1
|
Pranada AB, Cicatka M, Heß C, Karasek J. Diagnostic performance of an automated robot for MALDI target preparation in microbial identification. J Clin Microbiol 2024; 62:e0043424. [PMID: 39297624 PMCID: PMC11481498 DOI: 10.1128/jcm.00434-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/15/2024] [Indexed: 10/17/2024] Open
Abstract
The MBT Pathfinder is an automated colony-picking robot designed for efficient sample preparation in matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. This article presents results from three key experiments evaluating the instrument's performance in conjunction with MALDI Biotyper instrument. The method comparison experiment assessed its clinical performance, demonstrating comparable results with gram-positive, gram-negative, and anaerobic bacteria (scores larger than 2.00) and superior performance over simple direct yeast transfer (score: 1.80) when compared to samples prepared manually. The repeatability experiment confirmed consistent performance over multiple days and labs (average log score: 2.12, std. deviation: 0.59). The challenge panel experiment showcased its consistent and accurate performance across various samples and settings, yielding average scores between 1.76 and 2.19. These findings underline the MBT Pathfinder as a reliable and efficient tool for MALDI-TOF mass spectrometry sample preparation in clinical and research applications.
Collapse
Affiliation(s)
- Arthur B. Pranada
- Division of Medical Microbiology, MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| | - Michal Cicatka
- Department of Telecommunication, Faculty of Electrical Engineering and Communications, Brno University of Technology, Brno, Czech Republic
| | - Clara Heß
- Division of Medical Microbiology, MVZ Dr. Eberhard & Partner Dortmund, Dortmund, Germany
| | - Jan Karasek
- R&D Automation, Microbiology & Diagnostics, Bruker Daltonics GmbH & Co. KG, Bremen, Germany
| |
Collapse
|
2
|
Alabdullatif M. Evaluating the effects of temperature and agitation on biofilm formation of bacterial pathogens isolated from raw cow milk. BMC Microbiol 2024; 24:251. [PMID: 38977975 PMCID: PMC11229293 DOI: 10.1186/s12866-024-03403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVES To study the effect of agitation and temperature on biofilm formation (cell aggregates embedded within a self-produced matrix) by pathogenic bacteria isolated from Raw cow milk (RCM). METHODS A 40 RCM samples were gathered from eight dairy farms in Riyadh, Saudi Arabia. After bacterial culturing and isolation, gram staining was performed, and all pathogenic, identified using standard criteria established by Food Standards Australia New Zealand (FSANZ), and non-pathogenic bacteria were identified using VITEK-2 and biochemical assays. To evaluate the effects of temperature and agitation on biofilm formation, isolated pathogenic bacteria were incubated for 24 h under the following conditions: 4 °C with no agitation (0 rpm), 15 °C with no agitation, 30 °C with no agitation, 30 °C with 60 rpm agitation, and 30 °C with 120 rpm agitation. Then, biofilms were measured using a crystal violet assay. RESULTS Of the eight farm sites, three exhibited non-pathogenic bacterial contamination in their raw milk samples. Of the total of 40 raw milk samples, 15/40 (37.5%; from five farms) were contaminated with pathogenic bacteria. Overall, 346 bacteria were isolated from the 40 samples, with 329/346 (95.1%) considered as non-pathogenic and 17/346 (4.9%) as pathogenic. Most of the isolated pathogenic bacteria exhibited a significant (p < 0.01) increase in biofilm formation when grown at 30 °C compared to 4 °C and when grown with 120 rpm agitation compared to 0 rpm. CONCLUSION Herein, we highlight the practices of consumers in terms of transporting and storing (temperature and agitation) can significantly impact on the growth of pathogens and biofilm formation in RCM.
