1
|
Ortega MF, Bonamy M, Cutullé C, Giovambattista G. Exploring the biological responses involved in the genetic resistance to Rhipicephalus microplus in Argentine Creole cattle. Trop Anim Health Prod 2024; 56:289. [PMID: 39331163 DOI: 10.1007/s11250-024-04110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
The common cattle tick Rhipicephalus microplus causes severe limitations to livestock production. Bovine genetics could be a decisive component for the success or failure of control programs for ticks and diseases transmitted. The objective of this work was to detect chromosomal regions associated with host resistance to R. microplus through an associative mapping study using medium and high density microarrays in a population of Argentine Creole cattle. The phenotypic record of the number of ticks that completed their development on the host, after artificial infestations, was obtained during 2015 to 2020. Genomic DNA was extracted for genotyping from 192 animals using Affymetrix high (Axiom™ Bos 1) and medium density (ArBos1) microarrays. In an exploratory study, chromosomal regions containing putative quantitative trait loci (QTLs) were recognized on chromosomes 27, 11, 10, 9, 16, 13, 3, 19, 8 and 18, associated with the variation of R. microplus load. Gene ontology based on genes located on these regions revealed an enrichment of terms and pathways for the immune system, blood coagulation, tissue regeneration, endopeptidase activity and protein phosphorylation. The information obtained in this work constitutes a first report of QTLs for tick count in the Argentine Creole cattle, and contributes with the knowledge about the underlying process involved in tick resistance.
Collapse
Affiliation(s)
- María Florencia Ortega
- Estación Experimental Agropecuaria Famaillá (EEA Famaillá), Agencia de Extensión Rural Lules (AER Lules), Instituto Nacional de Tecnología Agropecuaria (INTA), Lules, Tucumán, 4129, Argentina.
| | - Martín Bonamy
- Facultad de Ciencias Veterinarias, Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout" (IGEVET, UNLP-CONICET LA PLATA), Universidad Nacional de La Plata, La Plata (B1904), Buenos Aires, Argentina
- Cátedra de Producción de Bovinos, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata (B1904), Buenos Aires, Argentina
| | - Christian Cutullé
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto de Patobiología Veterinaria (IP-IPVet), Unidad Ejecutora Doble Dependencia (INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA Castelar), Hurlingham (B1686LQF), Buenos Aires, Argentina
| | - Guillermo Giovambattista
- Facultad de Ciencias Veterinarias, Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout" (IGEVET, UNLP-CONICET LA PLATA), Universidad Nacional de La Plata, La Plata (B1904), Buenos Aires, Argentina
| |
Collapse
|
2
|
Andrade TEG, Peña MS, Fiorotti J, de Souza Bin R, Caetano AR, Connelley T, de Miranda Santos IKF. The DRB3 gene of the bovine major histocompatibility complex: discovery, diversity and distribution of alleles in commercial breeds of cattle and applications for development of vaccines. J Dairy Sci 2024:S0022-0302(24)00989-5. [PMID: 39004123 DOI: 10.3168/jds.2023-24628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
The bovine Major Histocompatibility Complex (MHC), also known as the Bovine Leucocyte Antigen (BoLA) complex, is the genomic region that encodes the most important molecules for antigen presentation to initiate immune responses. The first evidence of MHC in bovines pointed to a locus containing 2 antigens, one detected by cytotoxic antiserum (MHC class I) and another studied by mixed lymphocyte culture tests (MHC class II). The most studied gene in the BoLA region is the highly polymorphic BoLA-DRB3, which encodes a β chain with a peptide groove domain involved in antigen presentation for T cells that will develop and co-stimulate cellular and humoral effector responses. BoLA-DRB3 alleles have been associated with outcomes in infectious diseases such as mastitis, trypanosomiasis, and tick loads, and with production traits. To catalog these alleles, 2 nomenclature methods were proposed, and the current use of both systems makes it difficult to list, comprehend and apply these data effectively. In this review we have organized the knowledge available in all of the reports on the frequencies of BoLA-DRB3 alleles. It covers information from studies made in at least 26 countries on more than 30 breeds; studies are lacking in countries that are important producers of cattle livestock. We highlight practical applications of BoLA studies for identification of markers associated with resistance to infectious and parasitic diseases, increased production traits and T cell epitope mapping, in addition to genetic diversity and conservation studies of commercial and creole and locally adapted breeds. Finally, we provide support for the need of studies to discover new BoLA alleles and uncover unknown roles of this locus in production traits.
