJMJ genes (except VviJMJ13c) had different expression patterns during grape fruit development. The expression of VviJMJ genes in the treatment group was significantly higher than that in the control group. The results indicate that VviJMJ genes are closely related to grape fruit ripening.
Collapse
Affiliation(s)
- Yi-Zhe Cheng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Guang-Qi He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Sheng-Di Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Shuai-Hui Ma
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Jin-Ping Ma
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Fang-Hui-Zi Shang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Xu-Fei Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Hui-Ying Jin
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China. .,Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
4
|
Xiao M, Wang J, Xu F. Methylation hallmarks on the histone tail as a linker of osmotic stress and gene transcription. FRONTIERS IN PLANT SCIENCE 2022; 13:967607. [PMID: 36035677 PMCID: PMC9399788 DOI: 10.3389/fpls.2022.967607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 06/12/2023]
Abstract
Plants dynamically manipulate their gene expression in acclimation to the challenging environment. Hereinto, the histone methylation tunes the gene transcription via modulation of the chromatin accessibility to transcription machinery. Osmotic stress, which is caused by water deprivation or high concentration of ions, can trigger remarkable changes in histone methylation landscape and genome-wide reprogramming of transcription. However, the dynamic regulation of genes, especially how stress-inducible genes are timely epi-regulated by histone methylation remains largely unclear. In this review, recent findings on the interaction between histone (de)methylation and osmotic stress were summarized, with emphasis on the effects on histone methylation profiles imposed by stress and how histone methylation works to optimize the performance of plants under stress.
Collapse
|
5
|
Ali S, Khan N, Tang Y. Epigenetic marks for mitigating abiotic stresses in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153740. [PMID: 35716656 DOI: 10.1016/j.jplph.2022.153740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/02/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stressors are one of the major factors affecting agricultural output. Plants have evolved adaptive systems to respond appropriately to various environmental cues. These responses can be accomplished by modulating or fine-tuning genetic and epigenetic regulatory mechanisms. Understanding the response of plants' molecular features to abiotic stress is a priority in the current period of continued environmental changes. Epigenetic modifications are necessary that control gene expression by changing chromatin status and recruiting various transcription regulators. The present study summarized the current knowledge on epigenetic modifications concerning plant responses to various environmental stressors. The functional relevance of epigenetic marks in regulating stress tolerance has been revealed, and epigenetic changes impact the effector genes. This study looks at the epigenetic mechanisms that govern plant abiotic stress responses, especially DNA methylation, histone methylation/acetylation, chromatin remodeling, and various metabolites. Plant breeders will benefit from a thorough understanding of these processes to create alternative crop improvement approaches. Genome editing with clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) provides genetic tools to make agricultural genetic engineering more sustainable and publicly acceptable.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, FL, 32611, USA
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
6
|
Zhao W, Wang X, Zhang Q, Zheng Q, Yao H, Gu X, Liu D, Tian X, Wang X, Li Y, Zhu Z. H3K36 demethylase JMJ710 negatively regulates drought tolerance by suppressing MYB48-1 expression in rice. PLANT PHYSIOLOGY 2022; 189:1050-1064. [PMID: 35253881 PMCID: PMC9157158 DOI: 10.1093/plphys/kiac095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/31/2022] [Indexed: 05/14/2023]
Abstract
The homeostasis of histone methylation is maintained by histone methyltransferases and demethylases, which are important for the regulation of gene expression. Here, we report a histone demethylase from rice (Oryza sativa), Jumonji C domain-containing protein (JMJ710), which belongs to the JMJD6 group and plays an important role in the response to drought stress. Overexpression of JMJ710 causes a drought-sensitive phenotype, while RNAi and clustered regularly interspaced short palindromic repeats (CRISPR)-knockout mutant lines show drought tolerance. In vitro and in vivo assays showed that JMJ710 is a histone demethylase. It targets to MYB TRANSCRIPTION FACTOR 48 (MYB48-1) chromatin, demethylates H3K36me2, and negatively regulates the expression of MYB48-1, a positive regulator of drought tolerance. Under drought stress, JMJ710 is downregulated and the expression of MYB48-1 increases, and the subsequent activation of its downstream drought-responsive genes leads to drought tolerance. This research reports a negative regulator of drought stress-responsive genes, JMJ710, that ensures that the drought tolerance mechanism is not mis-activated under normal conditions but allows quick activation upon drought stress.
Collapse
Affiliation(s)
- Weijie Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaoyan Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qian Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qian Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Haitao Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiangyang Gu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Dongliang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xuemin Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaoji Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yongqing Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
- Author for correspondence:
| |
Collapse
|
7
|
Wang K, Yang C, Li H, Liu X, Zheng M, Xuan Z, Mei Z, Wang H. Role of the Epigenetic Modifier JMJD6 in Tumor Development and Regulation of Immune Response. Front Immunol 2022; 13:859893. [PMID: 35359945 PMCID: PMC8963961 DOI: 10.3389/fimmu.2022.859893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
JMJD6 is a member of the Jumonji (JMJC) domain family of histone demethylases that contributes to catalyzing the demethylation of H3R2me2 and/or H4R3me2 and regulating the expression of specific genes. JMJD6-mediated demethylation modifications are involved in the regulation of transcription, chromatin structure, epigenetics, and genome integrity. The abnormal expression of JMJD6 is associated with the occurrence and development of a variety of tumors, including breast carcinoma, lung carcinoma, colon carcinoma, glioma, prostate carcinoma, melanoma, liver carcinoma, etc. Besides, JMJD6 regulates the innate immune response and affects many biological functions, as well as may play key roles in the regulation of immune response in tumors. Given the importance of epigenetic function in tumors, targeting JMJD6 gene by modulating the role of immune components in tumorigenesis and its development will contribute to the development of a promising strategy for cancer therapy. In this article, we introduce the structure and biological activities of JMJD6, followed by summarizing its roles in tumorigenesis and tumor development. Importantly, we highlight the potential functions of JMJD6 in the regulation of tumor immune response, as well as the development of JMJD6 targeted small-molecule inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan, China
| | - Haibin Li
- Department of Pharmacy, 908th Hospital of Chinese PLA Joint Logistic Support Force, Yingtan, China
| | - Xiaoyan Liu
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Zixue Xuan
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Zixue Xuan, ; Zhiqiang Mei, ; Haiyong Wang,
| | - Zhiqiang Mei
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Zixue Xuan, ; Zhiqiang Mei, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Zixue Xuan, ; Zhiqiang Mei, ; Haiyong Wang,
| |
Collapse
|