1
|
Yoon J, Kim Y, Kim S, Jeong H, Park J, Jeong MH, Park S, Jo M, An S, Park J, Jang SH, Goh J, Park SY. Agrobacterium tumefaciens-Mediated Transformation of the Aquatic Fungus Phialemonium inflatum FBCC-F1546. J Fungi (Basel) 2023; 9:1158. [PMID: 38132759 PMCID: PMC10744869 DOI: 10.3390/jof9121158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Phialemonium inflatum is a useful fungus known for its ability to mineralise lignin during primary metabolism and decompose polycyclic aromatic hydrocarbons (PAHs). However, no functional genetic analysis techniques have been developed yet for this fungus, specifically in terms of transformation. In this study, we applied an Agrobacterium tumefaciens-mediated transformation (ATMT) system to P. inflatum for a functional gene analysis. We generated 3689 transformants using the binary vector pSK1044, which carried either the hygromycin B phosphotransferase (hph) gene or the enhanced green fluorescent protein (eGFP) gene to label the transformants. A Southern blot analysis showed that the probability of a single copy of T-DNA insertion was approximately 50% when the co-cultivation of fungal spores and Agrobacterium tumefaciens cells was performed at 24-36 h, whereas at 48 h, it was approximately 35.5%. Therefore, when performing gene knockout using the ATMT system, the co-cultivation time was reduced to ≤36 h. The resulting transformants were mitotically stable, and a PCR analysis confirmed the genes' integration into the transformant genome. Additionally, hph and eGFP gene expressions were confirmed via PCR amplification and fluorescence microscopy. This optimised transformation system will enable functional gene analyses to study genes of interest in P. inflatum.
Collapse
Affiliation(s)
- Jonghan Yoon
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
| | - Youngjun Kim
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
| | - Seoyeon Kim
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea
| | - Haejun Jeong
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
| | - Jiyoon Park
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea
| | - Min-Hye Jeong
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
| | - Sangkyu Park
- Fungi Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources, Donam 2-gil 137, Sangju 37242, Republic of Korea;
| | - Miju Jo
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sunmin An
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jiwon Park
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seol-Hwa Jang
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
| | - Jaeduk Goh
- Fungi Research Team, Microbial Research Department, Nakdonggang National Institute of Biological Resources, Donam 2-gil 137, Sangju 37242, Republic of Korea;
| | - Sook-Young Park
- Department of Plant Medicine, Sunchon National University, Suncheon 57922, Republic of Korea; (J.Y.); (Y.K.); (S.K.); (H.J.); (J.P.); (M.-H.J.); (M.J.); (S.A.); (J.P.); (S.-H.J.)
- Interdisciplinary Program in IT-Bio Convergence System (BK21 Plus), Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|
2
|
Thai HD, Do LTBX, Nguyen XT, Vu TX, Tran HTT, Nguyen HQ, Tran VT. A newly constructed Agrobacterium-mediated transformation system based on the hisB auxotrophic marker for genetic manipulation in Aspergillus niger. Arch Microbiol 2023; 205:183. [PMID: 37032362 DOI: 10.1007/s00203-023-03530-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023]
Abstract
The filamentous fungus Aspergillus niger is widely exploited as an industrial workhorse for producing enzymes and organic acids. So far, different genetic tools, including CRISPR/Cas9 genome editing strategies, have been developed for the engineering of A. niger. However, these tools usually require a suitable method for gene transfer into the fungal genome, like protoplast-mediated transformation (PMT) or Agrobacterium tumefaciens-mediated transformation (ATMT). Compared to PMT, ATMT is considered more advantageous because fungal spores can be used directly for genetic transformation instead of protoplasts. Although ATMT has been applied in many filamentous fungi, it remains less effective in A. niger. In the present study, we deleted the hisB gene and established an ATMT system for A. niger based on the histidine auxotrophic mechanism. Our results revealed that the ATMT system could achieve 300 transformants per 107 fungal spores under optimal transformation conditions. The ATMT efficiency in this work is 5 - 60 times higher than those of the previous ATMT studies in A. niger. The ATMT system was successfully applied to express the DsRed fluorescent protein-encoding gene from the Discosoma coral in A. niger. Furthermore, we showed that the ATMT system was efficient for gene targeting in A. niger. The deletion efficiency of the laeA regulatory gene using hisB as a selectable marker could reach 68 - 85% in A. niger strains. The ATMT system constructed in our work represents a promising genetic tool for heterologous expression and gene targeting in the industrially important fungus A. niger.