Collapse
Affiliation(s)
- Meshari Alabdullatif
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Uthman Ibn Affan Rd, Riyadh, 13317-4233, Saudi Arabia.
| |
Collapse
|
3
|
Sibińska E, Arendowski A, Fijałkowski P, Gabryś D, Pomastowski P. Comparison of the Bruker Microflex LT and Zybio EXS2600 MALDI TOF MS systems for the identification of clinical microorganisms. Diagn Microbiol Infect Dis 2024; 108:116150. [PMID: 38035652 DOI: 10.1016/j.diagmicrobio.2023.116150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
The emergence of Matrix-Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry (MALDI TOF MS) technology has expanded the capabilities for identifying microorganisms in clinical labs, replacing traditional biochemical testing with a proteomic approach. In the present study, we compared results between the two commercial MALDI TOF MS systems, Bruker Microflex LT Biotyper and Zybio EXS2600 Ex-Accuspec, for the identification of 1979 urinary isolates by direct extraction method. Current study found that both systems identified a high percentage of isolates to at least the genus level - Bruker 95.6 % of isolates, Zybio 92.4 %. In the case of 89.5 % of all analyzed spectra, the identification results were consistent between the used devices. The highest score values and the highest percentage of spectra identified to species were obtained for gram-negative bacteria. The results show that both systems are equally good choices in terms of analytical performance for routine microbiological diagnostic procedures.
Collapse
Affiliation(s)
- Ewelina Sibińska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| | - Adrian Arendowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland.
| | - Piotr Fijałkowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| | - Dorota Gabryś
- Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology, Wybrzeże Armii Krajowej 15 Str., Gliwice 44-102, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., Toruń 87-100, Poland
| |
Collapse
|
4
|
Sekiguchi Y, Teramoto K, Tourlousse DM, Ohashi A, Hamajima M, Miura D, Yamada Y, Iwamoto S, Tanaka K. A large-scale genomically predicted protein mass database enables rapid and broad-spectrum identification of bacterial and archaeal isolates by mass spectrometry. Genome Biol 2023; 24:257. [PMID: 38049850 PMCID: PMC10696839 DOI: 10.1186/s13059-023-03096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/24/2023] [Indexed: 12/06/2023] Open
Abstract
MALDI-TOF MS-based microbial identification relies on reference spectral libraries, which limits the screening of diverse isolates, including uncultured lineages. We present a new strategy for broad-spectrum identification of bacterial and archaeal isolates by MALDI-TOF MS using a large-scale database of protein masses predicted from nearly 200,000 publicly available genomes. We verify the ability of the database to identify microorganisms at the species level and below, achieving correct identification for > 90% of measured spectra. We further demonstrate its utility by identifying uncultured strains from mouse feces with metagenomics, allowing the identification of new strains by customizing the database with metagenome-assembled genomes.
Collapse
Affiliation(s)
- Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, Ibaraki, 305-8566, Japan.
| | | | - Dieter M Tourlousse
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, Ibaraki, 305-8566, Japan
| | - Akiko Ohashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, Ibaraki, 305-8566, Japan
| | - Mayu Hamajima
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, Ibaraki, 305-8566, Japan
| | - Daisuke Miura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 6, Ibaraki, 305-8566, Japan
| | - Yoshihiro Yamada
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Shinichi Iwamoto
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| |
Collapse
|
5
|
Rosso F, Rebellón-Sánchez DE, Llanos-Torres J, Hurtado-Bermudez LJ, Ayerbe L, Suárez JH, Orozco-Echeverri N, Rojas-Perdomo CC, Zapata-Vasquez IL, Patiño-Niño J, Parra-Lara LG. Clinical and microbiological characterization of Salmonella spp. isolates from patients treated in a university hospital in South America between 2012-2021: a cohort study. BMC Infect Dis 2023; 23:625. [PMID: 37749501 PMCID: PMC10519077 DOI: 10.1186/s12879-023-08589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Salmonellosis is a major cause of morbidity and mortality and one of the most frequent etiologies of diarrhea in the world. Mortality due to Salmonellosis in Latin America still poorly understood, and there is a lack of studies that evaluate resistance and clinical manifestations. The aims of this study were to characterize patients infected with Salmonella spp. seen in a university hospital in Colombia between 2012 and 2021, to evaluate trends in antibiotic resistance and to determine the proportion of overall mortality and related factors. METHODS Retrospective observational study. All patients with microbiological diagnosis of Salmonella spp. were included. The sociodemographic, clinical and microbiological characteristics were described, and the proportion of antibiotic resistant isolates per year was estimated. The prevalence of mortality according to age groups was calculated. Log binomial regression models were used to establish factors associated with mortality. RESULTS Five hundred twenty-two patients were analyzed. Salmonellosis accounted for 0.01% of all medical consultations. The median age was 16 years old. The most common clinical presentation was gastroenteric syndrome (77.1%) and symptoms included diarrhea (79.1%), fever (66.7%), abdominal pain (39.6%) and vomiting (35.2%). Of the Salmonella spp. isolates, 78.2% were not classified, 19.1% corresponded to non-typhoidal Salmonella and 2.7% to Salmonella typhi. Mortality occurs in 4.02% of the patients and was higher in patients with hematologic malignancy (11.6%). When analyzing by age group, the proportion of deaths was 2.8% in patients aged 15 years or younger, while in those older than 15 years it was 5.4%. Factors associated to mortality where bacteremia (aPR = 3.41 CI95%: 1.08-10.76) and to require treatment in the ICU (aPR = 8.13 CI95%: 1.82-37.76). In the last 10 years there has been a steady increase in resistance rates to ciprofloxacin, ampicillin, ampicillin/sulbactam and ceftriaxone, reaching rates above 60% in recent years. CONCLUSIONS Despite improved availability of antibiotics for the treatment of salmonellosis in the past decades, mortality due to salmonellosis continues occurring in children and adults, mainly in patients with hematological malignancies and bacteremia. Antibiotic resistance rates have increased significantly over the last 10 years. Public health strategies for the control of this disease should be strengthened, especially in vulnerable populations.
