1
|
Espinosa EP, Farhat S, Allam B. In silico identification of neuropeptide genes encoded by the genome of Crassostrea virginica with a special emphasis on feeding-related genes. Comp Biochem Physiol A Mol Integr Physiol 2024:111792. [PMID: 39694410 DOI: 10.1016/j.cbpa.2024.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Suspension-feeding bivalves, including the oyster Crassostrea virginica, use mucosal lectins to capture food particles. For instance, oysters can increase the transcription of these molecules to enhance food uptake. However, the regulatory processes influencing food uptake remain unclear although likely involve neuropeptides. Information on the neuropeptidome of C. virginica is limited, hindering the comprehension of its physiology, including energy homeostasis. This study explored the genome of C. virginica to identify neuropeptide precursors in silico and compared these with orthologs from other mollusks. A special focus was given to genes with potential implication in feeding processes. qPCR was used to determine the main organs of transcription of feeding-related genes. To further probe the function of target neuropeptides, visceral ganglia extracts and synthetic NPF were injected into oysters to evaluate their impact on genes associated with feeding and energy homeostasis. A total of eighty-five neuropeptides genes were identified in C. virginica genome. About 50 % of these are suggested to play a role in feeding processes. qPCR analyses showed that visceral ganglia and digestive system are the main organs for the synthesis of feeding-related neuropeptides. Further, results showed that the transcription of several neuropeptide genes in the visceral ganglia, including NPF and insulin-like peptide, increased after starvation. Finally, the injection of visceral ganglia extracts and synthetic NPF increased the transcription of a mucosal lectin and a glycogen synthase, known to be involved in food capture and glucose storage. Overall, this study identifies key genes regulating oyster physiology, enhancing the understanding of the control of basic physiological mechanisms in C. virginica.
Collapse
Affiliation(s)
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA; Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, 75005 Paris, France
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA
| |
Collapse
|
2
|
Grouzdev D, Farhat S, Guo X, Espinosa EP, Reece K, McDowell J, Yang H, Rivara G, Reitsma J, Clemetson A, Tanguy A, Allam B. Development and validation of a 66K SNP array for the hard clam (Mercenaria mercenaria). BMC Genomics 2024; 25:847. [PMID: 39251920 PMCID: PMC11385495 DOI: 10.1186/s12864-024-10756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The hard clam (Mercenaria mercenaria), a marine bivalve distributed along the U.S. eastern seaboard, supports a significant shellfish industry. Overharvest in the 1970s and 1980s led to a reduction in landings. While the transition of industry from wild harvest to aquaculture since that time has enhanced production, it has also exacerbated challenges such as disease outbreaks. In this study, we developed and validated a 66K SNP array designed to advance genetic studies and improve breeding programs in the hard clam, focusing particularly on the development of markers that could be useful in understanding disease resistance and environmental adaptability. RESULTS Whole-genome resequencing of 84 individual clam samples and 277 pooled clam libraries yielded over 305 million SNPs, which were filtered down to a set of 370,456 SNPs that were used as input for the design of a 66K SNP array. This medium-density array features 66,543 probes targeting coding and non-coding regions, including 70 mitochondrial SNPs, to capture the extensive genetic diversity within the species. The SNPs were distributed evenly throughout the clam genome, with an average interval of 25,641 bp between SNPs. The array incorporates markers for detecting the clam pathogen Mucochytrium quahogii (formerly QPX), enhancing its utility in disease management. Performance evaluation on 1,904 samples demonstrated a 72.7% pass rate with stringent quality control. Concordance testing affirmed the array's repeatability, with an average agreement of allele calls of 99.64% across multiple tissue types, highlighting its reliability. The tissue-specific analysis demonstrated that some tissue types yield better genotyping results than others. Importantly, the array, including its embedded mitochondrial markers, effectively elucidated complex genetic relationships across different clam groups, both wild populations and aquacultured stocks, showcasing its utility for detailed population genetics studies. CONCLUSIONS The 66K SNP array is a powerful and robust genotyping tool that offers unprecedented insights into the species' genomic architecture and population dynamics and that can greatly facilitate hard clam selective breeding. It represents an important resource that has the potential to transform clam aquaculture, thereby promoting industry sustainability and ecological and economic resilience.
