1
|
Zuo DD, Sun HT, Yang L, Zheng ML, Zhang J, Guo DL. Hydrogen peroxide priming triggers splicing memory in grape berries. PLANT MOLECULAR BIOLOGY 2024; 114:129. [PMID: 39607560 DOI: 10.1007/s11103-024-01528-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Plants are highly sensitive to environmental changes, and alternative splicing (AS) has been described in many studies due to its important control role in stress response. Recent studies indicated that plants exhibit splicing memory to stress to effectively activate transcriptional adaptation. Hydrogen peroxide (H2O2), as a reactive oxygen species (ROS), has toxic effects on plants. However, it also has a significant effect on promoting early maturity of 'Kyoho' grape at low concentrations. To explore the mechanism of priming treatment of H2O2 showing better promotion effect, the RNA-Seq data of H2O2-primied and no-primied fruits were analyzed. The genes with H2O2 stress splicing memory were identified, accompanied by changes in H3K4me3 modification levels, and their splicing memory patterns were verified by PCR and agarose gel electrophoresis. This finding establishes a link between alternative splicing memory and fruit ripening under H2O2 regulation and contribute to develop the application of H2O2 in fruit ripening.
Collapse
Affiliation(s)
- Ding-Ding Zuo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Hao-Ting Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Lu Yang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Meng-Ling Zheng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Jing Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.
- Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang, 471023, China.
| |
Collapse
|
2
|
Liu Z, Yang B, Zhang T, Sun H, Mao L, Yang S, Dai X, Suo H, Zhang Z, Chen W, Chen H, Xu W, Dossa K, Zou X, Ou L. Full-length transcriptome sequencing of pepper fruit during development and construction of a transcript variation database. HORTICULTURE RESEARCH 2024; 11:uhae198. [PMID: 39257544 PMCID: PMC11387007 DOI: 10.1093/hr/uhae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 09/12/2024]
Abstract
Chili pepper is an important spice and a model plant for fruit development studies. Large-scale omics information on chili pepper plant development continues to be gathered for understanding development as well as capsaicin biosynthesis. In this study, a full-spectrum transcriptome data of eight chili pepper tissues at five growth stages using the Oxford Nanopore long-read sequencing approach was generated. Of the 485 351 transcripts, 35 336 were recorded as reference transcripts (genes), while 450 015 were novel including coding, lnc, and other non-coding RNAs. These novel transcripts belonged to unknown/intergenic (347703), those retained introns (26336), and had multi-exons with at least one junction match (20333). In terms of alternative splicing, retained intron had the highest proportion (14795). The number of tissue-specific expressed transcripts ranged from 22 925 (stem) to 40 289 (flower). The expression changes during fruit and placenta development are discussed in detail. Integration of gene expression and capsaicin content quantification throughout the placental development clarifies that capsaicin biosynthesis in pepper is mainly derived from valine, leucin, and isoleucine degradation as well as citrate cycle and/or pyrimidine metabolism pathways. Most importantly, a user-friendly Pepper Full-Length Transcriptome Variation Database (PFTVD 1.0) (http://pepper-database.cn/) has been developed. PFTVD 1.0 provides transcriptomics and genomics information and allows users to analyse the data using various tools implemented. This work highlights the potential of long-read sequencing to discover novel genes and transcripts and their diversity in plant developmental biology.