Collapse
Affiliation(s)
| | | | - Jéssica Fiorotti
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renan de Souza Bin
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Timothy Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | | |
Collapse
|
3
|
Morel N, Torrents J, Nava S. Comparative analysis of Rhipicephalus microplus (Canestrini, 1888) infestation in pure breed (Hereford) and cross breed (Braford) cattle herds subjected to the same chemical treatments. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:71-79. [PMID: 38811383 DOI: 10.1007/s10493-024-00922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
The aim of this work was to analyze the R. microplus (Canestrini, 1888) infestation in two bovine herds with different degrees of natural resistance (i.e., Hereford and Braford) to ticks subjected to an identical chemical treatment scheme to ticks at the same farm, to demonstrate the impact on tick control of the incorporation of a more resistant bovine breed. Two groups of ten Hereford and Braford cows each were subjected to eleven chemical treatments between August 2022 and October 2023 (four fluazuron, two fipronil 1%, one ivermectin 3.15% and four immersion in a dipping vat with a combination of cypermethrin 10% and ethion 40%). Tick population was shown to be susceptible to ivermectin, fluazuron and the mix cypermethrin 10%-ethion 40% and resistant to fipronil according to in vitro tests. Tick infestation was significantly greater in the Hereford cows than in the Braford cows. Tick infestation in both Hereford and Braford breeds was similar when treatment with functional drugs was applied, but when a block of the treatments was done with drugs with decreased functionality due to resistance (i.e. fipronil), treatment failure was manifested more strongly in the most susceptible breed. The incorporation of cattle breeds with moderate or high resistance to R. microplus is instrumental to optimize the efficacy and sustainability of chemical control of ticks in a scenario where resistance to one or more chemical groups is almost ubiquitous, because it favors the biological control of this parasite.
Collapse
Affiliation(s)
- Nicolas Morel
- Instituto de Investigación de La Cadena Láctea (IDICAL, INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela (INTA E.E.A. Rafaela), CC 22, CP 2300, Rafaela, Santa Fe, Argentina
| | - Jorgelina Torrents
- Instituto de Investigación de La Cadena Láctea (IDICAL, INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela (INTA E.E.A. Rafaela), CC 22, CP 2300, Rafaela, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza, Santa Fe, Argentina
| | - Santiago Nava
- Instituto de Investigación de La Cadena Láctea (IDICAL, INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Rafaela (INTA E.E.A. Rafaela), CC 22, CP 2300, Rafaela, Santa Fe, Argentina.
| |
Collapse
|
4
|
Carvalho WA, Gaspar EB, Domingues R, Regitano LCA, Cardoso FF. Genetic factors underlying host resistance to Rhipicephalus microplus tick infestation in Braford cattle: a systems biology perspective. Mamm Genome 2024; 35:186-200. [PMID: 38480585 DOI: 10.1007/s00335-024-10030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 01/29/2024] [Indexed: 05/29/2024]
Abstract
Approximately 80% of the world's cattle are raised in regions with a high risk of tick-borne diseases, resulting in significant economic losses due to parasitism by Rhipicephalus (Boophilus) microplus. However, the lack of a systemic biology approach hampers a comprehensive understanding of tick-host interactions that mediate tick resistance phenotypes. Here, we conducted a genome-wide association study (GWAS) of 2933 Braford cattle and found 340 single-nucleotide polymorphisms (SNPs) associated with tick counts. Gene expression analyses were performed on skin samples obtained from previously tick-exposed heifers with extremely high or low estimated breeding values for R. microplus counts. Evaluations were performed both before and after artificial infestation with ticks. Differentially expressed genes were found within 1-Mb windows centered at significant SNPs from GWAS. A total of 330 genes were related to the breakdown of homeostasis that was induced by larval attachment to bovine skin. Enrichment analysis pointed to a key role of proteolysis and signal transduction via JAK/STAT, NFKB and WNT/beta catenin signaling pathways. Integrative analysis on matrixEQTL revealed two cis-eQTLs and four significant SNPs in the genes peptidyl arginine deiminase type IV (PADI4) and LOC11449251. The integration of genomic data from QTL maps and transcriptome analyses has identified a set of twelve key genes that show significant associations with tick loads. These genes could be key candidates to improve the accuracy of genomic predictions for tick resistance in Braford cattle.
