1
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
2
|
Yue J, Tan Y, Wei R, Wang X, Mubeen S, Chen C, Cao S, Wang C, Chen P. Genome-wide identification of bHLH transcription factors in Kenaf ( Hibiscus cannabinus L.) and gene function analysis of HcbHLH88. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1517-1532. [PMID: 39310705 PMCID: PMC11413277 DOI: 10.1007/s12298-024-01504-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024]
Abstract
Among plants' transcription factor families, the bHLHs family has a significant influence on plant development processes and stress tolerance. However, there have been no relevant studies performed on the bHLHs family in kenaf (Hibiscus cannabinus L). Here, the bHLH transcription factors in kenaf were found using bioinformatics, and a total of 141 kenaf HcbHLH transcription factors were identified. Phylogenetic analysis revealed that these transcription factors were irregularly distributed on 18 chromosomes and separated into 20 subfamilies. Additionally, utilizing the transcriptome data under diverse abiotic pressures, the expression of HcbHLH members was analyzed under different stress conditions. A typical HcbHLH abiotic stress transcription factor, HcbHLH88, was exposed to salt, drought, heavy metals, and ABA. The findings revealed that HcbHLH88 might be activated under salt, drought, cadmium stress, and ABA conditions. Furthermore, HcbHLH88's function under salt stress conditions was studied after it was silenced using the virus-induced gene silencing (VIGS) technique. Reduced antioxidant enzyme activity and stunted plant development were seen in VIGS-silenced seedlings. Stress-related genes were shown to be considerably downregulated in the HcbHLH88-silenced kenaf plants, according to the qRT-PCR study. In conclusion, this study provides the first systematic gene family analysis of the kenaf bHLH gene family and provides a preliminary validation of the salt tolerance function of the HcbHLH88 gene. This study lays the foundation for future research on the regulatory mechanisms of bHLH genes in response to abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01504-y.
Collapse
Affiliation(s)
- Jiao Yue
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Yuqi Tan
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Rujian Wei
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Xu Wang
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Samavia Mubeen
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Canni Chen
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Shan Cao
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Caijin Wang
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| | - Peng Chen
- College of Agriculture, Guangxi University, Nanning, 530004 China
- Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Nanning, 530004 China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, Nanning, 530004 China
| |
Collapse
|
3
|
Yan T, Shu X, Ning C, Li Y, Wang Z, Wang T, Zhuang W. Functions and Regulatory Mechanisms of bHLH Transcription Factors during the Responses to Biotic and Abiotic Stresses in Woody Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2315. [PMID: 39204751 PMCID: PMC11360703 DOI: 10.3390/plants13162315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Environmental stresses, including abiotic and biotic stresses, have complex and diverse effects on the growth and development of woody plants, which have become a matter of contention due to concerns about the outcomes of climate change on plant resources, genetic diversity, and world food safety. Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes and play an important role in biotic and abiotic stress responses of woody plants. In recent years, an increasing body of studies have been conducted on the bHLH TFs in woody plants, and the roles of bHLH TFs in response to various stresses are increasingly clear and precise. Therefore, it is necessary to conduct a systematic and comprehensive review of the progress of the research of woody plants. In this review, the structural characteristics, research history and roles in the plant growth process of bHLH TFs are summarized, the gene families of bHLH TFs in woody plants are summarized, and the roles of bHLH TFs in biotic and abiotic stresses in woody plants are highlighted. Numerous studies mentioned in this review have shown that bHLH transcription factors play a crucial role in the response of woody plants to biotic and abiotic stresses. This review serves as a reference for further studies about enhancing the stress resistance and breeding of woody plants. Also, the future possible research directions of bHLH TFs in response to various stresses in woody plants will be discussed.
