1
|
Bravo-Vázquez LA, García-Ortega M, Medina-Feria S, Srivastava A, Paul S. Identification and expression profiling of microRNAs in leaf tissues of Foeniculum vulgare Mill. under salinity stress. PLANT SIGNALING & BEHAVIOR 2024; 19:2361174. [PMID: 38825852 DOI: 10.1080/15592324.2024.2361174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
Foeniculum vulgare Mill. commonly known as fennel, is a globally recognized aromatic medicinal plant and culinary herb with widespread popularity due to its antimicrobial, antioxidant, carminative, and diuretic properties, among others. Although the phenotypic effects of salinity stress have been previously explored in fennel, the molecular mechanisms underlying responses to elevated salinity in this plant remain elusive. MicroRNAs (miRNAs) are tiny, endogenous, and extensively conserved non-coding RNAs (ncRNAs) typically ranging from 20 to 24 nucleotides (nt) in length that play a major role in a myriad of biological functions. In fact, a number of miRNAs have been extensively associated with responses to abiotic stress in plants. Consequently, employing computational methodologies and rigorous filtering criteria, 40 putative miRNAs belonging to 25 different families were characterized from fennel in this study. Subsequently, employing the psRNATarget tool, a total of 67 different candidate target transcripts for the characterized fennel miRNAs were predicted. Additionally, the expression patterns of six selected fennel miRNAs (i.e. fvu-miR156a, fvu-miR162a-3p, fvu-miR166a-3p, fvu-miR167a-5p, fvu-miR171a-3p, and fvu-miR408-3p) were analyzed under salinity stress conditions via qPCR. This article holds notable significance as it identifies not only 40 putative miRNAs in fennel, a non-model plant, but also pioneers the analysis of their expression under salinity stress conditions.
Collapse
Affiliation(s)
| | - Mariana García-Ortega
- School of Engineering and Sciences, Tecnologico de Monterrey, San Pablo, Queretaro, Mexico
| | - Sara Medina-Feria
- School of Engineering and Sciences, Tecnologico de Monterrey, San Pablo, Queretaro, Mexico
| | | | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, San Pablo, Queretaro, Mexico
| |
Collapse
|
2
|
Han S, Han X, Li Y, Guo F, Qi C, Liu Y, Fang S, Yin J, Zhu Y. Genome-wide characterization and function analysis of ginger (Zingiber officinale Roscoe) ZoGRFs in responding to adverse stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108392. [PMID: 38301328 DOI: 10.1016/j.plaphy.2024.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
Growth-regulating factors (GRFs) play crucial roles in plant growth, development, hormone signaling, and stress response. Despite their significance, the roles of GRFs in ginger remain largely unknown. Herein, 31 ginger ZoGRFs were identified and designated as ZoGRF1-ZoGRF31 according to their phylogenetic relationships. All ZoGRFs were characterized as unstable, hydrophilic proteins, with 29 predicted to be located in the nucleus. Functional cis-elements related to growth and development were enriched in ZoGRF's promoter regions. RNA-seq and RT-qPCR analysis revealed that ZoGRF12, ZoGRF24, and ZoGRF28 were highly induced in various growth and development stages, displaying differential regulation under waterlogging, chilling, drought, and salt stresses, indicating diverse expression patterns of ZoGRFs. Transient expression analysis in Nicotiana benthamiana indicated that overexpressing ZoGRF28 regulated the transcription levels of salicylic acid, jasmonic acid, and pattern-triggered immunity-related genes, increased chlorophyll content and contributed to reduced disease lesions and an increased net photosynthetic rate. This research lays the foundation for further understanding the biological roles of ZoGRFs.
Collapse
Affiliation(s)
- Shuo Han
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Xiaowen Han
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yiting Li
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Fengling Guo
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| | - Chuandong Qi
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| | - Yiqing Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Shengyou Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Junliang Yin
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Yongxing Zhu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
3
|
Han S, Han X, Qi C, Guo F, Yin J, Liu Y, Zhu Y. Genome-Wide Identification of DUF668 Gene Family and Expression Analysis under F. solani, Chilling, and Waterlogging Stresses in Zingiber officinale. Int J Mol Sci 2024; 25:929. [PMID: 38256002 PMCID: PMC10815606 DOI: 10.3390/ijms25020929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The domains of unknown function (DUF) superfamilies contain proteins with conserved amino acid sequences without known functions. Among them, DUF668 was indicated widely involving the stress response of plants. However, understanding ZoDUF668 is still lacking. Here, 12 ZoDUF668 genes were identified in ginger by the bioinformatics method and unevenly distributed on six chromosomes. Conserved domain analysis showed that members of the same subfamily had similar conserved motifs and gene structures. The promoter region of ZoDUF668s contained the light, plant hormone and stress-responsive elements. The prediction of miRNA targeting relationship showed that nine ginger miRNAs targeted four ZoDUF668 genes through cleavage. The expression patterns of 12 ZoDUF668 genes under biotic and abiotic stress were analyzed using RT-qPCR. The results showed that the expression of seven ZoDUF668 genes was significantly downregulated under Fusarium solani infection, six ZoDUF668 genes were upregulated under cold stress, and five ZoDUF668 genes were upregulated under waterlogging stress. These results indicate that the ZoDUF668 gene has different expression patterns under different stress conditions. This study provides excellent candidate genes and provides a reference for stress-resistance research in ginger.