Collapse
Affiliation(s)
- Fernando Rosso
- Fundación Valle del Lili, Centro de Investigaciones Clínicas (CIC), Carrera 98 #18-49, 760031, Cali, Colombia.
- Fundación Valle del Lili, Cali, Departamento de Medicina Interna, Servicio de Enfermedades Infecciosas, Carrera 98 #18-49, 760031, Cali, Colombia.
- Universidad Icesi, Facultad de Ciencias de la Salud, Calle 18 No. 122-135, Cali, 760031, Colombia.
| | - David E Rebellón-Sánchez
- Fundación Valle del Lili, Centro de Investigaciones Clínicas (CIC), Carrera 98 #18-49, 760031, Cali, Colombia.
- Fundación Valle del Lili, Cali, Departamento de Medicina Interna, Servicio de Enfermedades Infecciosas, Carrera 98 #18-49, 760031, Cali, Colombia.
| | - Julio Llanos-Torres
- Fundación Valle del Lili, Centro de Investigaciones Clínicas (CIC), Carrera 98 #18-49, 760031, Cali, Colombia
- Fundación Valle del Lili, Cali, Departamento de Medicina Interna, Servicio de Enfermedades Infecciosas, Carrera 98 #18-49, 760031, Cali, Colombia
| | - Leidy Johanna Hurtado-Bermudez
- Fundación Valle del Lili, Centro de Investigaciones Clínicas (CIC), Carrera 98 #18-49, 760031, Cali, Colombia
- Universidad Icesi, Facultad de Ciencias de la Salud, Calle 18 No. 122-135, Cali, 760031, Colombia
| | - Laura Ayerbe
- Universidad Icesi, Facultad de Ciencias de la Salud, Calle 18 No. 122-135, Cali, 760031, Colombia
| | - John Harold Suárez
- Universidad Icesi, Facultad de Ciencias de la Salud, Calle 18 No. 122-135, Cali, 760031, Colombia
| | - Nicolás Orozco-Echeverri
- Universidad Icesi, Facultad de Ciencias de la Salud, Calle 18 No. 122-135, Cali, 760031, Colombia
| | | | - Isabel Lucia Zapata-Vasquez
- Fundación Valle del Lili, Centro de Investigaciones Clínicas (CIC), Carrera 98 #18-49, 760031, Cali, Colombia
| | - Jaime Patiño-Niño
- Fundación Valle del Lili, Cali, Departamento de Pediatría, Servicio de Enfermedades Infecciosas, Carrera 98 #18-49, 760031, Cali, Colombia
| | - Luis Gabriel Parra-Lara
- Fundación Valle del Lili, Centro de Investigaciones Clínicas (CIC), Carrera 98 #18-49, 760031, Cali, Colombia
| |
Collapse
|
6
|
Song Y, Wang LF, Zhou K, Liu S, Guo L, Ye LY, Gu J, Cheng Y, Shen DX. Epidemiological characteristics, virulence potential, antimicrobial resistance profiles, and phylogenetic analysis of Aeromonas caviae isolated from extra-intestinal infections. Front Cell Infect Microbiol 2023; 13:1084352. [PMID: 36909720 PMCID: PMC9999030 DOI: 10.3389/fcimb.2023.1084352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Objective Aeromonas caviae (A. caviae) is one of the major etiological agents in human intestinal infections reported to be associated with a broad spectrum of extra-intestinal infections with increasing incidence over recent years. Although previous studies have established its significance as a causative agent of both bloodstream and gastrointestinal infections, the characteristics of A. caviae that cause extra-intestinal infections remain unilluminated.In this single-center retrospective study, we investigated epidemiological characteristics, antimicrobial resistance genes and phenotypes, virulence genes, and phyloevolution of 47 clinical A. caviae isolated from patients with extra-intestinal infections from 2017 to 2020. Methods A. caviae strains were identified by biochemical tests and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/MS), ultimately confirmed to species level by whole-genome sequencing (WGS). Antimicrobial resistance and virulence genes were identified using the Comprehensive Antibiotic Resistance Database (CARD) and the virulence factor database (VFDB), respectively. Phylogenetic analysis of 47 clinical strains was performed by combining with 521 A. caviae strains from NCBI database. Results A. caviae was an opportunistic pathogen in immunocompromised patients, especially those with underlying hepatobiliary diseases and malignancies. 