Collapse
Affiliation(s)
- Tengyue Yan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Xiaochun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Chuanli Ning
- Yantai Agricultural Technology Extension Center, Yantai 264001, China
| | - Yuhang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| |
Collapse
|
4
|
Wang Y, Chen L, Yao Y, Chen L, Cui Y, An L, Li X, Bai Y, Yao X, Wu K. Investigating the regulatory role of HvANT2 in anthocyanin biosynthesis through protein-motif interaction in Qingke. PeerJ 2024; 12:e17736. [PMID: 39006012 PMCID: PMC11246018 DOI: 10.7717/peerj.17736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Background Currently, there are no reports on the HvbHLH gene family in the recent barley genome (Morex_V3). Furthermore, the structural genes related to anthocyanin synthesis that interact with HvANT2 have yet to be fully identified. Methods In this study, a bioinformatics approach was used to systematically analyze the HvbHLH gene family. The expression of this gene family was analyzed through RNA sequencing (RNA-seq), and the gene with the most significant expression level, HvANT2, was analyzed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) in different tissues of two differently colored varieties. Finally, structural genes related to anthocyanin synthesis and their interactions with HvANT2 were verified using a yeast one-hybrid (Y1H) assay. Results The study identified 161 bHLH genes, designated as HvbHLH1 to HvbHLH161, from the most recent barley genome available. Evolutionary tree analysis categorized barley bHLH TFs into 21 subfamilies, demonstrating a pronounced similarity to rice and maize. Through RNA-Seq analysis of purple and white grain Qingke, we discovered a significant transcription factor (TF), HvANT2 (HvbHLH78), associated with anthocyanin biosynthesis. Subsequently, HvANT2 protein-motifs interaction assays revealed 41 interacting motifs, three of which were validated through Y1H experiments. These validated motifs were found in the promoter regions of key structural genes (CHI, F3'H, and GT) integral to the anthocyanin synthesis pathway. These findings provide substantial evidence for the pivotal role of HvANT2 TF in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Yan Wang
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Lin Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Youhua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Lupeng Chen
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Yongmei Cui
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Likun An
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Xin Li
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Yixiong Bai
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Xiaohua Yao
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| | - Kunlun Wu
- Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Xining, Qinghai, China
- Qinghai Key Laboratory of Hulless Barley Genetics and Breeding, Xining, Qinghai, China
- Qinghai Subcenter of National Hulless Barley Improvement, Xining, Qinghai, China
| |
Collapse
|
5
|
Guo Y, Wang Z, Jiao Z, Yuan G, Cui L, Duan P, Niu J, Lv P, Wang J, Shi Y. Genome-Wide Identification of Sorghum Paclobutrazol-Resistance Gene Family and Functional Characterization of SbPRE4 in Response to Aphid Stress. Int J Mol Sci 2024; 25:7257. [PMID: 39000365 PMCID: PMC11241634 DOI: 10.3390/ijms25137257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Sorghum (Sorghum bicolor), the fifth most important cereal crop globally, serves as a staple food, animal feed, and a bioenergy source. Paclobutrazol-Resistance (PRE) genes play a pivotal role in the response to environmental stress, yet the understanding of their involvement in pest resistance remains limited. In the present study, a total of seven SbPRE genes were found within the sorghum BTx623 genome. Subsequently, their genomic location was studied, and they were distributed on four chromosomes. An analysis of cis-acting elements in SbPRE promoters revealed that various elements were associated with hormones and stress responses. Expression pattern analysis showed differentially tissue-specific expression profiles among SbPRE genes. The expression of some SbPRE genes can be induced by abiotic stress and aphid treatments. Furthermore, through phytohormones and transgenic analyses, we demonstrated that SbPRE4 improves sorghum resistance to aphids by accumulating jasmonic acids (JAs) in transgenic Arabidopsis, giving insights into the molecular and biological function of atypical basic helix-loop-helix (bHLH) transcription factors in sorghum pest resistance.
Collapse
Affiliation(s)
- Yongchao Guo
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| | - Zhifang Wang
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| | - Zhiyin Jiao
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| | - Guang Yuan
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| | - Li Cui
- Hebei Plant Protection and Plant Inspection Station, Shijiazhuang 050035, China;
| | - Pengwei Duan
- Hebei Academy of Agriculture & Forestry Sciences, Shijiazhuang 050035, China;
| | - Jingtian Niu
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| | - Peng Lv
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| | - Jinping Wang
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| | - Yannan Shi
- Institute of Millet Crops, Hebei Academy of Agriculture & Forestry Sciences/Hebei Branch of China National Sorghum Improvement Center, Shijiazhuang 050035, China; (Y.G.); (Z.W.); (Z.J.); (G.Y.); (J.N.); (P.L.)