Collapse
Affiliation(s)
- Shuo Han
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (S.H.); (X.H.); (C.Q.)
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Co-Construction by Ministry and Province, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.L.); (Y.Z.)
| | - Xiaowen Han
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (S.H.); (X.H.); (C.Q.)
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Co-Construction by Ministry and Province, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.L.); (Y.Z.)
| | - Chuandong Qi
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (S.H.); (X.H.); (C.Q.)
| | - Fengling Guo
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (S.H.); (X.H.); (C.Q.)
| | - Junliang Yin
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China; (S.H.); (X.H.); (C.Q.)
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Co-Construction by Ministry and Province, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.L.); (Y.Z.)
| | - Yiqing Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Co-Construction by Ministry and Province, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.L.); (Y.Z.)
| | - Yongxing Zhu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, Co-Construction by Ministry and Province, College of Agriculture, Yangtze University, Jingzhou 434025, China; (Y.L.); (Y.Z.)
| |
Collapse
|
4
|
Fang B, Huang Z, Sun Y, Zhang W, Yu J, Zhang J, Dong H, Wang S. Small RNA sequencing provides insights into molecular mechanism of flower development in Rhododendron pulchrum Sweet. Sci Rep 2023; 13:17912. [PMID: 37864069 PMCID: PMC10589353 DOI: 10.1038/s41598-023-44779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023] Open
Abstract
Rhododendron pulchrum sweet, a member of the Ericaceae family possessing valuable horticultural properties, is widely distributed in the temperate regions. Though serving as bioindicator of metal pollution, the molecular mechanism regulating flowering in R. pulchrum is very limited. Illumina sequencing was performed to identify critical miRNAs in the synthesis of flavonoids at different developmental stages. Totally, 722 miRNAs belonging to 104 families were screened, and 84 novel mature miRNA sequences were predicted. The miR166, miR156, and miR167-1 families were dominant. In particular, 126 miRNAs were significantly differentially expressed among four different flowering stages. Totally, 593 genes were differentially regulated by miRNAs during the flower development process, which were mostly involved in "metabolic pathways", "plant hormone signal transduction", and "mitosis and regulation of biosynthetic processes". In pigment biosynthesis and signal transduction processes, gra-miR750 significantly regulated the expression of flavonoid 3',5'-hydroxylase; aof-miR171a, aof-miR171b, aof-miR171c, cas-miR171a-3p, and cas-miR171c-3p could regulate the expression of DELLA protein; aof-miR390, aof-miR396b, ath-miR3932b-5p, cas-miR171a-3p, aof-miR171a, and aof-miR171b regulated BAK1 expression. This research showed great potentials for genetic improvement of flower color traits for R. pulchrum and other Rhododendron species.
Collapse
Affiliation(s)
- Bo Fang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China
| | - Zhiwei Huang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China
| | - Yirong Sun
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China
| | - Wanjing Zhang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China
| | - Jiaojun Yu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China
| | - Jialiang Zhang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China
| | - Hongjin Dong
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China
| | - Shuzhen Wang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, People's Republic of China.
| |
Collapse
|
5
|
Das P, Chandra T, Negi A, Jaiswal S, Iquebal MA, Rai A, Kumar D. A comprehensive review on genomic resources in medicinally and industrially important major spices for future breeding programs: Status, utility and challenges. Curr Res Food Sci 2023; 7:100579. [PMID: 37701635 PMCID: PMC10494321 DOI: 10.1016/j.crfs.2023.100579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023] Open
Abstract
In the global market, spices possess a high-value but low-volume commodities of commerce. The food industry depends largely on spices for taste, flavor, and therapeutic properties in replacement of cheap synthetic ones. The estimated growth rate for spices demand in the world is ∼3.19%. Since spices grow in limited geographical regions, India is one of the leading producer of spices, contributing 25-30 percent of total world trade. Hitherto, there has been no comprehensive review of the genomic resources of industrially important major medicinal spices to overcome major impediments in varietal improvement and management. This review focuses on currently available genomic resources of 24 commercially significant spices, namely, Ajwain, Allspice, Asafoetida, Black pepper, Cardamom large, Cardamom small, Celery, Chillies, Cinnamon, Clove, Coriander, Cumin, Curry leaf, Dill seed, Fennel, Fenugreek, Garlic, Ginger, Mint, Nutmeg, Saffron, Tamarind, Turmeric and Vanilla. The advent of low-cost sequencing machines has contributed immensely to the voluminous data generation of these spices, cracking the complex genomic architecture, marker discovery, and understanding comparative and functional genomics. This review of spice genomics resources concludes the perspective and way forward to provide footprints by uncovering genome assemblies, sequencing and re-sequencing projects, transcriptome-based studies, non-coding RNA-mediated regulation, organelles-based resources, developed molecular markers, web resources, databases and AI-directed resources in candidate spices for enhanced breeding potential in them. Further, their integration with molecular breeding could be of immense use in formulating a strategy to protect and expand the production of the spices due to increased global demand.
Collapse
Affiliation(s)
- Parinita Das
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ankita Negi
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anil Rai
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|