1
|
Jiang W, Shi Y, Du Z, Zhou Y, Wu L, Chen J, Huang Y, Wu L, Liang Y, Zhang Z, Kumar V, Chen Z, Li D, Huang J. Unveiling the role of OsSAP17: Enhancing plant resistance to drought and salt. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109451. [PMID: 39854789 DOI: 10.1016/j.plaphy.2024.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025]
Abstract
With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice. The expression level of OsSAP17 was induced under drought, salt stress and ABA treatment. Subcellular localization analysis revealed that the OsSAP17 protein was distributed in both the cytoplasm and nucleus. The ectopic expression of OsSAP17 significantly increased the capacity to withstand drought and salt stress in both transgenic yeast and Arabidopsis. Additionally, the ectopic expression of OsSAP17 led to notable changes in the expression of Arabidopsis ABA-related genes, including AtNCED3, AtABA2, and AtSnRK2.2. These results indicated that OsSAP17 was able to positively regulate drought and salt tolerance in plants. The insights from this study provided a fundamental understanding of the role of OsSAP17 in abiotic stress response mechanisms and were potentially valuable for breeding crops with enhanced stress tolerance.
Collapse
Affiliation(s)
- Wenjun Jiang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Yang Shi
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; College of Resources, Sichuan Agricultural University, Sichuan, 611130, China
| | - Zhiye Du
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yingxu Zhou
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Longying Wu
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Sichuan, 611130, China
| | - Yanyan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan, 611130, China
| | - Lijuan Wu
- College of Agronomy, Sichuan Agricultural University, Sichuan, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan, 611130, China
| | - Zhonghui Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Vinod Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Zhi Chen
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China
| | - Deqiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Sichuan, 611130, China
| | - Jin Huang
- College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China.
| |
Collapse
|
2
|
Kopertekh L. Improving transient expression in N. benthamiana by suppression of the Nb-SABP2 and Nb-COI1 plant defence response related genes. FRONTIERS IN PLANT SCIENCE 2024; 15:1453930. [PMID: 39315373 PMCID: PMC11416979 DOI: 10.3389/fpls.2024.1453930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024]
Abstract
Currently transient expression is one of the preferred plant-based technologies for recombinant protein manufacturing, particularly in respect to pharmaceutically relevant products. Modern hybrid transient expression systems combine the features of Agrobacterium tumefaciens and viral vectors. However, host plant reaction to Agrobacterium-mediated delivery of gene of interest can negatively affect foreign protein accumulation. In this study, we investigated whether the modulation of plant immune response through knockdown of the Nb-SABP2 and Nb-COI1 N. benthamiana genes could improve recombinant protein yield. In plants, the SABP2 and COI1 proteins are involved in the salicylic acid and jasmonic acid metabolism, respectively. We exemplified the utility of this approach with the green fluorescence (GFP) and β nerve growth factor (βNGF) proteins: compared to the tobacco mosaic virus (TMV)-based vector the Nb-SABP2 and Nb-COI1-suppressed plants provided an increased recombinant protein accumulation. We also show that this strategy is extendable to the expression systems utilizing potato virus X (PVX) as the vector backbone: the enhanced amounts of βNGF were detected in the Nb-SABP2 and Nb-COI1-depleted leaves co-infiltrated with the PVX-βNGF. These findings suggest that modulating host plant reaction to agrodelivery of expression vectors could be useful for improving transient foreign protein production in N. benthamiana.
Collapse
Affiliation(s)
- Lilya Kopertekh
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| |
Collapse
|
3
|
Wu Q, Zhang C, Xu F, Zang S, Wang D, Sun T, Su Y, Yang S, Ding Y, Que Y. Transcriptional Regulation of SugarCane Response to Sporisorium scitamineum: Insights from Time-Course Gene Coexpression and Ca 2+ Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10506-10520. [PMID: 38651833 PMCID: PMC11082935 DOI: 10.1021/acs.jafc.4c02123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Sugarcane response to Sporisorium scitamineum is determined by multiple major genes and numerous microeffector genes. Here, time-ordered gene coexpression networks were applied to explore the interaction between sugarcane and S. scitamineum. Totally, 2459 differentially expressed genes were identified and divided into 10 levels, and several stress-related subnetworks were established. Interestingly, the Ca2+ signaling pathway was activated to establish the response to sugarcane smut disease. Accordingly, two CAX genes (ScCAX2 and ScCAX3) were cloned and characterized from sugarcane. They were significantly upregulated under ABA stress but inhibited by MeJA treatment. Furthermore, overexpression of ScCAX2 and ScCAX3 enhanced the susceptibility of transgenic plants to the pathogen infection, suggesting its negative role in disease resistance. A regulatory model for ScCAX genes in disease response was thus depicted. This work helps to clarify the transcriptional regulation of sugarcane response to S. scitamineum stress and the function of the CAX gene in disease response.