Collapse
Affiliation(s)
- Hanh-Dung Thai
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Loc Thi Binh Xuan Do
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Xuan Thi Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Tao Xuan Vu
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Center for Experimental Biology, National Center for Technological Progress, Ministry of Science and Technology, C6 Thanh Xuan Bac, Thanh Xuan, Hanoi, Viet Nam
| | - Huyen Thi Thanh Tran
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Huy Quang Nguyen
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam
| | - Van-Tuan Tran
- National Key Laboratory of Enzyme and Protein Technology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
- Faculty of Biology, University of Science, Vietnam National University, Hanoi (VNU), 334 Nguyen Trai, Thanh Xuan, Hanoi, Viet Nam.
| |
Collapse
|
3
|
Dai P, Lv Y, Gong X, Han J, Gao P, Xu H, Zhang Y, Zhang X. RNA-Seq Analysis of the Effect of Zinc Deficiency on Microsporum canis, ZafA Gene Is Important for Growth and Pathogenicity. Front Cell Infect Microbiol 2021; 11:727665. [PMID: 34604111 PMCID: PMC8481874 DOI: 10.3389/fcimb.2021.727665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
Microsporum canis, a common pathogenic skin fungus, can cause dermatophytosis in humans and animals. Zinc is an important trace element and plays an important role in the growth and metabolism of fungi. Currently, the effects of zinc deficiency on growth, gene expression, and metabolic pathway have not been clarified in M. canis. Therefore, M. canis was cultured under zinc restriction, and RNA-Seq was conducted in this study. The growth of M. canis was severely inhibited, and many genes showed significant upregulation and downregulation in M. canis with zinc deficiency. Zinc deficiency could negatively affect the gene expression and biological metabolic pathway in M. canis. The zinc-responsiveness transcriptional activator (ZafA) gene was significantly upregulated and shared homology with Zap1. Thus, the ZafA gene might be the main transcription factor regulating M. canis zinc homeostasis. The ZafA gene knockout strain, ZafA-hph, was constructed via Agrobacterium tumefaciens-mediated transformation (ATMT) in M. canis for the first time to assess its function. In vitro growth ability, hair biodegradation ability, virulence test, and zinc absorption capacity in ZafA-hph and wild-type M. canis strains were compared. Results showed that the ZafA gene plays an important role in zinc absorption, expression of zinc transporter genes, and growth and pathogenicity in M. canis and can be used as a new drug target. Cutting off the zinc absorption pathway can be used as a way to prevent and control infection in M. canis.
Collapse
Affiliation(s)
- Pengxiu Dai
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Yangou Lv
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Xiaowen Gong
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Jianye Han
- The Animal Health Supervision Institute of Xi'an, Xi'an, China
| | - Peng Gao
- The Animal Health Supervision Institute of Yanta, Xi'an, China
| | - Haojie Xu
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Yihua Zhang
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| | - Xinke Zhang
- The College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
4
|
Son YE, Park HS. Genetic Manipulation and Transformation Methods for Aspergillus spp. MYCOBIOLOGY 2020; 49:95-104. [PMID: 37970179 PMCID: PMC10635212 DOI: 10.1080/12298093.2020.1838115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2023]
Abstract
Species of the genus Aspergillus have a variety of effects on humans and have been considered industrial cell factories due to their prominent ability for manufacturing several products such as heterologous proteins, secondary metabolites, and organic acids. Scientists are trying to improve fungal strains and re-design metabolic processes through advanced genetic manipulation techniques and gene delivery systems to enhance their industrial efficiency and utility. In this review, we describe the current status of the genetic manipulation techniques and transformation methods for species of the genus Aspergillus. The host strains, selective markers, and experimental materials required for the genetic manipulation and fungal transformation are described in detail. Furthermore, the advantages and disadvantages of these techniques are described.