Collapse
Affiliation(s)
- Denis Grouzdev
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 Rue Cuvier, 75005, Paris, France
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | | | - Kimberly Reece
- Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Jan McDowell
- Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Huiping Yang
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, 7922 NW 71 Street, Gainesville, FL, 32653, USA
| | - Gregg Rivara
- Cornell University Cooperative Extension, 3690 Cedar Beach Road, Southold, NY, 11971, USA
| | - Joshua Reitsma
- Cape Cod Cooperative Extension, 3195 Main Street, Barnstable, MA, 02630, USA
| | - Antoinette Clemetson
- New York Sea Grant, Stony Brook University, 146 Suffolk Hall, Stony Brook, NY, 11794-5002, USA
| | - Arnaud Tanguy
- Sorbonne Université, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, France
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| |
Collapse
|
3
|
Dong S, Liu X, Zhu B, Liu D, Shan H, Wang F. Bioremediation potential of the hard clam Mercenaria mercenaria as an intensive shrimp aquaculture pond polyculture condidate. WATER RESEARCH 2024; 255:121552. [PMID: 38564899 DOI: 10.1016/j.watres.2024.121552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Polyculture practices are important for achieving sustainable aquaculture development. Recently, hard clams polyculture in intensive shrimp ponds has been encouraged because bivalves can consume excess nutrients in aquaculture systems and sequester carbon. To evaluate the bioremediation potential of hard clams polyculture in intensive shrimp ponds, this study built an assessment model based on individual growth models and estimated the potential for nitrogen and phosphorus removal as well as CO2 fixation by hard clams. Firstly, key parameters required for model construction were obtained through field surveys and physiological experiments. Subsequently, an individual growth model for the hard clam Mercenaria mercenaria was developed based on the Dynamic Energy Budget (DEB) theory. Fitting of the growth data indicated that the model accurately replicated the growth patterns of hard clams, with relative root mean square errors of 9.87 % for shell length and 5.02 % for dry tissue weight. Finally, the assessment model for the bioremediation potential of hard clams demonstrated that, over 110 days in the intensive shrimp mariculture pond, the net removal of nitrogen and phosphorus by hard clams were 3.68 kg ha-1 and 0.81 kg ha-1, respectively, and CO2 fixation was 507.00 kg ha-1. These findings suggested that the DEB model is an effective tool for evaluating bivalve ecological remediation potential and can aid in selecting species for sustainable polyculture.
Collapse
Affiliation(s)
- Shipeng Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xubo Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Boshan Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Dapeng Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Hongwei Shan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Fang Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
4
|
Arriagada G, Quezada J, Merino-Veliz N, Avilés F, Tapia-Cammas D, Gomez J, Curotto D, Valdes JA, Oyarzún PA, Gallardo-Escárate C, Metzger MJ, Alvarez M. Identification and expression analysis of two steamer-like retrotransposons in the Chilean blue mussel (Mytilus chilensis). Biol Res 2024; 57:17. [PMID: 38664786 PMCID: PMC11046912 DOI: 10.1186/s40659-024-00498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Disseminated neoplasia (DN) is a proliferative cell disorder of the circulatory system of bivalve mollusks. The disease is transmitted between individuals and can also be induced by external chemical agents such as bromodeoxyuridine. In Mya arenaria, we have cloned and characterized an LTR-retrotransposon named Steamer. Steamer mRNA levels and gene copy number correlates with DN and can be used as a marker of the disease. So far, the only mollusk where a retrotransposon expression relates to DN is Mya arenaria. On the other hand, it has been reported that the Chilean blue mussel Mytilus chilensis can also suffers DN. Our aim was to identify retrotransposons in Mytilus chilensis and to study their expression levels in the context of disseminated neoplasia. RESULTS Here we show that 7.1% of individuals collected in August 2018, from two farming areas, presents morphological characteristics described in DN. Using Steamer sequence to interrogate the transcriptome of M. chilensis we found two putative retrotransposons, named Steamer-like elements (MchSLEs). MchSLEs are present in the genome of M. chilensis and MchSLE1 is indeed an LTR-retrotransposon. Neither expression, nor copy number of the reported MchSLEs correlate with DN status but both are expressed at different levels among individual animals. We also report that in cultured M. chilensis haemocytes MchSLEs1 expression can be induced by bromodeoxyuridine. CONCLUSIONS We conclude that SLEs present in Mytilus chilensis are differentially expressed among individuals and do not correlate with disseminated neoplasia. Treatment of haemocytes with a stressor like bromodeoxyuridine induces expression of MchSLE1 suggesting that in Mytilus chilensis environmental stressors can induce activation of LTR-retrotransposon.