| |
Collapse
|
6
|
Fan Y, Guo Y, Zhang H, Han R, Yang P, Liang Z, Zhang L, Zhang B. Genome-wide identification of the MED25 BINDING RING-H2 PROTEIN gene family in foxtail millet (Setaria italica L.) and the role of SiMBR2 in resistance to abiotic stress in Arabidopsis. PLANTA 2024; 260:22. [PMID: 38847958 DOI: 10.1007/s00425-024-04455-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/02/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION The SiMBR genes in foxtail millet were identified and studied. Heterologous expression of SiMBR2 in Arabidopsis can improve plant tolerance to drought stress by decreasing the level of reactive oxygen species. Foxtail millet (Setaria italica L.), a C4 crop recognized for its exceptional resistance to drought stress, presents an opportunity to improve the genetic resilience of other crops by examining its unique stress response genes and understanding the underlying molecular mechanisms of drought tolerance. In our previous study, we identified several genes linked to drought stress by transcriptome analysis, including SiMBR2 (Seita.7G226600), a member of the MED25 BINDING RING-H2 PROTEIN (MBR) gene family, which is related to protein ubiquitination. Here, we have identified ten SiMBR genes in foxtail millet and conducted analyses of their structural characteristics, chromosomal locations, cis-acting regulatory elements within their promoters, and predicted transcription patterns specific to various tissues or developmental stages using bioinformatic approaches. Further investigation of the stress response of SiMBR2 revealed that its transcription is induced by treatments with salicylic acid and gibberellic acid, as well as by salt and osmotic stresses, while exposure to high or low temperatures led to a decrease in its transcription levels. Heterologous expression of SiMBR2 in Arabidopsis thaliana enhanced the plant's tolerance to water deficit by reducing the accumulation of reactive oxygen species under drought stress. In summary, this study provides support for exploring the molecular mechanisms associated with drought resistance of SiMBR genes in foxtail millet and contributing to genetic improvement and molecular breeding in other crops.
Collapse
Affiliation(s)
- Yimin Fan
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Yue Guo
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Haiying Zhang
- College of Agriculture, Shanxi Agricultural University, Taiyuan, 030006, China
| | - Rui Han
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Pu Yang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Zhen Liang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| | - Ben Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
- State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
7
|
Sun Y, Wang X, Di Y, Li J, Li K, Wei H, Zhang F, Su Z. Systematic Analysis of DNA Demethylase Gene Families in Foxtail Millet ( Setaria italica L.) and Their Expression Variations after Abiotic Stresses. Int J Mol Sci 2024; 25:4464. [PMID: 38674049 PMCID: PMC11050331 DOI: 10.3390/ijms25084464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
DNA methylation is a highly conserved epigenetic modification involved in many biological processes, including growth and development, stress response, and secondary metabolism. DNA demethylase (DNA-deMTase) genes have been identified in some plant species; however, there are no reports on the identification and analysis of DNA-deMTase genes in Foxtail millet (Setaria italica L.). In this study, seven DNA-deMTases were identified in S. italica. These DNA-deMTase genes were divided into four subfamilies (DML5, DML4, DML3, and ROS1) by phylogenetic and gene structure analysis. Further analysis shows that the physical and chemical properties of these DNA-deMTases proteins are similar, contain the typical conserved domains of ENCO3c and are located in the nucleus. Furthermore, multiple cis-acting elements were observed in DNA-deMTases, including light responsiveness, phytohormone responsiveness, stress responsiveness, and elements related to plant growth and development. The DNA-deMTase genes are expressed in all tissues detected with certain tissue specificity. Then, we investigated the abundance of DNA-deMTase transcripts under abiotic stresses (cold, drought, salt, ABA, and MeJA). The results showed that different genes of DNA-deMTases were involved in the regulation of different abiotic stresses. In total, our findings will provide a basis for the roles of DNA-deMTase in response to abiotic stress.