Collapse
Affiliation(s)
- Ye-Eun Son
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
5
|
Liu G, Cao L, Rao Z, Qiu X, Han R. Identification of the genes involved in growth characters of medicinal fungus Ophiocordyceps sinensis based on Agrobacterium tumefaciens–mediated transformation. Appl Microbiol Biotechnol 2020; 104:2663-2674. [DOI: 10.1007/s00253-020-10417-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/09/2020] [Accepted: 01/26/2020] [Indexed: 01/06/2023]
|
6
|
Min T, Xiong L, Liang Y, Xu R, Fa C, Yang S, Hu H. Disruption of stcA blocks sterigmatocystin biosynthesis and improves echinocandin B production in Aspergillus delacroxii. World J Microbiol Biotechnol 2019; 35:109. [DOI: 10.1007/s11274-019-2687-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/29/2019] [Indexed: 10/26/2022]
|
7
|
Sayari M, van der Nest MA, Steenkamp ET, Adegeye OO, Marincowitz S, Wingfield BD. Agrobacterium-mediated transformation of Ceratocystis albifundus. Microbiol Res 2019; 226:55-64. [PMID: 31284945 DOI: 10.1016/j.micres.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/01/2019] [Accepted: 05/23/2019] [Indexed: 11/17/2022]
Abstract
Functional association between genomic loci and specific biological traits remains lacking in many fungi, including the African tree pathogen Ceratocystis albifundus. This is mainly because of the absence of suitable transformation systems for allowing genetic manipulation of this and other fungi. Here, we present an optimized protocol for Agrobacterium tumefaciens-mediated transformation of C. albifundus. Strain AGL-1 of A. tumefaciens and four binary T-DNA vectors (conferring hygromycin B or geneticin resistance and/or expressing the green fluorescent protein [GFP]) were used for transforming germinated conidia of three isolates of C. albifundus. Stable expression of these T-DNA-encoded traits was confirmed through sequential sub-culturing of fungal transformants on selective and non-selective media and by using PCR and sequence analysis. Single-copy integration of the respective T-DNAs into the genomes of these fungi was confirmed using Southern hybridization analysis. The range of experimental parameters determined and optimised included: (i) concentrations of hygromycin B and geneticin required for inhibiting growth of the wild type fungus and (ii) the dependence of transformation on acetosyringone for inducing the bacterium's virulence genes, as well as (iii) the duration of fungus-bacterium co-cultivation periods and (iv) the concentrations of fungal conidia and bacterial cells used for the latter. The system developed in this study is stable with a high-efficiency, yielding up to 400 transformants per 106 conidia. This is the first report of a transformation protocol for C. albifundus and its availability will be invaluable for functional studies in this important fungus.
