1
|
de Lima MR, Leandro ACCS, de Souza AL, Barradas MM, Roma EH, Fernandes ATG, Galdino-Silva G, Carvalho JKMR, Marchevsky RS, Coelho JMCO, Gonçalves EDC, VandeBerg JL, Silva CL, Bonecini-Almeida MDG. Safety and Immunogenicity of an In Vivo Muscle Electroporation Delivery System for DNA- hsp65 Tuberculosis Vaccine in Cynomolgus Monkeys. Vaccines (Basel) 2023; 11:1863. [PMID: 38140266 PMCID: PMC10747856 DOI: 10.3390/vaccines11121863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
A Bacille Calmette-Guérin (BCG) is still the only licensed vaccine for the prevention of tuberculosis, providing limited protection against Mycobacterium tuberculosis infection in adulthood. New advances in the delivery of DNA vaccines by electroporation have been made in the past decade. We evaluated the safety and immunogenicity of the DNA-hsp65 vaccine administered by intramuscular electroporation (EP) in cynomolgus macaques. Animals received three doses of DNA-hsp65 at 30-day intervals. We demonstrated that intramuscular electroporated DNA-hsp65 vaccine immunization of cynomolgus macaques was safe, and there were no vaccine-related effects on hematological, renal, or hepatic profiles, compared to the pre-vaccination parameters. No tuberculin skin test conversion nor lung X-ray alteration was identified. Further, low and transient peripheral cellular immune response and cytokine expression were observed, primarily after the third dose of the DNA-hsp65 vaccine. Electroporated DNA-hsp65 vaccination is safe but provides limited enhancement of peripheral cellular immune responses. Preclinical vaccine trials with DNA-hsp65 delivered via EP may include a combination of plasmid cytokine adjuvant and/or protein prime-boost regimen, to help the induction of a stronger cellular immune response.
Collapse
Affiliation(s)
- Monique Ribeiro de Lima
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Ana Cristina C. S. Leandro
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
- Division of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Andreia Lamoglia de Souza
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Marcio Mantuano Barradas
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Eric Henrique Roma
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Ana Teresa Gomes Fernandes
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Gabrielle Galdino-Silva
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Joyce Katiuccia M. Ramos Carvalho
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| | - Renato Sergio Marchevsky
- Laboratory of Neurovirulence, Instituto de Biotecnologia em Imunobiológicos, Biomanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | - Janice M. C. Oliveira Coelho
- Laboratory of Pathology, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil;
| | | | - John L. VandeBerg
- Division of Human Genetics, South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA;
| | - Celio Lopes Silva
- Farmacore Biotecnologia Ltda, Ribeirão Preto 14056-680, SP, Brazil; (E.D.C.G.); (C.L.S.)
- Laboratory for Research and Development of Immunobiologicals, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Maria da Gloria Bonecini-Almeida
- Laboratory of Immunology and Immunogenetic in Infectious Diseases, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, RJ, Brazil; (M.R.d.L.); (A.C.C.S.L.); (A.L.d.S.); (M.M.B.); (E.H.R.); (A.T.G.F.); (G.G.-S.); (J.K.M.R.C.)