Collapse
Affiliation(s)
- Yingying Sun
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Xin Wang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Yunfei Di
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Jinxiu Li
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Keyu Li
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Huanhuan Wei
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Fan Zhang
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
| | - Zhenxia Su
- College of Life Sciences, Shanxi University, Taiyuan 030006, China; (Y.S.); (X.W.); (Y.D.); (J.L.); (K.L.); (H.W.); (F.Z.)
- Xinghuacun College (Shanxi Institute of Brewing Technology and Industry), Shanxi University, Taiyuan 030006, China
| |
Collapse
|
8
|
Prusty A, Panchal A, Singh RK, Prasad M. Major transcription factor families at the nexus of regulating abiotic stress response in millets: a comprehensive review. PLANTA 2024; 259:118. [PMID: 38592589 DOI: 10.1007/s00425-024-04394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Millets stand out as a sustainable crop with the potential to address the issues of food insecurity and malnutrition. These small-seeded, drought-resistant cereals have adapted to survive a broad spectrum of abiotic stresses. Researchers are keen on unravelling the regulatory mechanisms that empower millets to withstand environmental adversities. The aim is to leverage these identified genetic determinants from millets for enhancing the stress tolerance of major cereal crops through genetic engineering or breeding. This review sheds light on transcription factors (TFs) that govern diverse abiotic stress responses and play role in conferring tolerance to various abiotic stresses in millets. Specifically, the molecular functions and expression patterns of investigated TFs from various families, including bHLH, bZIP, DREB, HSF, MYB, NAC, NF-Y and WRKY, are comprehensively discussed. It also explores the potential of TFs in developing stress-tolerant crops, presenting a comprehensive discussion on diverse strategies for their integration.
Collapse
Affiliation(s)
- Ankita Prusty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Panchal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Roshan Kumar Singh
- Department of Botany, Mahishadal Raj College, Purba Medinipur, Garh Kamalpur, West Bengal, 721628, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Genetics, University of Delhi, South Campus, Benito-Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
9
|
Chen X, Yao C, Liu J, Liu J, Fang J, Deng H, Yao Q, Kang T, Guo X. Basic helix-loop-helix (bHLH) gene family in rye (Secale cereale L.): genome-wide identification, phylogeny, evolutionary expansion and expression analyses. BMC Genomics 2024; 25:67. [PMID: 38233751 PMCID: PMC10792839 DOI: 10.1186/s12864-023-09911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Rye (Secale cereale), one of the drought and cold-tolerant crops, is an important component of the Triticae Dumortier family of Gramineae plants. Basic helix-loop-helix (bHLH), an important family of transcription factors, has played pivotal roles in regulating numerous intriguing biological processes in plant development and abiotic stress responses. However, no systemic analysis of the bHLH transcription factor family has yet been reported in rye. RESULTS In this study, 220 bHLH genes in S. cereale (ScbHLHs) were identified and named based on the chromosomal location. The evolutionary relationships, classifications, gene structures, motif compositions, chromosome localization, and gene replication events in these ScbHLH genes are systematically analyzed. These 220 ScbHLH members are divided into 21 subfamilies and one unclassified gene. Throughout evolution, the subfamilies 5, 9, and 18 may have experienced stronger expansion. The segmental duplications may have contributed significantly to the expansion of the bHLH family. To systematically analyze the evolutionary relationships of the bHLH family in different plants, we constructed six comparative genomic maps of homologous genes between rye and different representative monocotyledonous and dicotyledonous plants. Finally, the gene expression response characteristics of 22 ScbHLH genes in various biological processes and stress responses were analyzed. Some candidate genes, such as ScbHLH11, ScbHLH48, and ScbHLH172, related to tissue developments and environmental stresses were screened. CONCLUSIONS The results indicate that these ScbHLH genes exhibit characteristic expression in different tissues, grain development stages, and stress treatments. These findings provided a basis for a comprehensive understanding of the bHLH family in rye.