Collapse
Affiliation(s)
- M Sayari
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - M A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa; Biotechnology Platform, Agricultural Research Council, Onderstepoort Campus, Pretoria, South Africa
| | - E T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - O O Adegeye
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - S Marincowitz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
8
|
ZafA Gene Is Important for Trichophyton mentagrophytes Growth and Pathogenicity. Int J Mol Sci 2019; 20:ijms20040848. [PMID: 30781401 PMCID: PMC6412997 DOI: 10.3390/ijms20040848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
Trichophyton mentagrophytes is a common fungal pathogen that causes human and animal dermatophytosis. Previous studies have shown that zinc deficiency inhibits T. mentagrophytes growth, and the ZafA gene of T. mentagrophytes can code the functionally similar zinc finger transcriptional factor that can promote zinc ion absorption; however, the impact of ZafA on virulence and pathogenicity remains undetermined. To assess its gene function, the ZafA mutant, ZafA-hph, and the ZafA complemented strain, ZafA+bar, were constructed via Agrobacterium tumefaciens-mediated transformation. Polymerase chain reaction and Southern blot analyses were used to confirm the disruption. In vitro growth capacity and virulence analyses comparing ZafA-hph with wild-type T. mentagrophytes and ZafA+bar showed that ZafA-hph's growth performance, reproduction ability, and zinc ion absorption capacity were significantly lower than the wild-type T. mentagrophytes and ZafA+bar. ZafA-hph also showed weak hair biodegradation ability and animal pathogenicity. Thus, the significant decrease in T. mentagrophytes' growth ability and virulence was due to a lack of the zinc-responsive activity factor rather than the transformation process. This study confirmed that the T. mentagrophytes' zinc-responsive activity factor plays important roles in the pathogen's growth, reproduction, zinc ion absorption, and virulence. This factor is important and significant for effectively preventing and controlling T. mentagrophytes infections.
Collapse
|
9
|
Han G, Shao Q, Li C, Zhao K, Jiang L, Fan J, Jiang H, Tao F. An efficient Agrobacterium-mediated transformation method for aflatoxin generation fungus Aspergillus flavus. J Microbiol 2018; 56:356-364. [DOI: 10.1007/s12275-018-7349-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 10/17/2022]
|
10
|
Poyedinok NL, Blume YB. Advances, Problems, and Prospects of Genetic Transformation of Fungi. CYTOL GENET+ 2018. [DOI: 10.3103/s009545271802007x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Florencio CS, Brandão FAS, Teixeira MDM, Bocca AL, Felipe MSS, Vicente VA, Fernandes L. Genetic manipulation of Fonsecaea pedrosoi using particles bombardment and Agrobacterium mediated transformation. Microbiol Res 2018; 207:269-279. [PMID: 29458863 DOI: 10.1016/j.micres.2018.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/04/2017] [Accepted: 01/01/2018] [Indexed: 11/24/2022]
Abstract
Fonsecaea pedrosoi, a melanized fungal pathogen that causes Chromoblastomycosis, a human disease with a worldwide distribution. Biolistic is a widely used technique for direct delivery of genetic material into intact cells by particles bombardment. Another well-established transformation method is Agrobacterium-mediated transformation (ATMT), which involves the transfer of a T-DNA from the bacterium to the target cells. In F. pedrosoi there are no reports of established protocols for genetic transformation, which require optimization of physical and biological parameters. In this work, intact conidia of F. pedrosoi were particle bombarded and subjected to ATMT. In addition, we proposed hygromycin B, nourseothricin and neomycin as dominant selective markers for F. pedrosoi and vectors were constructed. We tested two parameters for biolistic: the distance of the particles to the target cells and time of cells recovery in nonselective medium. The biolistic efficiency was 37 transformants/μg of pFpHYG, and 45 transformants/μg of pAN7.1. Transformants expressing GFP were successfully obtained by biolistic. A co-culture ratio of 10: 1 (bacterium: conidia) and co-incubation time of 72 h yielded the largest number of transformants after ATMT. Southern blot analysis showed the number of foreign DNA insertion into the genome is dependent upon the plasmid used to generate the mutants. This work describes for the first time two efficient methods for genetic modification of Fonsecaea and these results open new avenues to better understand the biology and pathogenicity of the main causal agent of this neglected disease.
