1
|
Zhang Y, Wang X, Gao Z, Li X, Meng R, Wu X, Ding J, Shen W, Zhu J. Hypoxia-inducible factor-1α promotes macrophage functional activities in protecting hypoxia-tolerant large yellow croaker ( Larimichthys crocea) against Aeromonas hydrophila infection. Front Immunol 2024; 15:1410082. [PMID: 39156889 PMCID: PMC11327042 DOI: 10.3389/fimmu.2024.1410082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024] Open
Abstract
The immune system requires a high energy expenditure to resist pathogen invasion. Macrophages undergo metabolic reprogramming to meet these energy requirements and immunologic activity and polarize to M1-type macrophages. Understanding the metabolic pathway switching in large yellow croaker (Larimichthys crocea) macrophages in response to lipopolysaccharide (LPS) stimulation and whether this switching affects immunity is helpful in explaining the stronger immunity of hypoxia-tolerant L. crocea. In this study, transcript levels of glycolytic pathway genes (Glut1 and Pdk1), mRNA levels or enzyme activities of glycolytic enzymes [hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase A (LDHA)], aerobic respiratory enzymes [pyruvate dehydrogenase (PDH), isocitrate dehydrogenase (IDH), and succinate dehydrogenase (SDH)], metabolites [lactic acid (LA) and adenosine triphosphate (ATP)], levels of bactericidal products [reactive oxygen species (ROS) and nitric oxide (NO)], and transcripts and level changes of inflammatory factors [IL1β, TNFα, and interferon (IFN) γ] were detected in LPS-stimulated L. crocea head kidney macrophages. We showed that glycolysis was significantly induced, the tricarboxylic acid (TCA) cycle was inhibited, and metabolic reprogramming occurred, showing the Warburg effect when immune cells were activated. To determine the potential regulatory mechanism behind these changes, LcHIF-1α was detected and found to be significantly induced and transferred to the nucleus after LPS stimulation. LcHif-1α interference led to a significant reduction in glycolytic pathway gene transcript expression, enzyme activity, metabolites, bactericidal substances, and inflammatory factor levels; a significant increase in the aerobic respiration enzymes; and decreased migration, invasion, and phagocytosis. Further ultrastructural observation by electron microscopy showed that fewer microspheres contained phagocytes and that more cells were damaged after LcHif-1α interference. LcHif-1α overexpression L. crocea head kidney macrophages showed the opposite trend, and promoter activities of Ldha and Il1β were significantly enhanced after LcHif-1α overexpression in HEK293T cells. Our data showed that LcHIF-1α acted as a metabolic switch in L. crocea macrophages and was important in polarization. Hypoxia-tolerant L. crocea head kidney showed a stronger Warburg effect and inhibited the TCA cycle, higher metabolites, and bactericidal substance levels. These results collectively revealed that LcHif-1α may promote the functional activities of head kidney macrophages in protecting hypoxia-tolerant L. crocea from Aeromonas hydrophila infection.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Xuelei Wang
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Zhenyu Gao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - XuJie Li
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Ran Meng
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Xiongfei Wu
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Jie Ding
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Weiliang Shen
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Li X, Ke Q, Qu A, Wang J, Zhao J, Xu P, Zhou T. Effects of Gene Alternative Splicing Events on Resistance to Cryptocaryonosis of Large Yellow Croaker (Larimichthys crocea). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:741-753. [PMID: 38969905 DOI: 10.1007/s10126-024-10342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
Large yellow croaker (L. crocea) is a productive species in marine aquaculture with great economic value in China. However, the sustainable development of large yellow croaker is hampered by various diseases including cryptocaryonosis caused by Cryptocaryon irritans. The genetic regulation processes for cryptocaryonosis in large yellow croaker are still unclear. In this present study, we analyzed differential alternative splicing events between a C. irritans resistance strain (RS) and a commercial strain (CS). We identified 678 differential alternative splicing (DAS) events from 453 genes in RS and 719 DAS events from 500 genes in CS. A set of genes that are specifically alternatively spliced in RS was identified including mfap5, emp1, and trim33. Further pathway analysis revealed that the specifically alternative spliced genes in RS were involved in innate immune responses through the PRR pathway and the Toll and Imd pathway, suggesting their important roles in the genetic regulation processes for cryptocaryonosis in large yellow croaker. This study would be helpful for the studies of the pathogenesis of cryptocaryonosis and dissection of C. irritans resistance for L. crocea.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Ang Qu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiaying Wang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Zhu XC, Tang BF, Zhu MZ, Lu J, Lin HX, Tang JM, Li R, Ma T. Analysis of complement system and its related factors in Alzheimer's disease. BMC Neurol 2023; 23:446. [PMID: 38114984 PMCID: PMC10729410 DOI: 10.1186/s12883-023-03503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
Alzheimer's disease (AD) is a primary cause of dementia. The complement system is closely related to AD pathology and may be a potential target for the prevention and treatment of AD. In our study, we conducted a bioinformatics analysis to analyze the role of the complement system and its related factors in AD using Gene Expression Omnibus (GEO) data. We also conducted a functional analysis. Our study verified that 23 genes were closely related to differentially expressed complement system genes in diseases after intersecting the disease-related complement system module genes and differentially expressed genes. The STRING database was used to predict the interactions between the modular gene proteins of the differential complement system. A total of 21 gene proteins and 44 interaction pairs showed close interactions. We screened key genes and created a diagnostic model. The predictive effect of the model was constructed using GSE5281 and our study indicated that the predictive effect of the model was good. Our study also showed enriched negative regulation of Notch signaling, cytokine secretion involved in the immune response pathway, and cytokine secretion involved in immune response hormone-mediated apoptotic signaling pathway. We hope that our study provides a promising target to prevent and delay the onset, diagnosis, and treatment of AD.