Collapse
Affiliation(s)
- Xingyu Chen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Caimei Yao
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Jiahao Liu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Jintao Liu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Jingmei Fang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Hong Deng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Qian Yao
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China
| | - Tairan Kang
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, PR China.
| | - Xiaoqiang Guo
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China.
| |
Collapse
|
10
|
Li J, Chen S, Yin Y, Shan Q, Zheng C, Chen Y. Genome-Wide Analysis of bHLH Family Genes and Identification of Members Associated with Cold/Drought-Induced Photoinhibition in Kandelia obovata. Int J Mol Sci 2023; 24:15942. [PMID: 37958925 PMCID: PMC10647802 DOI: 10.3390/ijms242115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Plant basic helix-loop-helix (bHLH) transcription factors play pivotal roles in responding to stress, including cold and drought. However, it remains unclear how bHLH family genes respond to these stresses in Kandelia obovata. In this study, we identified 75 bHLH members in K. obovata, classified into 11 subfamilies and unevenly distributed across its 18 chromosomes. Collineation analysis revealed that segmental duplication primarily drove the expansion of KobHLH genes. The KobHLH promoters were enriched with elements associated with light response. Through RNA-seq, we identified several cold/drought-associated KobHLH genes. This correlated with decreased net photosynthetic rates (Pn) in the leaves of cold/drought-treated plants. Weighted gene co-expression network analysis (WGCNA) confirmed that 11 KobHLH genes were closely linked to photoinhibition in photosystem II (PS II). Among them, four Phytochrome Interacting Factors (PIFs) involved in chlorophyll metabolism were significantly down-regulated. Subcellular localization showed that KobHLH52 and KobHLH30 were located in the nucleus. Overall, we have comprehensively analyzed the KobHLH family and identified several members associated with photoinhibition under cold or drought stress, which may be helpfulfor further cold/drought-tolerance enhancement and molecular breeding through genetic engineering in K. obovata.
Collapse
Affiliation(s)
- Junjian Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Siyi Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaxin Yin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qiaobo Shan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Chunfang Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yan Chen
- College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
- Forestry College, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
11
|
Liu Q, Wen J, Wang S, Chen J, Sun Y, Liu Q, Li X, Dong S. Genome-wide identification, expression analysis, and potential roles under low-temperature stress of bHLH gene family in Prunus sibirica. FRONTIERS IN PLANT SCIENCE 2023; 14:1267107. [PMID: 37799546 PMCID: PMC10548393 DOI: 10.3389/fpls.2023.1267107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
The basic helix-loop-helix (bHLH) family is one of the most well-known transcription factor families in plants, and it regulates growth, development, and abiotic stress responses. However, systematic analyses of the bHLH gene family in Prunus sibirica have not been reported to date. In this study, 104 PsbHLHs were identified and classified into 23 subfamilies that were unevenly distributed on eight chromosomes. Nineteen pairs of segmental replication genes and ten pairs of tandem replication genes were identified, and all duplicated gene pairs were under purifying selection. PsbHLHs of the same subfamily usually share similar motif compositions and exon-intron structures. PsbHLHs contain multiple stress-responsive elements. PsbHLHs exhibit functional diversity by interacting and coordinating with other members. Twenty PsbHLHs showed varying degrees of expression. Eleven genes up-regulated and nine genes down-regulated in -4°C. The majority of PsbHLHs were highly expressed in the roots and pistils. Transient transfection experiments demonstrated that transgenic plants with overexpressed PsbHLH42 have better cold tolerance. In conclusion, the results of this study have significant implications for future research on the involvement of bHLH genes in the development and stress responses of Prunus sibirica.