Collapse
Affiliation(s)
- Camille Silva Florencio
- Programa de Pós-graduação em Ciências e Tecnologias em Saúde, Faculdade de Ceilândia, Universidade de Brasília, Brasília, DF, Brazil; Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil.
| | - Fabiana Alves Silva Brandão
- Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil.
| | | | - Anamélia Lorenzetti Bocca
- Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil.
| | | | - Vânia Aparecida Vicente
- Programa de Pós-graduação em Engenharia de Bioprocessos e Biotecnologia, Setor de Ciências Biológicas, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | - Larissa Fernandes
- Programa de Pós-graduação em Ciências e Tecnologias em Saúde, Faculdade de Ceilândia, Universidade de Brasília, Brasília, DF, Brazil; Laboratório de Imunologia Aplicada, Instituto de Biologia, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil; Programa de Pós-graduação em Engenharia de Bioprocessos e Biotecnologia, Setor de Ciências Biológicas, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
12
|
Lawrimore J, Barry TM, Barry RM, York AC, Friedman B, Cook DM, Akialis K, Tyler J, Vasquez P, Yeh E, Bloom K. Microtubule dynamics drive enhanced chromatin motion and mobilize telomeres in response to DNA damage. Mol Biol Cell 2017; 28:1701-1711. [PMID: 28450453 PMCID: PMC5469612 DOI: 10.1091/mbc.e16-12-0846] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/28/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Mechanisms that drive DNA damage-induced chromosome mobility include relaxation of external tethers to the nuclear envelope and internal chromatin–chromatin tethers. Together with microtubule dynamics, these can mobilize the genome in response to DNA damage. Chromatin exhibits increased mobility on DNA damage, but the biophysical basis for this behavior remains unknown. To explore the mechanisms that drive DNA damage–induced chromosome mobility, we use single-particle tracking of tagged chromosomal loci during interphase in live yeast cells together with polymer models of chromatin chains. Telomeres become mobilized from sites on the nuclear envelope and the pericentromere expands after exposure to DNA-damaging agents. The magnitude of chromatin mobility induced by a single double-strand break requires active microtubule function. These findings reveal how relaxation of external tethers to the nuclear envelope and internal chromatin–chromatin tethers, together with microtubule dynamics, can mobilize the genome in response to DNA damage.
Collapse
Affiliation(s)
- Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Timothy M Barry
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Raymond M Barry
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Alyssa C York
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Brandon Friedman
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Diana M Cook
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kristen Akialis
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jolien Tyler
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Paula Vasquez
- Department of Mathematics, University of South Carolina, Columbia, SC 29208
| | - Elaine Yeh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
13
|
Govender N, Wong MY. Detection of Oil Palm Root Penetration by Agrobacterium-Mediated Transformed Ganoderma boninense, Expressing Green Fluorescent Protein. PHYTOPATHOLOGY 2017; 107:483-490. [PMID: 27918241 DOI: 10.1094/phyto-02-16-0062-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A highly efficient and reproducible Agrobacterium-mediated transformation protocol for Ganoderma boninense was developed to facilitate observation of the early stage infection of basal stem rot (BSR). The method was proven amenable to different explants (basidiospore, protoplast, and mycelium) of G. boninense. The transformation efficiency was highest (62%) under a treatment combination of protoplast explant and Agrobacterium strain LBA4404, with successful expression of an hyg marker gene and gus-gfp fusion gene under the control of heterologous p416 glyceraldehyde 3-phosphate dehydrogenase promoter. Optimal transformation conditions included a 1:100 Agrobacterium/explant ratio, induction of Agrobacterium virulence genes in the presence of 250 μm acetosyringone, co-cultivation at 22°C for 2 days on nitrocellulose membrane overlaid on an induction medium, and regeneration of transformants on potato glucose agar prepared with 0.6 M sucrose and 20 mM phosphate buffer. Evaluated transformants were able to infect root tissues of oil palm plantlets with needle-like microhyphae during the penetration event. The availability of this model pathogen system for BSR may lead to a better understanding of the pathogenicity factors associated with G. boninense penetration into oil palm roots.