Collapse
Affiliation(s)
- Zhoubin Liu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Bozhi Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | | | - Hao Sun
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Lianzhen Mao
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Sha Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Xiongze Dai
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Huan Suo
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Zhuqing Zhang
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Wenchao Chen
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Hu Chen
- Wuhan Benagen Technology Co., Ltd., Wuhan 430075, China
| | - Wangjie Xu
- Wuhan Benagen Technology Co., Ltd., Wuhan 430075, China
| | - Komivi Dossa
- CIRAD, UMR AGAP Institut, 97170 Petit Bourg, Guadeloupe, France
| | - Xuexiao Zou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| |
Collapse
|
3
|
Wang W, Wei Y, Xu Z, Shen C, Li A, Guan D, Zhang X, Liu B. Evidence Supporting a Role of Alternative Splicing Participates in Melon ( Cucumis melo L.) Fruit Ripening. Int J Mol Sci 2024; 25:5886. [PMID: 38892093 PMCID: PMC11172951 DOI: 10.3390/ijms25115886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
One key post-transcriptional modification mechanism that dynamically controls a number of physiological processes in plants is alternative splicing (AS). However, the functional impacts of AS on fruit ripening remain unclear. In this research, we used RNA-seq data from climacteric (VED, Harukei 3) and non-climacteric (PI, PS) melon cultivars to explore alternative splicing (AS) in immature and mature fruit. The results revealed dramatic changes in differential AS genes (DAG) between the young and mature fruit stages, particularly in genes involved in fruit development/ripening, carotenoid and capsaicinoid biosynthesis, and starch and sucrose metabolism. Serine/arginine-rich (SR) family proteins are known as important splicing factors in AS events. From the melon genome, a total of 17 SR members were discovered in this study. These genes could be classified into eight distinct subfamilies based on gene structure and conserved motifs. Promoter analysis detected various cis-acting regulatory elements involved in hormone pathways and fruit development. Interestingly, these SR genes exhibited specific expression patterns in reproductive organs such as flowers and ovaries. Additionally, concurrent with the increase in AS levels in ripening fruit, the transcripts of these SR genes were activated during fruit maturation in both climacteric and non-climacteric melon varieties. We also found that most SR genes were under selection during domestication. These results represent a novel finding of increased AS levels and SR gene expression during fruit ripening, indicating that alternative splicing may play a role in fruit maturation.
Collapse
Affiliation(s)
- Wenjiao Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.W.); (C.S.)
| | - Yuping Wei
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.W.); (C.S.)
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Zhaoying Xu
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.W.); (C.S.)
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Chengcheng Shen
- College of Horticulture, Shanxi Agricultural University, Jinzhong 030801, China; (Y.W.); (C.S.)
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Ang Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Dailu Guan
- Department of Animal Science, University of California Davis, Davis, CA 95616, USA;
| | - Xuejun Zhang
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Bin Liu
- Hami-Melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| |
Collapse
|
4
|
Zong Y, Zhang F, Wu H, Xia H, Wu J, Tu Z, Yang L, Li H. Comprehensive deciphering the alternative splicing patterns involved in leaf morphogenesis of Liriodendron chinense. BMC PLANT BIOLOGY 2024; 24:250. [PMID: 38580919 PMCID: PMC10998384 DOI: 10.1186/s12870-024-04915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/15/2024] [Indexed: 04/07/2024]
Abstract
Alternative splicing (AS), a pivotal post-transcriptional regulatory mechanism, profoundly amplifies diversity and complexity of transcriptome and proteome. Liriodendron chinense (Hemsl.) Sarg., an excellent ornamental tree species renowned for its distinctive leaf shape, which resembles the mandarin jacket. Despite the documented potential genes related to leaf development of L. chinense, the underlying post-transcriptional regulatory mechanisms remain veiled. Here, we conducted a comprehensive analysis of the transcriptome to clarify the genome-wide landscape of the AS pattern and the spectrum of spliced isoforms during leaf developmental stages in L. chinense. Our investigation unveiled 50,259 AS events, involving 10,685 genes (32.9%), with intron retention as the most prevalent events. Notably, the initial stage of leaf development witnessed the detection of 804 differentially AS events affiliated with 548 genes. Although both differentially alternative splicing genes (DASGs) and differentially expressed genes (DEGs) were enriched into morphogenetic related pathways during the transition from fishhook (P2) to lobed (P7) leaves, there was only a modest degree of overlap between DASGs and DEGs. Furthermore, we conducted a comprehensively AS analysis on homologous genes involved in leaf morphogenesis, and most of which are subject to post-transcriptional regulation of AS. Among them, the AINTEGUMENTA-LIKE transcript factor LcAIL5 was characterization in detailed, which experiences skipping exon (SE), and two transcripts displayed disparate expression patterns across multiple stages. Overall, these findings yield a comprehensive understanding of leaf development regulation via AS, offering a novel perspective for further deciphering the mechanism of plant leaf morphogenesis.