| |
Collapse
|
2
|
Griffin ME, Klupt S, Espinosa J, Hang HC. Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions. Cell Chem Biol 2023; 30:436-456. [PMID: 36417916 PMCID: PMC10192474 DOI: 10.1016/j.chembiol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall is composed of a highly crosslinked matrix of glycopeptide polymers known as peptidoglycan that dictates bacterial cell morphology and protects against environmental stresses. Regulation of peptidoglycan turnover is therefore crucial for bacterial survival and growth and is mediated by key protein complexes and enzyme families. Here, we review the prevalence, structure, and activity of NlpC/P60 peptidases, a family of peptidoglycan hydrolases that are crucial for cell wall turnover and division as well as interactions with antibiotics and different hosts. Understanding the molecular functions of NlpC/P60 peptidases should provide important insight into bacterial physiology, their interactions with different kingdoms of life, and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Steven Klupt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Juliel Espinosa
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Gong W, Liang Y, Mi J, Xue Y, Wang J, Wang L, Zhou Y, Sun S, Wu X. A peptide-based vaccine ACP derived from antigens of Mycobacterium tuberculosis induced Th1 response but failed to enhance the protective efficacy of BCG in mice. Indian J Tuberc 2022; 69:482-495. [PMID: 36460380 DOI: 10.1016/j.ijtb.2021.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tuberculosis (TB) is a global infectious disease, but there is no ideal vaccine against TB except the Bacille Calmette-Guérin (BCG) vaccine. METHODS Herein, 25 candidate peptides were predicted from four antigens of Mycobacterium tuberculosis based on their high-affinity binding capacity for the human leukocyte antigen (HLA) DRB1∗0101. Three T-helper 1 (Th1) immunodominant peptides (Ag85B12-26, CFP2112-26, and PPE18149-163) were identified by ELISPOT assays in the humanized C57BL/6 mice. They resulted in a novel Th1 peptide-based vaccine ACP named by the first letter of the three peptides. In addition, the protective efficacy was evaluated in humanized or wild-type C57BL/6 mice and the humoral and cellular immune responses were confirmed in vitro. RESULTS Compared with the PBS group, the ACP vaccinated mice showed slight decreases in colony-forming units (CFUs) and pathological lesions. However, when using it as a booster, the ACP vaccine did not significantly enhance the protective efficacy of BCG in humanized or wild-type mice. Interestingly, we found that ACP vaccination significantly increased the number of interferon-γ positive (IFN-γ+) T lymphocytes and the levels of IFN-γ cytokines as well as antibodies. Furthermore, the IL-2 level was significantly higher in humanized mice prime-boosted with BCG and ACP. CONCLUSIONS Our results suggested that ACP vaccination could stimulate higher levels of cytokines and antibodies but failed to improve the protective efficacy of BCG in mice, indicating that the secretion level of IFN-γ may not be positively correlated with the protection efficiency of the vaccine. These findings provided important information on the feasibility of a peptide vaccine as a booster for enhancing the protective efficacy of BCG.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Yan Liang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Jie Mi
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Lan Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
4
|
Mi J, Liang Y, Liang J, Gong W, Wang S, Zhang J, Li Z, Wu X. The Research Progress in Immunotherapy of Tuberculosis. Front Cell Infect Microbiol 2021; 11:763591. [PMID: 34869066 PMCID: PMC8634162 DOI: 10.3389/fcimb.2021.763591] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/27/2021] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis (TB) is a serious public health problem worldwide. The combination of various anti-TB drugs is mainly used to treat TB in clinical practice. Despite the availability of effective antibiotics, effective treatment regimens still require long-term use of multiple drugs, leading to toxicity, low patient compliance, and the development of drug resistance. It has been confirmed that immune recognition, immune response, and immune regulation of Mycobacterium tuberculosis (Mtb) determine the occurrence, development, and outcome of diseases after Mtb infection. The research and development of TB-specific immunotherapy agents can effectively regulate the anti-TB immune response and provide a new approach toward the combined treatment of TB, thereby preventing and intervening in populations at high risk of TB infection. These immunotherapy agents will promote satisfactory progress in anti-TB treatment, achieving the goal of "ultra-short course chemotherapy." This review highlights the research progress in immunotherapy of TB, including immunoreactive substances, tuberculosis therapeutic vaccines, chemical agents, and cellular therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Arega AM, Mahapatra RK. Glycoconjugates, hypothetical proteins, and post-translational modification: Importance in host-pathogen interaction and antitubercular intervention development. Chem Biol Drug Des 2021; 98:30-48. [PMID: 33838076 DOI: 10.1111/cbdd.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022]
Abstract
With the emergence of multidrug-resistant bacteria, insufficiency of the established chemotherapy, and the existing vaccine BCG, tuberculosis (TB) subsists as the chief cause of death in different parts of the world. Thus, identification of novel target proteins is urgently required to develop more effective TB interventions. However, the novel vaccine and drug target knowledge based on the essentiality of the pathogen cell envelope components such as glycoconjugates, glycans, and the peptidoglycan layer of the lipid-rich capsule are limited. Furthermore, most of the genes encoding proteins are characterized as hypothetical and functionally unknown. Correspondingly, some researchers have shown that the lipid and sugar components of the envelope glycoconjugates are largely in charge of TB pathogenesis and encounter many drugs and vaccines. Therefore, in this review we provide an insight into a comprehensive study concerning the importance of cell envelope glycoconjugates and hypothetical proteins, the impact of post-translational modification, and the bioinformatics-based implications for better antitubercular intervention development.