Collapse
Affiliation(s)
- Quangang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Jiaxing Wen
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Shipeng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Yongqiang Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Qingbai Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Xi Li
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
12
|
Xue G, Fan Y, Zheng C, Yang H, Feng L, Chen X, Yang Y, Yao X, Weng W, Kong L, Liu C, Cheng J, Ruan J. bHLH transcription factor family identification, phylogeny, and its response to abiotic stress in Chenopodium quinoa. FRONTIERS IN PLANT SCIENCE 2023; 14:1171518. [PMID: 37476176 PMCID: PMC10355129 DOI: 10.3389/fpls.2023.1171518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 07/22/2023]
Abstract
The second-largest transcription factor superfamily in plants is that of the basic helix-loop-helix (bHLH) family, which plays an important complex physiological role in plant growth, tissue development, and environmental adaptation. Systematic research on the Chenopodium quinoa bHLH family will enable a better understanding of this species. Herein, authors used a variety of bioinformatics methods and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) to explore the evolution and function of the 218 CqbHLH genes identified. A total of 218 CqbHLH transcription factor genes were identified in the whole genome, located on 18 chromosomes. A phylogenetic tree was constructed using the CqbHLH and AtbHLH proteins to determine their homology, and the members were divided into 20 subgroups and one unclustered gene. Authors also analyzed 218 CqbHLH genes, conservative motifs, chromosome diffusion, and gene replication. The author constructed one Neighbor-Joining (NJ) tree and a collinearity analysis map of the bHLH family in C. quinoa and six other plant species to study the evolutionary relationship and homology among multiple species. In addition, the expression levels of 20 CqbHLH members from different subgroups in various tissues, different fruit developmental stages, and six abiotic stresses were analyzed. Authors identified 218 CqbHLH genes and studied their biological functions, providing a basis for better understanding and further studying the bHLH family in quinoa.
Collapse
Affiliation(s)
- Guoxing Xue
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, China
| | - Chunyu Zheng
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, China
| | - Hao Yang
- Agricultural Service Center of Langde Town, Kaili, Guizhou, China
| | - Liang Feng
- Chengdu Institute of Food Inspection, Chengdu, Sichuan, China
| | - Xingyu Chen
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Yanqi Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Xin Yao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Wenfeng Weng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Lingyan Kong
- The First Senior Middle School of Yuanyang County, Xinxiang, Henan, China
| | - Chuang Liu
- Henan Institute of Technology, Xinxiang, Henan, China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Alsamman AM, Abdelsattar M, El Allali A, Radwan KH, Nassar AE, Mousa KH, Hussein A, Mokhtar MM, Abd El-Maksoud MM, Istanbuli T, Kehel Z, Hamwieh A. Genome-wide identification, characterization, and validation of the bHLH transcription factors in grass pea. Front Genet 2023; 14:1128992. [PMID: 37021003 PMCID: PMC10067732 DOI: 10.3389/fgene.2023.1128992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/02/2023] [Indexed: 03/22/2023] Open
Abstract
Background: The basic helix-loop-helix (bHLH) transcription factor is a vital component in plant biology, with a significant impact on various aspects of plant growth, cell development, and physiological processes. Grass pea is a vital agricultural crop that plays a crucial role in food security. However, the lack of genomic information presents a major challenge to its improvement and development. This highlights the urgency for deeper investigation into the function of bHLH genes in grass pea to improve our understanding of this important crop.Results: The identification of bHLH genes in grass pea was performed on a genome-wide scale using genomic and transcriptomic screening. A total of 122 genes were identified as having conserved bHLH domains and were functionally and fully annotated. The LsbHLH proteins could be classified into 18 subfamilies. There were variations in intron-exon distribution, with some genes lacking introns. The cis-element and gene enrichment analyses showed that the LsbHLHs were involved in various plant functions, including response to phytohormones, flower and fruit development, and anthocyanin synthesis. A total of 28 LsbHLHs were found to have cis-elements associated with light response and endosperm expression biosynthesis. Ten conserved motifs were identified across the LsbHLH proteins. The protein-protein interaction analysis showed that all LsbHLH proteins interacted with each other, and nine of them displayed high levels of interaction. RNA-seq analysis of four Sequence Read Archive (SRA) experiments showed high expression levels of LsbHLHs across a range of environmental conditions. Seven highly expressed genes were selected for qPCR validation, and their expression patterns in response to salt stress showed that LsbHLHD4, LsbHLHD5, LsbHLHR6, LsbHLHD8, LsbHLHR14, LsbHLHR68, and LsbHLHR86 were all expressed in response to salt stress.Conclusion: The study provides an overview of the bHLH family in the grass pea genome and sheds light on the molecular mechanisms underlying the growth and evolution of this crop. The report covers the diversity in gene structure, expression patterns, and potential roles in regulating plant growth and response to environmental stress factors in grass pea. The identified candidate LsbHLHs could be utilized as a tool to enhance the resilience and adaptation of grass pea to environmental stress.