Collapse
Affiliation(s)
- Yaxian Zong
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Fengchao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hainan Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hui Xia
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Junpeng Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhonghua Tu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lichun Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| |
Collapse
|
5
|
Yu H, Bi X, Li Z, Fu X, Li Y, Li Y, Yang Y, Liu D, Li G, Dong W, Hu F. Transcriptomic Analysis of Alternative Splicing Events during Different Fruit Ripening Stages of Coffea arabica L. Genes (Basel) 2024; 15:459. [PMID: 38674393 PMCID: PMC11050144 DOI: 10.3390/genes15040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
To date, genomic and transcriptomic data on Coffea arabica L. in public databases are very limited, and there has been no comprehensive integrated investigation conducted on alternative splicing (AS). Previously, we have constructed and sequenced eighteen RNA-seq libraries of C. arabica at different ripening stages of fruit development. From this dataset, a total of 3824, 2445, 2564, 2990, and 3162 DSGs were identified in a comparison of different fruit ripening stages. The largest proportion of DSGs, approximately 65%, were of the skipped exon (SE) type. Biologically, 9 and 29 differentially expressed DSGs in the spliceosome pathway and carbon metabolism pathway, respectively, were identified. These DSGs exhibited significant variations, primarily in S1 vs. S2 and S5 vs. S6, and they involve many aspects of organ development, hormone transduction, and the synthesis of flavor components. Through the examination of research findings regarding the biological functions and biochemical pathways associated with DSGs and DEGs, it was observed that six DSGs significantly enriched in ABC transporters, namely, LOC113712394, LOC113726618, LOC113739972, LOC113725240, LOC113730214, and LOC113707447, were continually down-regulated at the fruit ripening stage. In contrast, a total of four genes, which were LOC113732777, LOC113727880, LOC113690566, and LOC113711936, including those enriched in the cysteine and methionine metabolism, were continually up-regulated. Collectively, our findings may contribute to the exploration of alternative splicing mechanisms for focused investigations of potential genes associated with the ripening of fruits in C. arabica.
Collapse
Affiliation(s)
- Haohao Yu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Xiaofei Bi
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Zhongxian Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Xingfei Fu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Yanan Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Yaqi Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Yang Yang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Dexin Liu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Guiping Li
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| | - Wenjiang Dong
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Faguang Hu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan 678000, China; (H.Y.); (X.B.)
| |
Collapse
|
6
|
Yu Y, Liufu Y, Ren Y, Zhang J, Li M, Tian S, Wang J, Liao S, Gong G, Zhang H, Guo S. Comprehensive Profiling of Alternative Splicing and Alternative Polyadenylation during Fruit Ripening in Watermelon ( Citrullus lanatus). Int J Mol Sci 2023; 24:15333. [PMID: 37895011 PMCID: PMC10607834 DOI: 10.3390/ijms242015333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Fruit ripening is a highly complicated process that is accompanied by the formation of fruit quality. In recent years, a series of studies have demonstrated post-transcriptional control play important roles in fruit ripening and fruit quality formation. Till now, the post-transcriptional mechanisms for watermelon fruit ripening have not been comprehensively studied. In this study, we conducted PacBio single-molecule long-read sequencing to identify genome-wide alternative splicing (AS), alternative polyadenylation (APA) and long non-coding RNAs (lncRNAs) in watermelon fruit. In total, 6,921,295 error-corrected and mapped full-length non-chimeric (FLNC) reads were obtained. Notably, more than 42,285 distinct splicing isoforms were derived from 5,891,183 intron-containing full-length FLNC reads, including a large number of AS events associated with fruit ripening. In addition, we characterized 21,506 polyadenylation sites from 11,611 genes, 8703 of which have APA sites. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that fructose and mannose metabolism, starch and sucrose metabolism and carotenoid biosynthesis were both enriched in genes undergoing AS and APA. These results suggest that post-transcriptional regulation might potentially have a key role in regulation of fruit ripening in watermelon. Taken together, our comprehensive PacBio long-read sequencing results offer a valuable resource for watermelon research, and provide new insights into the molecular mechanisms underlying the complex regulatory networks of watermelon fruit ripening.