Collapse
Affiliation(s)
- Gloria Arriagada
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| | - Johan Quezada
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Nicolas Merino-Veliz
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Fernando Avilés
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Diana Tapia-Cammas
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Jorge Gomez
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniela Curotto
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Juan A Valdes
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), University of Concepción, Concepción, Chile
| | - Pablo A Oyarzún
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andres Bello, Quintay, Chile
| | | | | | - Marco Alvarez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
5
|
Song H, Wang B, Zhao G, Lu S, Zhang D, Kong J, Li J, Zhang X, Lyu Y, Liu L. Discovery and biochemical characterization of two hexokinases from Crassostrea gigas. Protein Expr Purif 2024; 215:106408. [PMID: 38008389 DOI: 10.1016/j.pep.2023.106408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Hexokinases (HKs) play a vital role in glucose metabolism, which controls the first committed step catalyzing the production of glucose-6-phosphate from glucose. Two HKs (CGIHK1 and CGIHK2) from the Pacific oyster Crassostrea giga were cloned and characterized. CGIHK1 and CGIHK2 were recombinantly expressed in Escherichia coli and successfully purified by the Ni-NTA column. The optimum pH of the two enzymes was pH 8.0 and 8.5, respectively. The optimum temperature of the two enzymes was 42 °C and 50 °C, respectively. Both enzymes showed a clear requirement for divalent magnesium and were strongly inhibited by SDS. CGIHK1 exhibited highly strict substrate specificity to glucose, while CGIHK2 could also catalyze other 11 monosaccharide substrates. This is the first report on the in vitro biosynthesis of glucose-6-phosphate by the hexokinases from Crassostrea gigas. The facile expression and purification procedures combined with different substrate specificities make CGIHK1 and CGIHK2 candidates for the biosynthesis of glucose-6-phosphate and other sugar-phosphates.
Collapse
Affiliation(s)
- Huibo Song
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, 274015, China; Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bo Wang
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, 274015, China
| | - Guihong Zhao
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, 274015, China.
| | - Shihai Lu
- Shandong Bigtree Dreyfus Special Meals Food Co., Ltd, Heze, 274000, China
| | - Dahu Zhang
- Shandong Bigtree Dreyfus Special Meals Food Co., Ltd, Heze, 274000, China
| | - Jianbiao Kong
- Heze Product Inspection and Testing Research Institute, Heze, 274000, China
| | - Jianxin Li
- Heze Institute for Food and Drug Control. Heze, 274000, China
| | - Xiaoyang Zhang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Goodheart JA, Rio RA, Taraporevala NF, Fiorenza RA, Barnes SR, Morrill K, Jacob MAC, Whitesel C, Masterson P, Batzel GO, Johnston HT, Ramirez MD, Katz PS, Lyons DC. A chromosome-level genome for the nudibranch gastropod Berghia stephanieae helps parse clade-specific gene expression in novel and conserved phenotypes. BMC Biol 2024; 22:9. [PMID: 38233809 PMCID: PMC10795318 DOI: 10.1186/s12915-024-01814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum have long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. RESULTS The final assembled and filtered Berghia genome is comparable to other high-quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes) and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. CONCLUSIONS Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.
Collapse
Affiliation(s)
- Jessica A Goodheart
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA.