Collapse
Affiliation(s)
- Alsamman M. Alsamman
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Mohamed Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- *Correspondence: Achraf El Allali, ; Aladdin Hamwieh,
| | - Khaled H. Radwan
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- National Biotechnology Network of Expertise, ASRT, Cairo, Egypt
| | - Ahmed E. Nassar
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Khaled H. Mousa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
| | - Ahmed Hussein
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Morad M. Mokhtar
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | | | - Tawffiq Istanbuli
- International Center for Agricultural Research in the Dry Areas (ICARDA), Terbol, Lebanon
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Aladdin Hamwieh
- International Center for Agricultural Research in the Dry Areas (ICARDA), Giza, Egypt
- *Correspondence: Achraf El Allali, ; Aladdin Hamwieh,
| |
Collapse
|
14
|
Lu X, Zhang H, Hu J, Nie G, Khan I, Feng G, Zhang X, Wang X, Huang L. Genome-wide identification and characterization of bHLH family genes from orchardgrass and the functional characterization of DgbHLH46 and DgbHLH128 in drought and salt tolerance. Funct Integr Genomics 2022; 22:1331-1344. [PMID: 35941266 DOI: 10.1007/s10142-022-00890-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Abstract
Basic helix-loop-helix (bHLH) is the second largest family of transcription factors that widely exist in plants and animals, and plays a key role in a variety of biological processes. As an important forage crop worldwide, little information is available about the bHLH family in orchardgrass (Dactylis glomerata L.), although a huge number of bHLH family have been identified and characterized in plants. In this study, we performed genome-wide analysis of bHLH transcription factor family of orchardgrass and identified 132 DgbHLH genes. The phylogenetic tree was constructed by using bHLH proteins of orchardgrass, with Arabidopsis thaliana and Oryza sativa bHLH proteins, to elucidate their homology and classify them into 22 subfamilies. The results of conserved motifs and gene structure support the classification of DgbHLH family. In addition, chromosomal location and gene duplication events of DgbHLH genes were further studied. Transcriptome data exhibited that DgbHLH genes were differentially expressed in different tissues of orchardgrass. We analyzed the gene expression level of 12 DgbHLH genes in orchardgrass under three types of abiotic stresses (heat, salt, and drought). Finally, heterologous expression assays in yeast indicated that DgbHLH46 and DgbHLH128 may enhance the resistance to drought and salt stress. Furthermore, DgbHLH128 may also be involved in abiotic stress by binding to the MYC element. Our study provides a comprehensive assessment of DgbHLH family of orchardgrass, revealing new insights for enhancing gene utilization and improving forage performance.
Collapse
Affiliation(s)
- Xiaowen Lu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jialing Hu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Imran Khan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
15
|
Genome‑wide identification, phylogenetic and expression pattern analysis of GATA family genes in foxtail millet (Setaria italica). BMC Genomics 2022; 23:549. [PMID: 35918632 PMCID: PMC9347092 DOI: 10.1186/s12864-022-08786-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022] Open
Abstract
Background Transcription factors (TFs) play important roles in plants. Among the major TFs, GATA plays a crucial role in plant development, growth, and stress responses. However, there have been few studies on the GATA gene family in foxtail millet (Setaria italica). The release of the foxtail millet reference genome presents an opportunity for the genome-wide characterization of these GATA genes. Results In this study, we identified 28 GATA genes in foxtail millet distributed on seven chromosomes. According to the classification method of GATA members in Arabidopsis, SiGATA was divided into four subfamilies, namely subfamilies I, II, III, and IV. Structural analysis of the SiGATA genes showed that subfamily III had more introns than other subfamilies, and a large number of cis-acting elements were abundant in the promoter region of the SiGATA genes. Three tandem duplications and five segmental duplications were found among SiGATA genes. Tissue-specific results showed that the SiGATA genes were mainly expressed in foxtail millet leaves, followed by peels and seeds. Many genes were significantly induced under the eight abiotic stresses, such as SiGATA10, SiGATA16, SiGATA18, and SiGATA25, which deserve further attention. Conclusions Collectively, these findings will be helpful for further in-depth studies of the biological function of SiGATA, and will provide a reference for the future molecular breeding of foxtail millet. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08786-0.
Collapse
|