19 out of 47 isolates were identified as multidrug resistance (MDR) strains. Piperacillin-tazobactam, levofloxacin, gentamicin, amikacin with a resistance rate of less than 10% remained as options to treat extra-intestinal infections. 24 out of 47 isolates exhibited non-susceptibility to cephalosporins and cephamycins, all of which carried β-lactamase gene, including bla MOX, bla PER-3, bla OXA, bla NDM, and bla CphA. Most stains (98%, 46/47) carried at least one of the virulence genes, but extra-intestinal infections had a low mortality rate. Phylogenetic analysis indicated the risk of nosocomial transmission but revealed no outbreak. However, the emergence of MDR and β-lactamase resistance genes in extra-intestinal isolates of A. caviae is becoming an increasing risk to public health and requires attention. Conclusions This study strengthen our understanding of A.caviae isolated from extra-intestinal infections. It may contribute to the management of extra-intestinal infections as well as the prevention and control of drug resistance.
Collapse
Affiliation(s)
- Yang Song
- Department of Clinical Laboratory, Medical School of Chinese PLA, Beijing, China
| | - Li-feng Wang
- Department of Clinical Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kuai Zhou
- Department of Clinical Laboratory, Xuanhan People’s Hospital, Xuanhan, Sichuan, China
| | - Shuang Liu
- Department of Clinical Laboratory, Hainan Modern Women and Children’s Hospital, Haikou, China
| | - Ling Guo
- Department of Clinical Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Li-yan Ye
- Department of Clinical Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jiang Gu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University, Chongqing, China
| | - Yan Cheng
- Department of Basic Medical Laboratory, The 980th Hospital of the PLA Joint Logistical Support Force, Bethune International Peace Hospital, Shijiazhuang, China
- *Correspondence: Ding-xia Shen, ; Yan Cheng,
| | - Ding-xia Shen
- Department of Clinical Laboratory, Medical School of Chinese PLA, Beijing, China
- Department of Clinical Laboratory, First Medical Center of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Ding-xia Shen, ; Yan Cheng,
| |
Collapse
|
7
|
Traxler RM, Bell ME, Lasker B, Headd B, Shieh WJ, McQuiston JR. Updated Review on Nocardia Species: 2006-2021. Clin Microbiol Rev 2022; 35:e0002721. [PMID: 36314911 PMCID: PMC9769612 DOI: 10.1128/cmr.00027-21] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This review serves as an update to the previous Nocardia review by Brown-Elliott et al. published in 2006 (B. A. Brown-Elliott, J. M. Brown, P. S. Conville, and R. J. Wallace. Jr., Clin Microbiol Rev 19:259-282, 2006, https://doi.org/10.1128/CMR.19.2.259-282.2006). Included is a discussion on the taxonomic expansion of the genus, current identification methods, and the impact of new technology (including matrix-assisted laser desorption ionization-time of flight [MALDI-TOF] and whole genome sequencing) on diagnosis and treatment. Clinical manifestations, the epidemiology, and geographic distribution are briefly discussed. An additional section on actinomycotic mycetoma is added to address this often-neglected disease.