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| | - Robin A Rio
- Bioengineering Department, Stanford University, Stanford, CA, USA
| | - Neville F Taraporevala
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | - Rose A Fiorenza
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Seth R Barnes
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Kevin Morrill
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Mark Allan C Jacob
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Carl Whitesel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Park Masterson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Grant O Batzel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Hereroa T Johnston
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - M Desmond Ramirez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Paul S Katz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Deirdre C Lyons
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Gerdol M, Nerelli DE, Martelossi N, Ogawa Y, Fujii Y, Pallavicini A, Ozeki Y. Taxonomic Distribution and Molecular Evolution of Mytilectins. Mar Drugs 2023; 21:614. [PMID: 38132935 PMCID: PMC10744619 DOI: 10.3390/md21120614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
R-type lectins are a widespread group of sugar-binding proteins found in nearly all domains of life, characterized by the presence of a carbohydrate-binding domain that adopts a β-trefoil fold. Mytilectins represent a recently described subgroup of β-trefoil lectins, which have been functionally characterized in a few mussel species (Mollusca, Bivalvia) and display attractive properties, which may fuel the development of artificial lectins with different biotechnological applications. The detection of different paralogous genes in mussels, together with the description of orthologous sequences in brachiopods, supports the formal description of mytilectins as a gene family. However, to date, an investigation of the taxonomic distribution of these lectins and their molecular diversification and evolution was still lacking. Here, we provide a comprehensive overview of the evolutionary history of mytilectins, revealing an ancient monophyletic evolutionary origin and a very broad but highly discontinuous taxonomic distribution, ranging from heteroscleromorphan sponges to ophiuroid and crinoid echinoderms. Moreover, the overwhelming majority of mytilectins display a chimera-like architecture, which combines the β-trefoil carbohydrate recognition domain with a C-terminal pore-forming domain, suggesting that the simpler structure of most functionally characterized mytilectins derives from a secondary domain loss.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Daniela Eugenia Nerelli
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Nicola Martelossi
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Yukiko Ogawa
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Japan
| | - Yuki Fujii
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo 859-3298, Japan
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Yasuhiro Ozeki
- Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
8
|
Goodheart JA, Rio RA, Taraporevala NF, Fiorenza RA, Barnes SR, Morrill K, Jacob MAC, Whitesel C, Masterson P, Batzel GO, Johnston HT, Ramirez MD, Katz PS, Lyons DC. A chromosome-level genome for the nudibranch gastropod Berghia stephanieae helps parse clade-specific gene expression in novel and conserved phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552006. [PMID: 38014205 PMCID: PMC10680569 DOI: 10.1101/2023.08.04.552006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum has long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. The final assembled and filtered Berghia genome is comparable to other high quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes), and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.
Collapse
Affiliation(s)
- Jessica A. Goodheart
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Robin A. Rio
- Bioengineering Department, Stanford University, Stanford, CA, USA
| | - Neville F. Taraporevala
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | - Rose A. Fiorenza
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Seth R. Barnes
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Kevin Morrill
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Mark Allan C. Jacob
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Carl Whitesel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Park Masterson
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Grant O. Batzel
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Hereroa T. Johnston
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - M. Desmond Ramirez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Paul S. Katz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Deirdre C. Lyons
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Grinchenko A, Buriak I, Kumeiko V. Invertebrate C1q Domain-Containing Proteins: Molecular Structure, Functional Properties and Biomedical Potential. Mar Drugs 2023; 21:570. [PMID: 37999394 PMCID: PMC10672478 DOI: 10.3390/md21110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023] Open
Abstract
C1q domain-containing proteins (C1qDC proteins) unexpectedly turned out to be widespread molecules among a variety of invertebrates, despite their lack of an integral complement system. Despite the wide distribution in the genomes of various invertebrates, data on the structure and properties of the isolated and characterized C1qDC proteins, which belong to the C1q/TNF superfamily, are sporadic, although they hold great practical potential for the creation of new biotechnologies. This review not only summarizes the current data on the properties of already-isolated or bioengineered C1qDC proteins but also projects further strategies for their study and biomedical application. It has been shown that further broad study of the carbohydrate specificity of the proteins can provide great opportunities, since for many of them only interactions with pathogen-associated molecular patterns (PAMPs) was evaluated and their antimicrobial, antiviral, and fungicidal activities were studied. However, data on the properties of C1qDC proteins, which researchers originally discovered as lectins and therefore studied their fine carbohydrate specificity and antitumor activity, intriguingly show the great potential of this family of proteins for the creation of targeted drug delivery systems, vaccines, and clinical assays for the differential diagnosis of cancer. The ability of invertebrate C1qDC proteins to recognize patterns of aberrant glycosylation of human cell surfaces and interact with mammalian immunoglobulins indicates the great biomedical potential of these molecules.