Collapse
Affiliation(s)
- Nisha Govender
- First and second authors: Laboratory of Plantation Crops, Institute of Tropical Agriculture, and second author: Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mui-Yun Wong
- First and second authors: Laboratory of Plantation Crops, Institute of Tropical Agriculture, and second author: Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
14
|
Martínez-Cruz J, Romero D, de Vicente A, Pérez-García A. Transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii by Agrobacterium tumefaciens. THE NEW PHYTOLOGIST 2017; 213:1961-1973. [PMID: 27864969 DOI: 10.1111/nph.14297] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The obligate biotrophic fungal pathogen Podosphaera xanthii is the main causal agent of powdery mildew in cucurbit crops all over the world. A major limitation of molecular studies of powdery mildew fungi (Erysiphales) is their genetic intractability. In this work, we describe a robust method based on the promiscuous transformation ability of Agrobacterium tumefaciens for reliable transformation of P. xanthii. The A. tumefaciens-mediated transformation (ATMT) system yielded transformants of P. xanthii with diverse transferred DNA (T-DNA) constructs. Analysis of the resultant transformants showed the random integration of T-DNA into the P. xanthii genome. The integrations were maintained in successive generations in the presence of selection pressure. Transformation was found to be transient, because in the absence of selection agent, the introduced genetic markers were lost due to excision of T-DNA from the genome. The ATMT system represents a potent tool for genetic manipulation of P. xanthii and will likely be useful for studying other biotrophic fungi. We hope that this method will contribute to the development of detailed molecular studies of the intimate interaction established between powdery mildew fungi and their host plants.
Collapse
Affiliation(s)
- Jesús Martínez-Cruz
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| |
Collapse
|
15
|
Weyda I, Yang L, Vang J, Ahring BK, Lübeck M, Lübeck PS. A comparison of Agrobacterium-mediated transformation and protoplast-mediated transformation with CRISPR-Cas9 and bipartite gene targeting substrates, as effective gene targeting tools for Aspergillus carbonarius. J Microbiol Methods 2017; 135:26-34. [PMID: 28159628 DOI: 10.1016/j.mimet.2017.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/22/2017] [Accepted: 01/28/2017] [Indexed: 12/01/2022]
Abstract
In recent years, versatile genetic tools have been developed and applied to a number of filamentous fungi of industrial importance. However, the existing techniques have limitations when it comes to achieve the desired genetic modifications, especially for efficient gene targeting. In this study, we used Aspergillus carbonarius as a host strain due to its potential as a cell factory, and compared three gene targeting techniques by disrupting the ayg1 gene involved in the biosynthesis of conidial pigment in A. carbonarius. The absence of the ayg1 gene leads to phenotypic change in conidia color, which facilitated the analysis on the gene targeting frequency. The examined transformation techniques included Agrobacterium-mediated transformation (AMT) and protoplast-mediated transformation (PMT). Furthermore, the PMT for the disruption of the ayg1 gene was carried out with bipartite gene targeting fragments and the recently adapted CRISPR-Cas9 system. All three techniques were successful in generating Δayg1 mutants, but showed different efficiencies. The most efficient method for gene targeting was AMT, but further it was shown to be dependent on the choice of Agrobacterium strain. However, there are different advantages and disadvantages of all three gene targeting methods which are discussed, in order to facilitate future approaches for fungal strain improvements.
Collapse
Affiliation(s)
- István Weyda
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen, SV, Denmark; Bioproducts, Sciences and Engineering Laboratory (BSEL), Washington State University Tri-Cities, 2710 Crimson Way, Richland, WA 99354, USA
| | - Lei Yang
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen, SV, Denmark
| | - Jesper Vang
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen, SV, Denmark
| | - Birgitte K Ahring
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen, SV, Denmark; Bioproducts, Sciences and Engineering Laboratory (BSEL), Washington State University Tri-Cities, 2710 Crimson Way, Richland, WA 99354, USA
| | - Mette Lübeck
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen, SV, Denmark
| | - Peter S Lübeck
- Section for Sustainable Biotechnology, Aalborg University Copenhagen, A. C. Meyers Vænge 15, 2450 Copenhagen, SV, Denmark.