Collapse
Affiliation(s)
- Qibin Wu
- National
Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience
and Biotechnology, Chinese Academy of Tropical
Agricultural Sciences, Sanya 572024, Haikou 571101, Hainan, China
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Chang Zhang
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Fu Xu
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Shoujian Zang
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongjiao Wang
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Sun
- National
Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience
and Biotechnology, Chinese Academy of Tropical
Agricultural Sciences, Sanya 572024, Haikou 571101, Hainan, China
| | - Yachun Su
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Shaolin Yang
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
- Yunnan
Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research
Institute, Yunnan Academy of Agricultural
Sciences, Kaiyuan 661600, China
| | - Yinghong Ding
- College
of Landscape Architecture and Art, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| | - Youxiong Que
- National
Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience
and Biotechnology, Chinese Academy of Tropical
Agricultural Sciences, Sanya 572024, Haikou 571101, Hainan, China
- Key
Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of
Agriculture and Rural Affairs, National Engineering Research Center
for Sugarcane, College of Agriculture, Fujian
Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Cui T, Zang S, Sun X, Zhang J, Su Y, Wang D, Wu G, Chen R, Que Y, Lin Q, You C. Molecular identification and functional characterization of a transcription factor GeRAV1 from Gelsemium elegans. BMC Genomics 2024; 25:22. [PMID: 38166591 PMCID: PMC10759518 DOI: 10.1186/s12864-023-09919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Gelsemium elegans is a traditional Chinese medicinal plant and temperature is one of the key factors affecting its growth. RAV (related to ABI3/VP1) transcription factor plays multiple roles in higher plants, including the regulation of plant growth, development, and stress response. However, RAV transcription factor in G. elegans has not been reported. RESULTS In this study, three novel GeRAV genes (GeRAV1-GeRAV3) were identified from the transcriptome of G. elegans under low temperature stress. Phylogenetic analysis showed that GeRAV1-GeRAV3 proteins were clustered into groups II, IV, and V, respectively. RNA-sequencing (RNA-seq) and real-time quantitative PCR (qRT-PCR) analyses indicated that the expression of GeRAV1 and GeRAV2 was increased in response to cold stress. Furthermore, the GeRAV1 gene was successfully cloned from G. elegans leaf. It encoded a hydrophilic, unstable, and non-secretory protein that contained both AP2 and B3 domains. The amino acid sequence of GeRAV1 protein shared a high similarity of 81.97% with Camptotheca acuminata CaRAV. Subcellular localization and transcriptional self-activation experiments demonstrated that GeRAV1 was a nucleoprotein without self-activating activity. The GeRAV1 gene was constitutively expressed in the leaves, stems, and roots of the G. elegans, with the highest expression levels in roots. In addition, the expression of the GeRAV1 gene was rapidly up-regulated under abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA) stresses, suggesting that it may be involved in hormonal signaling pathways. Moreover, GeRAV1 conferred improved cold and sodium chloride tolerance in Escherichia coli Rosetta cells. CONCLUSIONS These findings provided a foundation for further understanding on the function and regulatory mechanism of the GeRAV1 gene in response to low-temperature stress in G. elegans.
Collapse
Affiliation(s)
- Tianzhen Cui
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinlu Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guran Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruiqi Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Second People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350003, China.
| | - Chuihuai You
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Second People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350003, China.
| |
Collapse
|
5
|
Wu Q, Chen Y, Zou W, Pan YB, Lin P, Xu L, Grisham MP, Ding Q, Su Y, Que Y. Genome-wide characterization of sugarcane catalase gene family identifies a ScCAT1 gene associated disease resistance. Int J Biol Macromol 2023; 232:123398. [PMID: 36702220 DOI: 10.1016/j.ijbiomac.2023.123398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
In plants, catalase (CAT) mainly scavenges H2O2 from reactive oxygen species (ROS) and regulates the growth and development. So far, genome-wide identification of CAT gene family in Saccharum has not yet been reported. Here, 16 SsCAT genes were identified based on a Saccharum spontaneum genome. They were clustered into three subfamilies, with closer genes sharing similar structures. Most SsCAT proteins contained three conserved amino acids, one active catalytic site, one heme-ligand signature, and three peroxisomal targeting signal 1 (PTS1) sequences. The cis-regulatory element prediction revealed that SsCAT genes were involved in growth and development, and in response to various hormones and stresses. RNA-Seq databases showed that SsCAT genes were differentially expressed in Saccharum tissues and under cold, drought, and Sporisorium scitamineum stresses. The ScCAT1 gene transcript (GenBank accession number KF664183) and relevant CAT activity were up-regulated under S. scitamineum stress. Overexpression of ScCAT1 gene in Nicotiana benthamiana could enhance its resistance to pathogen infection through scavenging of excessive toxic ROS and up-regulated expressions of genes related to hypersensitive response (HR), ROS and salicylic acid (SA) pathways. This study provides comprehensive information for the CAT gene family and sets up a basis for its function identification in sugarcane.
Collapse
Affiliation(s)
- Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanling Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Bao Pan
- USDA-ARS, Southeast Area, Sugarcane Research Unit, Houma, LA 70360, USA
| | - Peixia Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Michael P Grisham
- USDA-ARS, Southeast Area, Sugarcane Research Unit, Houma, LA 70360, USA
| | - Qiugang Ding
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|