Collapse
Affiliation(s)
- Andrei Grinchenko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Ivan Buriak
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vadim Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, 690922 Vladivostok, Russia; (A.G.); (I.B.)
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
10
|
Saco A, Rey-Campos M, Gallardo-Escárate C, Gerdol M, Novoa B, Figueras A. Gene presence/absence variation in Mytilus galloprovincialis and its implications in gene expression and adaptation. iScience 2023; 26:107827. [PMID: 37744033 PMCID: PMC10514466 DOI: 10.1016/j.isci.2023.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/12/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
Presence/absence variation (PAV) is a well-known phenomenon in prokaryotes that was described for the first time in bivalves in 2020 in Mytilus galloprovincialis. The objective of the present study was to further our understanding of the PAV phenomenon in mussel biology. The distribution of PAV was studied in a mussel chromosome-level genome assembly, revealing a widespread distribution but with hotspots of dispensability. Special attention was given to the effect of PAV in gene expression, since dispensable genes were found to be inherently subject to distortions due to their sparse distribution among individuals. Furthermore, the high expression and strong tissue specificity of some dispensable genes, such as myticins, strongly supported their biological relevance. The significant differences in the repertoire of dispensable genes associated with two geographically distinct populations suggest that PAV is involved in local adaptation. Overall, the PAV phenomenon would provide a key selective advantage at the population level.
Collapse
Affiliation(s)
- Amaro Saco
- Institute of Marine Research, Spanish National Research Council, Vigo, Spain
| | - Magalí Rey-Campos
- Institute of Marine Research, Spanish National Research Council, Vigo, Spain
| | | | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Beatriz Novoa
- Institute of Marine Research, Spanish National Research Council, Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research, Spanish National Research Council, Vigo, Spain
| |
Collapse
|
11
|
Martelossi J, Nicolini F, Subacchi S, Pasquale D, Ghiselli F, Luchetti A. Multiple and diversified transposon lineages contribute to early and recent bivalve genome evolution. BMC Biol 2023; 21:145. [PMID: 37365567 DOI: 10.1186/s12915-023-01632-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Transposable elements (TEs) can represent one of the major sources of genomic variation across eukaryotes, providing novel raw materials for species diversification and innovation. While considerable effort has been made to study their evolutionary dynamics across multiple animal clades, molluscs represent a substantially understudied phylum. Here, we take advantage of the recent increase in mollusc genomic resources and adopt an automated TE annotation pipeline combined with a phylogenetic tree-based classification, as well as extensive manual curation efforts, to characterize TE repertories across 27 bivalve genomes with a particular emphasis on DDE/D class II elements, long interspersed nuclear elements (LINEs), and their evolutionary dynamics. RESULTS We found class I elements as highly dominant in bivalve genomes, with LINE elements, despite less represented in terms of copy number per genome, being the most common retroposon group covering up to 10% of their genome. We mined 86,488 reverse transcriptases (RVT) containing LINE coming from 12 clades distributed across all known superfamilies and 14,275 class II DDE/D-containing transposons coming from 16 distinct superfamilies. We uncovered a previously underestimated rich and diverse bivalve ancestral transposon complement that could be traced back to their most recent common ancestor that lived ~ 500 Mya. Moreover, we identified multiple instances of lineage-specific emergence and loss of different LINEs and DDE/D lineages with the interesting cases of CR1- Zenon, Proto2, RTE-X, and Academ elements that underwent a bivalve-specific amplification likely associated with their diversification. Finally, we found that this LINE diversity is maintained in extant species by an equally diverse set of long-living and potentially active elements, as suggested by their evolutionary history and transcription profiles in both male and female gonads. CONCLUSIONS We found that bivalves host an exceptional diversity of transposons compared to other molluscs. Their LINE complement could mainly follow a "stealth drivers" model of evolution where multiple and diversified families are able to survive and co-exist for a long period of time in the host genome, potentially shaping both recent and early phases of bivalve genome evolution and diversification. Overall, we provide not only the first comparative study of TE evolutionary dynamics in a large but understudied phylum such as Mollusca, but also a reference library for ORF-containing class II DDE/D and LINE elements, which represents an important genomic resource for their identification and characterization in novel genomes.