Collapse
Affiliation(s)
- Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Yuxiang Liufu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Shouwei Tian
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Jinfang Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Shengjin Liao
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China (J.W.)
| |
Collapse
|
7
|
Li Y, Mokrani A, Fu H, Shi C, Li Q, Liu S. Development of Nanopore sequencing-based full-length transcriptome database toward functional genome annotation of the Pacific oyster, Crassostrea gigas. Genomics 2023; 115:110697. [PMID: 37567397 DOI: 10.1016/j.ygeno.2023.110697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
The Pacific oyster (Crassostrea gigas) is a widely cultivated shellfish in the world, while its transcriptome diversity remains less unexplored due to the limitation of short reads. In this study, we used Oxford Nanopore sequencing to develop the full-length transcriptome database of C. gigas. We identified 77,920 full-length transcripts from 21,523 genes, and uncovered 9668 alternative splicing events and 87,468 alternative polyadenylation sites. Notably, a total of 16,721 novel transcripts were annotated in this work. Furthermore, integrative analysis of 25 publicly available RNA-seq datasets revealed the transcriptome diversity involved in post-transcriptional regulation in C. gigas. We further developed a Drupal based webserver, Cgtdb, which can be used for transcriptome visualization, sequence alignment, and functional genome annotation analyses. This work provides valuable resources and a useful tool for integrative analysis of various transcriptome datasets in C. gigas, which will serve as an essential reference for functional annotation of the oyster genome.
Collapse
Affiliation(s)
- Yin Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ahmed Mokrani
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Huiru Fu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Chenyu Shi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
8
|
Zheng J, Wen S, Yu Z, Luo K, Rong J, Ding M. Alternative Splicing during Fiber Development in G. hirsutum. Int J Mol Sci 2023; 24:11812. [PMID: 37511571 PMCID: PMC10380772 DOI: 10.3390/ijms241411812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cotton is a valuable cash crop in many countries. Cotton fiber is a trichome that develops from a single epidermal cell and serves as an excellent model for understanding cell differentiation and other life processes. Alternative splicing (AS) of genes is a common post-transcriptional regulatory process in plants that is essential for plant growth and development. The process of AS during cotton fiber formation, on the other hand, is mainly unknown. A substantial number of multi-exon genes were discovered to be alternatively spliced during cotton fiber formation in this study, accounting for 23.31% of the total number of genes in Gossypium hirsutum. Retention intron (RI) is not necessarily the most common AS type, indicating that AS genes and processes during fiber development are very temporal and tissue-specific. When compared to fiber samples, AS is more prevalent at the fiber initiation stages and in the ovule, indicating that development stages and tissues use different AS strategies. Genes involved in fiber development have gone through stage-specific AS, demonstrating that AS regulates cotton fiber development. Furthermore, AS can be regulated by trans-regulation elements such as splicing factor and cis-regulation elements such as gene length, exon numbers, and GC content, particularly at exon-intron junction sites. Our findings also suggest that increased DNA methylation may aid in the efficiency of AS, and that gene body methylation is key in AS control. Finally, our research will provide useful information about the roles of AS during the cotton fiber development process.
Collapse
Affiliation(s)
- Jing Zheng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China
| | - Shuhan Wen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China
| | - Zhipeng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China
| | - Keyan Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China
| | - Mingquan Ding
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou 311300, China
| |
Collapse
|
9
|
Hazra A, Pal A, Kundu A. Alternative splicing shapes the transcriptome complexity in blackgram [Vigna mungo (L.) Hepper]. Funct Integr Genomics 2023; 23:144. [PMID: 37133618 DOI: 10.1007/s10142-023-01066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Vigna mungo, a highly consumed crop in the pan-Asian countries, is vulnerable to several biotic and abiotic stresses. Understanding the post-transcriptional gene regulatory cascades, especially alternative splicing (AS), may underpin large-scale genetic improvements to develop stress-resilient varieties. Herein, a transcriptome based approach was undertaken to decipher the genome-wide AS landscape and splicing dynamics in order to establish the intricacies of their functional interactions in various tissues and stresses. RNA sequencing followed by high-throughput computational analyses identified 54,526 AS events involving 15,506 AS genes that generated 57,405 transcripts isoforms. Enrichment analysis revealed their involvement in diverse regulatory functions and demonstrated that transcription factors are splicing-intensive, splice variants of which are expressed differentially across tissues and environmental cues. Increased expression of a splicing regulator NHP2L1/SNU13 was found to co-occur with lower intron retention events. The host transcriptome is significantly impacted by differential isoform expression of 1172 and 765 AS genes that resulted in 1227 (46.8% up and 53.2% downregulated) and 831 (47.5% up and 52.5% downregulated) transcript isoforms under viral pathogenesis and Fe2+ stressed condition, respectively. However, genes experiencing AS operate differently from the differentially expressed genes, suggesting AS is a unique and independent mode of regulatory mechanism. Therefore, it can be inferred that AS mediates a crucial regulatory role across tissues and stressful situations and the results would provide an invaluable resource for future endeavours in V. mungo genomics.