Collapse
|
5
|
Álvarez Cecco P, Balbi M, Bonamy M, Rogberg Muñoz A, Olivera H, Giovambattista G, Fernández ME. Skin transcriptome analysis in Brangus cattle under heat stress. J Therm Biol 2024; 121:103852. [PMID: 38615495 DOI: 10.1016/j.jtherbio.2024.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Heat stress is a major factor that negatively affects animal welfare and production systems. Livestock should adapt to tropical and subtropical areas and to meet this, composite breeds have been developed. This work aimed to evaluate gene expression profiles in the skin of Brangus cattle under heat stress using a case-control design, and to correlate this with skin histological characteristics. Two groups of bulls were set using rectal temperature as a criterion to define stress conditions: stressed (N = 5) and non-stressed (N = 5) groups. Skin transcriptomics was performed and correlations between breed composition, phenotypic and skin histological traits were evaluated. Results showed 4309 differentially expressed genes (P < 0.01), 2113 downregulated and 2196 upregulated. Enrichment and ontology analyses revealed 132 GO terms and 67 pathways (P < 0.01), including thermogenesis, glycolysis, gluconeogenesis, mitochondrial activity, antioxidant and immune response, and apoptosis. The identity of the terms and pathways indicated the diversity of mechanisms directed to relieve the animals' suffering, acting from simple passive mechanisms (conduction, convection and radiation) to more complex active ones (behavioural changes, evaporation, vasodilation and wheezing). Furthermore, significant differences between phenotypic and skin histological traits and correlations between pairs of traits suggested a direction towards heat dissipation processes. In this sense, number of vessels was positively correlated with number of sweat glands (P < 0.001) and both were positively correlated with zebuine genetic content (P < 0.05 and P < 0.01, respectively), gland size was positively correlated with epidermal thickness and negatively with hair length (P < 0.05), and epidermal thickness was negatively correlated with gland-epidermis distance (P < 0.0005). These results support the notion that response to heat stress is physiologically complex, producing significant changes in the expression of genes involved in several biological pathways, while the animal's ability to face it depends greatly on their skin features.
Collapse
Affiliation(s)
- Paulo Álvarez Cecco
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - Marianela Balbi
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - Martín Bonamy
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - Andrés Rogberg Muñoz
- Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, C1417DSQ, Buenos Aires, Argentina
| | - Hernán Olivera
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - Guillermo Giovambattista
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina
| | - María Elena Fernández
- Instituto de Genética Veterinaria (IGEVET), Facultad de Ciencias Veterinarias, UNLP-CONICET, B100, La Plata, Argentina.
| |
Collapse
|
6
|
Mantilla Valdivieso EF, Ross EM, Raza A, Nguyen L, Hayes BJ, Jonsson NN, James P, Tabor AE. Expression network analysis of bovine skin infested with Rhipicephalus australis identifies pro-inflammatory genes contributing to tick susceptibility. Sci Rep 2024; 14:4419. [PMID: 38388834 PMCID: PMC10884027 DOI: 10.1038/s41598-024-54577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
The skin is the primary feeding site of ticks that infest livestock animals such as cattle. The highly specialised functions of skin at the molecular level may be a factor contributing to variation in susceptibility to tick infestation; but these remain to be well defined. The aim of this study was to investigate the bovine skin transcriptomic profiles of tick-naïve and tick-infested cattle and to uncover the gene expression networks that influence contrasting phenotypes of host resistance to ticks. RNA-Seq data was obtained from skin of Brangus cattle with high (n = 5) and low (n = 6) host resistance at 0 and 12 weeks following artificial tick challenge with Rhipicephalus australis larvae. No differentially expressed genes were detected pre-infestation between high and low resistance groups, but at 12-weeks there were 229 differentially expressed genes (DEGs; FDR < 0.05), of which 212 were the target of at least 1866 transcription factors (TFs) expressed in skin. Regulatory impact factor (RIF) analysis identified 158 significant TFs (P < 0.05) of which GRHL3, and DTX1 were also DEGs in the experiment. Gene term enrichment showed the significant TFs and DEGs were enriched in processes related to immune response and biological pathways related to host response to infectious diseases. Interferon Type 1-stimulated genes, including MX2, ISG15, MX1, OAS2 were upregulated in low host resistance steers after repeated tick challenge, suggesting dysregulated wound healing and chronic inflammatory skin processes contributing to host susceptibility to ticks. The present study provides an assessment of the bovine skin transcriptome before and after repeated tick challenge and shows that the up-regulation of pro-inflammatory genes is a prominent feature in the skin of tick-susceptible animals. In addition, the identification of transcription factors with high regulatory impact provides insights into the potentially meaningful gene-gene interactions involved in the variation of phenotypes of bovine host resistance to ticks.
