1
|
de Santana SF, Santos VC, Lopes ÍS, Porto JAM, Mora-Ocampo IY, Sodré GA, Pirovani CP, Góes-Neto A, Pacheco LGC, Fonseca PLC, Costa MA, Aguiar ERGR. Mining Public Data to Investigate the Virome of Neglected Pollinators and Other Floral Visitors. Viruses 2023; 15:1850. [PMID: 37766257 PMCID: PMC10535300 DOI: 10.3390/v15091850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/31/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
This study reports the virome investigation of pollinator species and other floral visitors associated with plants from the south of Bahia: Aphis aurantii, Atrichopogon sp., Dasyhelea sp., Forcipomyia taiwana, and Trigona ventralis hoozana. Studying viruses in insects associated with economically important crops is vital to understand transmission dynamics and manage viral diseases that pose as threats for global food security. Using literature mining and public RNA next-generation sequencing data deposited in the NCBI SRA database, we identified potential vectors associated with Malvaceae plant species and characterized the microbial communities resident in these insects. Bacteria and Eukarya dominated the metagenomic analyses of all taxon groups. We also found sequences showing similarity to elements from several viral families, including Bunyavirales, Chuviridae, Iflaviridae, Narnaviridae, Orthomyxoviridae, Rhabdoviridae, Totiviridae, and Xinmoviridae. Phylogenetic analyses indicated the existence of at least 16 new viruses distributed among A. aurantii (3), Atrichopogon sp. (4), Dasyhelea sp. (3), and F. taiwana (6). No novel viruses were found for T. ventralis hoozana. For F. taiwana, the available libraries also allowed us to suggest possible vertical transmission, while for A. aurantii we followed the infection profile along the insect development. Our results highlight the importance of studying the virome of insect species associated with crop pollination, as they may play a crucial role in the transmission of viruses to economically important plants, such as those of the genus Theobroma, or they will reduce the pollination process. This information may be valuable in developing strategies to mitigate the spread of viruses and protect the global industry.
Collapse
Affiliation(s)
- Sabrina Ferreira de Santana
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
| | - Vinícius Castro Santos
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (A.G.-N.)
| | - Ícaro Santos Lopes
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (A.G.-N.)
| | - Joel Augusto Moura Porto
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
| | - Irma Yuliana Mora-Ocampo
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
| | - George Andrade Sodré
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
| | - Carlos Priminho Pirovani
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
| | - Aristóteles Góes-Neto
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (A.G.-N.)
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Luis Gustavo Carvalho Pacheco
- Department of Biotechnology, Institute of Health Sciences, Universidade Federal da Bahia, Salvador 40231-300, BA, Brazil
| | - Paula Luize Camargos Fonseca
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
- Department of Genetics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Marco Antônio Costa
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
| | - Eric Roberto Guimarães Rocha Aguiar
- Department of Biological Science, Center of Biotechnology and Genetics, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil; (S.F.d.S.)
| |
Collapse
|
2
|
Evaluation of the Potential Entomopathogenic Fungi Purpureocillium lilacinum and Fusarium verticillioides for Biological Control of Forcipomyia taiwana (Shiraki). J Fungi (Basel) 2022; 8:jof8080861. [PMID: 36012849 PMCID: PMC9410248 DOI: 10.3390/jof8080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Forcipomyia taiwana (Diptera: Ceratopogonidae) is a nuisance blood-sucking pest to humans in Taiwan. An F. taiwana bite causes itching and redness and usually causes serious harassment to human outdoor activity. In terms of F. taiwana control, chemical pesticides are ineffective. Therefore, other efforts are needed. Fungal mycosis in the larvae, pupae, and emerging F. taiwana adults was found during the rearing of F. taiwana. In this study, six fungal isolates were isolated from infected cadavers and subjected to molecular identification. In addition, their biocontrol potential was evaluated against different life stages of F. taiwana. Based on the pathogenicity screening, two fungal isolates, NCHU-NPUST-175 and -178, which caused higher mortality on the fourth instar larvae of F. taiwana, were selected for virulence tests against different life stages of F. taiwana larvae. The results of the phylogenetic analysis indicated that the NCHU-NPUST-175 and -178 belonged to Purpureocillium lilacinum and Fusarium verticillioides, respectively. Bioassay against different life stages of F. taiwana with different spore concentrations (5 × 105 to 5 × 107 conidia/mL) revealed a dose-dependent effect on larvae for both fungal isolates, while only 38% and 50% mortality was found in highest concentration (5 × 107 conidia/mL) at fourth instar larvae by Pl-NCHU-NPUST-175 and Fv-NCHU-NPUST-178, respectively. Moreover, reductions in egg-hatching rate and adult emergence rate were found, when the last stage of F. taiwana was inoculated with both fungal isolates, indicating the ovicidal potential and the impact of entomopathogenic fungi on the development of F. taiwana. In conclusion, Pl-NCHU-NPUST-175 and Fv-NCHU-NPUST-178 showed larvicidal activity, ovicidal activity, and impact on adult emergence on F. taiwana.
Collapse
|