Collapse
Affiliation(s)
- Xi-Chen Zhu
- Department of Neurology, The Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China.
- Brain Institue, Jiangnan University, Wuxi, Jiangsu Province, China.
- Department of Neurology, The Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China.
- Department of Neurology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi, Jiangsu, 214000, China.
| | - Bin-Feng Tang
- Department of Neurology, The Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China
| | - Meng-Zhuo Zhu
- Department of Neurology, The Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
| | - Jing Lu
- Department of Neurology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi, Jiangsu, 214000, China
| | - Han-Xiao Lin
- Department of Neurology, The Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China
| | - Jia-Ming Tang
- Department of Neurology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi, Jiangsu, 214000, China
| | - Rong Li
- Department of Pharmacy, The Affiliated Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China.
| | - Tao Ma
- Department of Neurology, The Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, Jiangsu Province, China.
- Brain Institue, Jiangnan University, Wuxi, Jiangsu Province, China.
- Department of Neurology, The Wuxi No. 2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, Jiangsu Province, China.
- Department of Neurology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, No. 68 Zhongshan Road, Wuxi, Jiangsu, 214000, China.
| |
Collapse
|
4
|
Bai Y, Chen X, Qu A, Liu Y, Zhao J, Ke Q, Pu F, Wu L, Chi H, Gong H, Zhou T, Xu P. Identification and Expression Analysis of LncRNAs Reveal the Immune Mechanism of Visceral White-Nodules Disease Resistance in Large Yellow Croaker. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:57-69. [PMID: 36401080 DOI: 10.1007/s10126-022-10181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) have several known functions in fish growth processes and signal transduction, but their possible roles in response to bacterial diseases remain largely unresolved. In this study, we report a comprehensive cold-water bacterial disease-responsive lncRNA expression profile for understanding the transcriptional regulatory mechanisms of visceral white-nodules disease resistance in large yellow croaker. A total of 2534 high-confidence lncRNAs were identified by a rigorous filtering pipeline as a basic sequence set for comparative transcriptional analysis. In addition, a total of 10,200 lncRNA-mRNA pairs with high correlation coefficients were identified by expressions level correlation analysis, including non-redundant 381 DE lncRNAs and 2590 differential expressed genes. MSTRG_11084_1 and MSTRG_20402_1 were linked to a large number of target genes and may be involved in important functions in immune regulation. We further revealed the conserved and idiosyncratic features of the disease response process between the technical control strain (TCS) and the resistant strain (RS). Immune-related pathways were enriched in GO terms and KEGG pathways, among which cytokine-cytokine receptor interaction, MAPK signaling pathway, and NF-kappa B signaling pathway may play a key role in VWND resistance in large yellow croaker. Protein-protein interaction network (PPI) analysis revealed that immune-related target genes such as il-10, met, acta2, myc, cav1, and ntrk1, as well as growth and metabolism-related target genes such as pik3r2, igf1, sc5d, hmgcr, and lss were considered the main hub genes. This study represents the first characterization of lncRNAs involved in VWND resistance in large yellow croaker and provides new clues for elucidating the disease response mechanism of large yellow croaker.
Collapse
Affiliation(s)
- Yulin Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xintong Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ang Qu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yue Liu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
| | - Fei Pu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Linni Wu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Hongshu Chi
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Hui Gong
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China.
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
5
|
Yan M, Li B, Wang J, Bai Y, Ke Q, Zhou T, Xu P. Disruption of mstn Gene by CRISPR/Cas9 in Large Yellow Croaker (Larimichthys crocea). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:681-689. [PMID: 35896844 DOI: 10.1007/s10126-022-10135-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The large yellow croaker (Larimichthys crocea) plays an economically vital role in the marine aquaculture in China. Suffering from infection of bacteria and protozoon, effect of extreme weather and stress from high-density farming, genome editing is thought to be an important tool applied to L. croea for enhancing commercial traits such as growth rate, disease resistance, and nutrition component. In this study, we identified two mstn genes in L. croea and investigated the different phylogenetic clades, gene structures, and conserved syntenic relationships. To obtain fast-growing large yellow croaker, we specially selected two validated targets for mstnb knockout, which was homologous to mammalian myostatin gene (MSTN) and downregulated skeletal muscle growth and development. Five significant mutation types were generated in two mosaic mutants by transferring specific CRISPR/Cas9 RNPs (ribonucleoprotein) into the one-cell fertilized embryos based on CRISPR/Cas9 technology. Subsequently, we also elucidated the obstacles and possible measures to improve the success rate of inducing modified large yellow croaker. Our results would provide valuable method and reference for facilitating genome editing programs of the large yellow croaker in the future.
Collapse
Affiliation(s)
- Mengzhen Yan
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Bijun Li
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Jiaying Wang
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yulin Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Bai Y, Wang M, Zhao J, Bai H, Zhang X, Wang J, Ke Q, Qu A, Pu F, Zheng W, Zhou T, Xu P. Correction: Comparative transcriptome analysis reveals immunoregulation mechanism of lncRNA-mRNA in gill and skin of large yellow croaker (Larimichthys crocea) in response to Cryptocaryon irritans infection. BMC Genomics 2022; 23:370. [PMID: 35578173 PMCID: PMC9109367 DOI: 10.1186/s12864-022-08615-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Yulin Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Mei Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Huaqiang Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xinyi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiaying Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
| | - Ang Qu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China. .,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China. .,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China.,Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|