Collapse
Affiliation(s)
- Aregitu Mekuriaw Arega
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, India.,National Veterinary Institute, Debre Zeit, Ethiopia
| | | |
Collapse
|
6
|
Russell RL, Pelka P, Mark BL. Frontrunners in the race to develop a SARS-CoV-2 vaccine. Can J Microbiol 2020; 67:189-212. [PMID: 33264067 DOI: 10.1139/cjm-2020-0465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Numerous studies continue to be published on the COVID-19 pandemic that is being caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Given the rapidly evolving global response to SARS-CoV-2, here we primarily review the leading COVID-19 vaccine strategies that are currently in Phase III clinical trials. Nonreplicating viral vector strategies, inactivated virus, recombinant protein subunit vaccines, and nucleic acid vaccine platforms are all being pursued in an effort to combat the infection. Preclinical and clinal trial results of these efforts are examined as well as the characteristics of each vaccine strategy from the humoral and cellular immune responses they stimulate, effects of any adjuvants used, and the potential risks associated with immunization such as antibody-dependent enhancement. A number of promising advancements have been made toward the development of multiple vaccine candidates. Preliminary data now emerging from phase III clinical trials show encouraging results for the protective efficacy and safety of at least 3 frontrunning candidates. There is hope that one or more will emerge as potent weapons to protect against SARS-CoV-2.
Collapse
Affiliation(s)
- Raquel L Russell
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Brian L Mark
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
7
|
Saralahti AK, Uusi-Mäkelä MIE, Niskanen MT, Rämet M. Integrating fish models in tuberculosis vaccine development. Dis Model Mech 2020; 13:13/8/dmm045716. [PMID: 32859577 PMCID: PMC7473647 DOI: 10.1242/dmm.045716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis. Summary: In this Review, we discuss how zebrafish (Danio rerio) and other fish models can complement the more traditional mammalian models in the development of novel vaccines against tuberculosis.
Collapse
Affiliation(s)
- Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mirja T Niskanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland .,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu FI-90014, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu FI-90029, Finland
| |
Collapse
|
8
|
Gong WP, Liang Y, Ling YB, Zhang JX, Yang YR, Wang L, Wang J, Shi YC, Wu XQ. Effects of Mycobacterium vaccae vaccine in a mouse model of tuberculosis: protective action and differentially expressed genes. Mil Med Res 2020; 7:25. [PMID: 32493477 PMCID: PMC7268289 DOI: 10.1186/s40779-020-00258-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tuberculosis is a leading cause of death worldwide. BCG is an effective vaccine, but not widely used in many parts of the world due to a variety of issues. Mycobacterium vaccae (M. vaccae) is another vaccine used in human subjects to prevent tuberculosis. In the current study, we investigated the potential mechanisms of M. vaccae vaccination by determining differentially expressed genes in mice infected with M. tuberculosis before and after M. vaccae vaccination. METHODS Three days after exposure to M. tuberculosis H37Rv strain (5 × 105 CFU), adult BALB/c mice randomly received either M. vaccae vaccine (22.5 μg) or vehicle via intramuscular injection (n = 8). Booster immunization was conducted 14 and 28 days after the primary immunization. Differentially expressed genes were identified by microarray followed by standard bioinformatics analysis. RESULTS M. vaccae vaccination provided protection against M. tuberculosis infection (most prominent in the lungs). We identified 2326 upregulated and 2221 downregulated genes in vaccinated mice. These changes could be mapped to a total of 123 signaling pathways (68 upregulated and 55 downregulated). Further analysis pinpointed to the MyD88-dependent TLR signaling pathway and PI3K-Akt signaling pathway as most likely to be functional. CONCLUSIONS M. vaccae vaccine provided good protection in mice against M. tuberculosis infection, via a highly complex set of molecular changes. Our findings may provide clue to guide development of more effective vaccine against tuberculosis.