Collapse
Affiliation(s)
- Jacopo Martelossi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Filippo Nicolini
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
- Fano Marine Center, Department of Biological, Geological and Environmental Sciences, University of Bologna, Viale Adriatico 1/N, 61032, Fano, Italy
| | - Simone Subacchi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Daniela Pasquale
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| | - Andrea Luchetti
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
12
|
Hu Z, Xu L, Song H, Feng J, Zhou C, Yang MJ, Shi P, Li YR, Guo YJ, Li HZ, Zhang T. Effect of heat and hypoxia stress on mitochondrion and energy metabolism in the gill of hard clam. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109556. [PMID: 36709861 DOI: 10.1016/j.cbpc.2023.109556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Aquatic animals suffer from heat and hypoxia stress more frequently due to global climate change and other anthropogenic activities. Heat and hypoxia stress can significantly affect mitochondrial function and energy metabolism. Here, the response and adaptation characteristics of mitochondria and energy metabolism in the gill of the hard clam Mercenaria mercenaria under heat (35 °C), hypoxia (0.2 mg/L), and heat plus hypoxia stress (35 °C, 0.2 mg/L) after 48 h exposure were investigated. Mitochondrial membrane potentials were depolarized under environmental stress. Mitochondrial fusion, fission and mitophagy played a key role in maintain mitochondrion function. The AMPK subunits showed different expression under environmental stress. Acceleration of enzyme activities (phosphofructokinase, pyruvate kinase and lactic dehydrogenase) and accumulation of anaerobic metabolites in glycolysis and TCA cycle implied that the anaerobic metabolism might play a key role in providing energy. Accumulation of amino acids might help to increase tolerance under heat and heat combined hypoxia stress. In addition, urea cycle played a key role in amino acid metabolism to prevent ammonia/nitrogen toxicity. This study improved our understanding of the mitochondrial and energy metabolism responses of marine bivalves exposed to environmental stress.
Collapse
Affiliation(s)
- Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Li Xu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Jie Feng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Pu Shi
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China
| | - Yong-Ren Li
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Yong-Jun Guo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin 300384, China
| | - Hai-Zhou Li
- Shandong Fu Han Ocean Sci-Tech Co., Ltd, Haiyang 265100, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; CAS Engineering Laboratory for Marine Ranching, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Shandong Province Key Laboratory of Experimental Marine Biology, Qingdao 266071, China.