| |
Collapse
|
16
|
Highly efficient transformation system for Malassezia furfur and Malassezia pachydermatis using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods 2017; 134:1-6. [PMID: 28064034 DOI: 10.1016/j.mimet.2017.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/03/2017] [Indexed: 11/22/2022]
Abstract
Malassezia spp. are part of the normal human and animal mycobiota but are also associated with a variety of dermatological diseases. The absence of a transformation system hampered studies to reveal mechanisms underlying the switch from the non-pathogenic to pathogenic life style. Here we describe, a highly efficient Agrobacterium-mediated genetic transformation system for Malassezia furfur and M. pachydermatis. A binary T-DNA vector with the hygromycin B phosphotransferase (hpt) selection marker and the green fluorescent protein gene (gfp) was introduced in M. furfur and M. pachydermatis by combining the transformation protocols of Agaricus bisporus and Cryptococcus neoformans. Optimal temperature and co-cultivation time for transformation were 5 and 7days at 19°C and 24°C, respectively. Transformation efficiency was 0.75-1.5% for M. furfur and 0.6-7.5% for M. pachydermatis. Integration of the hpt resistance cassette and gfp was verified using PCR and fluorescence microscopy, respectively. The T-DNA was mitotically stable in approximately 80% of the transformants after 10 times sub-culturing in the absence of hygromycin. Improving transformation protocols contribute to study the biology and pathophysiology of Malassezia.
Collapse
|
17
|
Mora-Lugo R, Madrigal M, Yelemane V, Fernandez-Lahore M. Improved biomass and protein production in solid-state cultures of an Aspergillus sojae strain harboring the Vitreoscilla hemoglobin. Appl Microbiol Biotechnol 2015. [PMID: 26224427 PMCID: PMC4628083 DOI: 10.1007/s00253-015-6851-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The biotechnological value of Aspergillus sojae ATCC 20235 (A. sojae) for production of pectinases in solid-state fermentation (SSF) has been demonstrated recently. However, a common drawback of fungal solid-state cultures is the poor diffusion of oxygen into the fungi that limits its growth and biological productivity. The bacterial Vitreoscilla hemoglobin (VHb) has favored the metabolism and productivities of various bacterial and yeast strains besides alleviating hypoxic conditions of its native host, but the use of VHb in filamentous fungi still remains poor explored. Based on the known effects of VHb, this study assessed its applicability to improve A. sojae performance in SSF. The VHb gene (vgb) under control of the constitutive Aspergillus nidulants gpdA promoter was introduced into the genome of A. sojae by Agrobacterium-mediated transformation. Successful fungal transformants were identified by fluorescence microscopy and polymerase chain reaction (PCR) analyses. In solid-state cultures, the content of protease, exo-polygalacturonase (exo-PG), and exo-polymethylgalacturonase (exo-PMG) of the transformed fungus (A. sojae vgb+) improved were 26, 60, and 44 % higher, respectively, in comparison to its parental strain (A. sojae wt). Similarly, biomass content was also 1.3 times higher in the transformant strain. No significant difference was observed in endo-polygalacturonase (endo-PG) content between both fungal strains, suggesting dissimilar effects of VHb towards different enzymatic productions. Overall, our results show that biomass, protease, and exo-pectinase content of A. sojae in SSF can be improved by transformation with VHb.
Collapse
Affiliation(s)
- Rodrigo Mora-Lugo
- Downstream Bioprocessing Lab, Jacobs University Bremen gGmbH, Bremen, Germany.
| | - Marvin Madrigal
- Downstream Bioprocessing Lab, Jacobs University Bremen gGmbH, Bremen, Germany. .,Instituto Clodomiro Picado and Departamento de Bioquímica, Universidad de Costa Rica, San José, Costa Rica.
| | - Vikas Yelemane
- Downstream Bioprocessing Lab, Jacobs University Bremen gGmbH, Bremen, Germany.
| | | |
Collapse
|