Collapse
Affiliation(s)
- Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B. T. Road, Kolkata, 700108, India
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata, 700091, India.
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
10
|
Ma SH, He GQ, Navarro-Payá D, Santiago A, Cheng YZ, Jiao JB, Li HJ, Zuo DD, Sun HT, Pei MS, Yu YH, Matus JT, Guo DL. Global analysis of alternative splicing events based on long- and short-read RNA sequencing during grape berry development. Gene 2023; 852:147056. [PMID: 36414171 DOI: 10.1016/j.gene.2022.147056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Affiliation(s)
- Shuai-Hui Ma
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Guang-Qi He
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - David Navarro-Payá
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Antonio Santiago
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Yi-Zhe Cheng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Jia-Bing Jiao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Hui-Jie Li
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Ding-Ding Zuo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Hao-Ting Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - Yi-He Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, Spain
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China; Henan Engineering Technology Research Center of Quality Regulation of Horticultural Plants, Luoyang 471023, China.
| |
Collapse
|
11
|
Rawoof A, Ahmad I, Islam K, Momo J, Kumar A, Jaiswal V, Ramchiary N. Integrated omics analysis identified genes and their splice variants involved in fruit development and metabolites production in Capsicum species. Funct Integr Genomics 2022; 22:1189-1209. [PMID: 36173582 DOI: 10.1007/s10142-022-00902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
To date, several transcriptomic studies during fruit development have been reported; however, no comprehensive integrated study on expression diversity, alternative splicing, and metabolomic profiling was reported in Capsicum. This study analyzed RNA-seq data and untargeted metabolomic profiling from early green (EG), mature green (MG), and breaker (Br) fruit stages from two Capsicum species, i.e., C. annuum (Cann) and C. frutescens (Cfrut) from Northeast India. A total of 117,416 and 96,802 alternatively spliced events (AltSpli-events) were identified from Cann and Cfrut, respectively. Among AltSpli-events, intron retention (IR; 32.2% Cann and 25.75% Cfrut) followed by alternative acceptor (AA; 15.4% Cann and 18.9% Cfrut) were the most abundant in Capsicum. Around 7600 genes expressed in at least one fruit stage of Cann and Cfrut were AltSpli. The study identified spliced variants of genes including transcription factors (TFs) potentially involved in fruit development/ripening (Aux/IAA 16-like, ETR, SGR1, ARF, CaGLK2, ETR, CaAGL1, MADS-RIN, FUL1, SEPALLATA1), carotenoid (PDS, CA1, CCD4, NCED3, xanthoxin dehydrogenase, CaERF82, CabHLH100, CaMYB3R-1, SGR1, CaWRKY28, CaWRKY48, CaWRKY54), and capsaicinoids or flavonoid biosynthesis (CaMYB48, CaWRKY51), which were significantly differentially spliced (DS) between consecutive Capsicum fruit stages. Also, this study observed that differentially expressed isoforms (DEiso) from 38 genes with differentially spliced events (DSE) were significantly enriched in various metabolic pathways such as starch and sucrose metabolism, amino acid metabolism, cysteine cutin suberin and wax biosynthesis, and carotenoid biosynthesis. Furthermore, the metabolomic profiling revealed that metabolites from aforementioned pathways such as carbohydrates (mainly sugars such as D-fructose, D-galactose, maltose, and sucrose), organic acids (carboxylic acids), and peptide groups significantly altered during fruit development. Taken together, our findings could help in alternative splicing-based targeted studies of candidate genes involved in fruit development and ripening in Capsicum crop.
Collapse
Affiliation(s)
- Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khushbu Islam
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - John Momo
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|