| |
Collapse
|
13
|
Schwaner C, Farhat S, Barbosa M, Boutet I, Tanguy A, Pales Espinosa E, Allam B. Molecular Features Associated with Resilience to Ocean Acidification in the Northern Quahog, Mercenaria mercenaria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:83-99. [PMID: 36417051 DOI: 10.1007/s10126-022-10183-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
The increasing concentration of CO2 in the atmosphere and resulting flux into the oceans will further exacerbate acidification already threatening coastal marine ecosystems. The subsequent alterations in carbonate chemistry can have deleterious impacts on many economically and ecologically important species including the northern quahog (Mercenaria mercenaria). The accelerated pace of these changes requires an understanding of how or if species and populations will be able to acclimate or adapt to such swift environmental alterations. Thus far, studies have primarily focused on the physiological effects of ocean acidification (OA) on M. mercenaria, including reductions in growth and survival. However, the molecular mechanisms of resilience to OA in this species remains unclear. Clam gametes were fertilized under normal pCO2 and reared under acidified (pH ~ 7.5, pCO2 ~ 1200 ppm) or control (pH ~ 7.9, pCO2 ~ 600 ppm) conditions before sampled at 2 days (larvae), 32 days (postsets), 5 and 10 months (juveniles) and submitted to RNA and DNA sequencing to evaluate alterations in gene expression and genetic variations. Results showed significant shift in gene expression profiles among clams reared in acidified conditions as compared to their respective controls. At 10 months of exposure, significant shifts in allele frequency of single nucleotide polymorphisms (SNPs) were identified. Both approaches highlighted genes coding for proteins related to shell formation, bicarbonate transport, cytoskeleton, immunity/stress, and metabolism, illustrating the role these pathways play in resilience to OA.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Michelle Barbosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Isabelle Boutet
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | - Arnaud Tanguy
- Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, 29680, Roscoff, France
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, 11790, USA.
| |
Collapse
|
14
|
Proteomic and Transcriptomic Responses Enable Clams to Correct the pH of Calcifying Fluids and Sustain Biomineralization in Acidified Environments. Int J Mol Sci 2022; 23:ijms232416066. [PMID: 36555707 PMCID: PMC9781830 DOI: 10.3390/ijms232416066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Seawater pH and carbonate saturation are predicted to decrease dramatically by the end of the century. This process, designated ocean acidification (OA), threatens economically and ecologically important marine calcifiers, including the northern quahog (Mercenaria mercenaria). While many studies have demonstrated the adverse impacts of OA on bivalves, much less is known about mechanisms of resilience and adaptive strategies. Here, we examined clam responses to OA by evaluating cellular (hemocyte activities) and molecular (high-throughput proteomics, RNASeq) changes in hemolymph and extrapallial fluid (EPF-the site of biomineralization located between the mantle and the shell) in M. mercenaria continuously exposed to acidified (pH ~7.3; pCO2 ~2700 ppm) and normal conditions (pH ~8.1; pCO2 ~600 ppm) for one year. The extracellular pH of EPF and hemolymph (~7.5) was significantly higher than that of the external acidified seawater (~7.3). Under OA conditions, granulocytes (a sub-population of hemocytes important for biomineralization) were able to increase intracellular pH (by 54% in EPF and 79% in hemolymph) and calcium content (by 56% in hemolymph). The increased pH of EPF and hemolymph from clams exposed to high pCO2 was associated with the overexpression of genes (at both the mRNA and protein levels) related to biomineralization, acid-base balance, and calcium homeostasis, suggesting that clams can use corrective mechanisms to mitigate the negative impact of OA.
Collapse
|
15
|
Boutet I, Alves Monteiro HJ, Baudry L, Takeuchi T, Bonnivard E, Billoud B, Farhat S, Gonzales‐Araya R, Salaun B, Andersen AC, Toullec J, Lallier FH, Flot J, Guiglielmoni N, Guo X, Li C, Allam B, Pales‐Espinosa E, Hemmer‐Hansen J, Moreau P, Marbouty M, Koszul R, Tanguy A. Chromosomal assembly of the flat oyster ( Ostrea edulis L.) genome as a new genetic resource for aquaculture. Evol Appl 2022; 15:1730-1748. [PMID: 36426129 PMCID: PMC9679248 DOI: 10.1111/eva.13462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022] Open
Abstract
The European flat oyster (Ostrea edulis L.) is a native bivalve of the European coasts. Harvest of this species has declined during the last decades because of the appearance of two parasites that have led to the collapse of the stocks and the loss of the natural oyster beds. O. edulis has been the subject of numerous studies in population genetics and on the detection of the parasites Bonamia ostreae and Marteilia refringens. These studies investigated immune responses to these parasites at the molecular and cellular levels. Several genetic improvement programs have been initiated especially for parasite resistance. Within the framework of a European project (PERLE 2) that aims to produce genetic lines of O. edulis with hardiness traits (growth, survival, resistance) for the purpose of repopulating natural oyster beds in Brittany and reviving the culture of this species in the foreshore, obtaining a reference genome becomes essential as done recently in many bivalve species of aquaculture interest. Here, we present a chromosome-level genome assembly and annotation for the European flat oyster, generated by combining PacBio, Illumina, 10X linked, and Hi-C sequencing. The finished assembly is 887.2 Mb with a scaffold-N50 of 97.1 Mb scaffolded on the expected 10 pseudochromosomes. Annotation of the genome revealed the presence of 35,962 protein-coding genes. We analyzed in detail the transposable element (TE) diversity in the flat oyster genome, highlighted some specificities in tRNA and miRNA composition, and provided the first insight into the molecular response of O. edulis to M. refringens. This genome provides a reference for genomic studies on O. edulis to better understand its basic physiology and as a useful resource for genetic breeding in support of aquaculture and natural reef restoration.