Collapse
Affiliation(s)
- Wen-Ping Gong
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Yan Liang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Yan-Bo Ling
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Jun-Xian Zhang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - You-Rong Yang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Lan Wang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Jie Wang
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Ying-Chang Shi
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China
| | - Xue-Qiong Wu
- Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research, the 8th Medical Center of Chinese PLA General Hospital, Beijing, 100091, China.
| |
Collapse
|
9
|
Okay S, Çetin R, Karabulut F, Doğan C, Sürücüoğlu S, Kızıldoğan AK. Immune responses elicited by the recombinant Erp, HspR, LppX, MmaA4, and OmpA proteins from Mycobacterium tuberculosis in mice. Acta Microbiol Immunol Hung 2019; 66:219-234. [PMID: 30484328 DOI: 10.1556/030.65.2018.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immunogenic potency of the recombinant Erp, HspR, LppX, MmaA4, and OmpA proteins from Mycobacterium tuberculosis (MTB), formulated with Montanide ISA 720 VG adjuvant, was evaluated in BALB/c mice for the first time in this study. The five vaccine formulations, adjuvant, and BCG vaccine were subcutaneously injected into mice, and the sera were collected at days 0, 15, 30, 41, and 66. The humoral and cellular immune responses against vaccine formulations were determined by measuring serum IgG and serum interferon-gamma (IFN-γ) and interleukin-12 (IL-12) levels, respectively. All formulations significantly increased IgG levels post-vaccination. The highest increase in IFN-γ level was provided by MmaA4 formulation. The Erp, HspR, and LppX formulations were as effective as BCG in enhancement of IFN-γ level. The most efficient vaccine boosting the IL-12 level was HspR formulation, especially at day 66. Erp formulation also increased the IL-12 level more than BCG at days 15 and 30. The IL-12 level boosted by MmaA4 formulation was found to be similar to that by BCG. OmpA formulation was inefficient in enhancement of cellular immune responses. This study showed that MmaA4, HspR, and Erp proteins from MTB are successful in eliciting both humoral and cellular immune responses in mice.
Collapse
Affiliation(s)
- Sezer Okay
- 1 Faculty of Science, Department of Biology, Çankiri Karatekin University, Çankiri, Turkey
| | - Rukiye Çetin
- 1 Faculty of Science, Department of Biology, Çankiri Karatekin University, Çankiri, Turkey
| | - Fatih Karabulut
- 1 Faculty of Science, Department of Biology, Çankiri Karatekin University, Çankiri, Turkey
| | - Cennet Doğan
- 1 Faculty of Science, Department of Biology, Çankiri Karatekin University, Çankiri, Turkey
| | - Süheyla Sürücüoğlu
- 2 Faculty of Medicine, Department of Medical Microbiology, Manisa Celal Bayar University, Manisa, Turkey
| | - Aslıhan Kurt Kızıldoğan
- 3 Faculty of Agriculture, Department of Agricultural Biotechnology, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
10
|
Gong W, Liang Y, Wu X. The current status, challenges, and future developments of new tuberculosis vaccines. Hum Vaccin Immunother 2018; 14:1697-1716. [PMID: 29601253 DOI: 10.1080/21645515.2018.1458806] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), one of the top 10 causes of death worldwide. TB results in more fatalities than multi-drug resistant (MDR) HIV strain related coinfection. Vaccines play a key role in the prevention and control of infectious diseases. Unfortunately, the only licensed preventive vaccine against TB, bacilli Calmette-Guérin (BCG), is ineffective for prevention of pulmonary TB in adults. Therefore, it is very important to develop novel vaccines for TB prevention and control. This literature review provides an overview of the innate and adaptive immune response during M. tuberculosis infection, and presents current developments and challenges to novel TB vaccines. A comprehensive understanding of vaccines in preclinical and clinical studies provides extensive insight for the development of safer and more efficient vaccines, and may inspire new ideas for TB prevention and treatment.
Collapse
Affiliation(s)
- Wenping Gong
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Yan Liang
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| | - Xueqiong Wu
- a Army Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Institute for Tuberculosis Research , Haidian District, Beijing , China
| |
Collapse
|