Collapse
Affiliation(s)
- Emily F Mantilla Valdivieso
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Elizabeth M Ross
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Ali Raza
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Loan Nguyen
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nicholas N Jonsson
- Institute of Biodiversity One Health and Veterinary Medicine, University of Glasgow, Glasgow, G61 1QH, UK.
| | - Peter James
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ala E Tabor
- Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
7
|
Raza A, Schulz BL, Nouwens A, Naseem MN, Kamran M, Mantilla Valdivieso EF, Kerr ED, Constantinoiu C, Jonsson NN, James P, Tabor AE. Application of quantitative proteomics to discover biomarkers for tick resistance in cattle. Front Immunol 2023; 14:1091066. [PMID: 36793724 PMCID: PMC9924087 DOI: 10.3389/fimmu.2023.1091066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/04/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction Breeding for tick resistance is a sustainable alternative to control cattle ticks due to widespread resistance to acaricidal drugs and the lack of a protective vaccine. The most accurate method used to characterise the phenotype for tick resistance in field studies is the standard tick count, but this is labour-intensive and can be hazardous to the operator. Efficient genetic selection requires reliable phenotyping or biomarker(s) for accurately identifying tick-resistant cattle. Although breed-specific genes associated with tick resistance have been identified, the mechanisms behind tick resistance have not yet been fully characterised. Methods This study applied quantitative proteomics to examine the differential abundance of serum and skin proteins using samples from naïve tick-resistant and -susceptible Brangus cattle at two-time points following tick exposure. The proteins were digested into peptides, followed by identification and quantification using sequential window acquisition of all theoretical fragment ion mass spectrometry. Results Resistant naïve cattle had a suite of proteins associated with immune response, blood coagulation and wound healing that were significantly (adjusted P < 10- 5) more abundant compared with susceptible naïve cattle. These proteins included complement factors (C3, C4, C4a), alpha-1-acid glycoprotein (AGP), beta-2-glycoprotein-1, keratins (KRT1 & KRT3) and fibrinogens (alpha & beta). The mass spectrometry findings were validated by identifying differences in the relative abundance of selected serum proteins with ELISA. The proteins showing a significantly different abundance in resistant cattle following early and prolonged tick exposures (compared to resistant naïve) were associated with immune response, blood coagulation, homeostasis, and wound healing. In contrast, susceptible cattle developed some of these responses only after prolonged tick exposure. Discussion Resistant cattle were able to transmigrate immune-response related proteins towards the tick bite sites, which may prevent tick feeding. Significantly differentially abundant proteins identified in this research in resistant naïve cattle may provide a rapid and efficient protective response to tick infestation. Physical barrier (skin integrity and wound healing) mechanisms and systemic immune responses were key contributors to resistance. Immune response-related proteins such as C4, C4a, AGP and CGN1 (naïve samples), CD14, GC and AGP (post-infestation) should be further investigated as potential biomarkers for tick resistance.
Collapse
Affiliation(s)
- Ali Raza
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Benjamin L Schulz
- The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, QLD, Australia
| | - Amanda Nouwens
- The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, QLD, Australia
| | - Muhammad Noman Naseem
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Muhammad Kamran
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Emily F Mantilla Valdivieso
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Edward D Kerr
- The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, QLD, Australia
| | - Constantin Constantinoiu
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| | - Nicholas N Jonsson
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Peter James
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia
| | - Ala E Tabor
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD, Australia.,The University of Queensland, School of Chemistry and Molecular Biosciences, St. Lucia, QLD, Australia
| |
Collapse
|