Collapse
Affiliation(s)
- Isabelle Boutet
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | | | - Lyam Baudry
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Takeshi Takeuchi
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Eric Bonnivard
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Bernard Billoud
- Sorbonne Université, CNRSUMR 8227, Station Biologique de RoscoffRoscoffFrance
| | - Sarah Farhat
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | | | - Benoit Salaun
- Centre Régional de la Conchyliculture Bretagne NordMorlaixFrance
| | - Ann C. Andersen
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Jean‐Yves Toullec
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - François H. Lallier
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Jean‐François Flot
- Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Nadège Guiglielmoni
- Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal SciencesRutgers UniversityPort NorrisNew JerseyUSA
| | - Cui Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Bassem Allam
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Emmanuelle Pales‐Espinosa
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Jakob Hemmer‐Hansen
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Pierrick Moreau
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Martial Marbouty
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Romain Koszul
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Arnaud Tanguy
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| |
Collapse
|
16
|
Schwaner C, Farhat S, Haley J, Pales Espinosa E, Allam B. Transcriptomic, Proteomic, and Functional Assays Underline the Dual Role of Extrapallial Hemocytes in Immunity and Biomineralization in the Hard Clam Mercenaria mercenaria. Front Immunol 2022; 13:838530. [PMID: 35273613 PMCID: PMC8902148 DOI: 10.3389/fimmu.2022.838530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Circulating hemocytes in the hemolymph represent the backbone of innate immunity in bivalves. Hemocytes are also found in the extrapallial fluid (EPF), the space delimited between the shell and the mantle, which is the site of shell biomineralization. This study investigated the transcriptome, proteome, and function of EPF and hemolymph in the hard clam Mercenaria mercenaria. Total and differential hemocyte counts were similar between EPF and hemolymph. Overexpressed genes in the EPF were found to have domains previously identified as being part of the "biomineralization toolkit" and involved in bivalve shell formation. Biomineralization related genes included chitin-metabolism genes, carbonic anhydrase, perlucin, and insoluble shell matrix protein genes. Overexpressed genes in the EPF encoded proteins present at higher abundances in the EPF proteome, specifically those related to shell formation such as carbonic anhydrase and insoluble shell matrix proteins. Genes coding for bicarbonate and ion transporters were also overexpressed, suggesting that EPF hemocytes are involved in regulating the availability of ions critical for biomineralization. Functional assays also showed that Ca2+ content of hemocytes in the EPF were significantly higher than those in hemolymph, supporting the idea that hemocytes serve as a source of Ca2+ during biomineralization. Overexpressed genes and proteins also contained domains such as C1q that have dual functions in biomineralization and immune response. The percent of phagocytic granulocytes was not significantly different between EPF and hemolymph. Together, these findings suggest that hemocytes in EPF play a central role in both biomineralization and immunity.
Collapse
Affiliation(s)
- Caroline Schwaner
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - Sarah Farhat
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| | - John Haley
- Stony Brook University Biological Mass Spectrometry Center, Stony Brook Medicine, Stony Brook, NY, United States
| | | | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|