Collapse
Affiliation(s)
- Rita M. Traxler
- Bacterial Special Pathogens Branch (BSPB), Division of High-Consequence Pathogens and Pathology (DHCPP), National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Melissa E. Bell
- Bacterial Special Pathogens Branch (BSPB), Division of High-Consequence Pathogens and Pathology (DHCPP), National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Brent Lasker
- Bacterial Special Pathogens Branch (BSPB), Division of High-Consequence Pathogens and Pathology (DHCPP), National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Brendan Headd
- Bacterial Special Pathogens Branch (BSPB), Division of High-Consequence Pathogens and Pathology (DHCPP), National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - Wun-Ju Shieh
- Infectious Diseases Pathology Branch (IDPB), Division of High-Consequence Pathogens and Pathology (DHCPP), National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| | - John R. McQuiston
- Bacterial Special Pathogens Branch (BSPB), Division of High-Consequence Pathogens and Pathology (DHCPP), National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, USA
| |
Collapse
|
8
|
Osek J, Lachtara B, Wieczorek K. Listeria monocytogenes in foods-From culture identification to whole-genome characteristics. Food Sci Nutr 2022; 10:2825-2854. [PMID: 36171778 PMCID: PMC9469866 DOI: 10.1002/fsn3.2910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen, which is able to persist in the food production environments. The presence of these bacteria in different niches makes them a potential threat for public health. In the present review, the current information on the classical and alternative methods used for isolation and identification of L. monocytogenes in food have been described. Although these techniques are usually simple, standardized, inexpensive, and are routinely used in many food testing laboratories, several alternative molecular-based approaches for the bacteria detection in food and food production environments have been developed. They are characterized by the high sample throughput, a short time of analysis, and cost-effectiveness. However, these methods are important for the routine testing toward the presence and number of L. monocytogenes, but are not suitable for characteristics and typing of the bacterial isolates, which are crucial in the study of listeriosis infections. For these purposes, novel approaches, with a high discriminatory power to genetically distinguish the strains during epidemiological studies, have been developed, e.g., whole-genome sequence-based techniques such as NGS which provide an opportunity to perform comparison between strains of the same species. In the present review, we have shown a short description of the principles of microbiological, alternative, and modern methods of detection of L. monocytogenes in foods and characterization of the isolates for epidemiological purposes. According to our knowledge, similar comprehensive papers on such subject have not been recently published, and we hope that the current review may be interesting for research communities.
Collapse
Affiliation(s)
- Jacek Osek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Beata Lachtara
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| | - Kinga Wieczorek
- Department of Hygiene of Food of Animal OriginNational Veterinary Research InstitutePuławyPoland
| |
Collapse
|
9
|
Okai CA, Wölter M, Russ M, Koy C, Petre BA, Rath W, Pecks U, Glocker MO. Profiling of intact blood proteins by matrix-assisted laser desorption/ionization mass spectrometry without the need for freezing - Dried serum spots as future clinical tools for patient screening. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9121. [PMID: 33955049 DOI: 10.1002/rcm.9121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE To open up new ways for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS)-based patient screening, blood serum is the most preferred specimen because of its richness in patho-physiological information and due to ease of collection. To overcome deleterious freeze/thaw cycles and to reduce high costs for shipping and storage, we sought to develop a procedure which enables MALDI-MS protein profiling of blood serum proteins without the need for serum freezing. METHODS Blood sera from patients/donors were divided into portions which after pre-incubation were fast frozen. Thawed aliquots were deposited on filter paper discs and air-dried at room temperature. Intact serum proteins were eluted with acid-labile detergent-containing solutions and were desalted by employing a reversed-phase bead system. Purified protein solutions were screened by MALDI-MS using standardized instrument settings. RESULTS MALDI mass spectra from protein solutions which were eluted from filter paper discs and desalted showed on average 25 strong ion signals (mass range m/z 6000 to 10,000) from intact serum proteins (apolipoproteins, complement proteins, transthyretin and hemoglobin) and from proteolytic processing products. Semi-quantitative analysis of three ion pairs: m/z 6433 and 6631, m/z 8205 and 8916, as well as m/z 9275 and 9422, indicated that the mass spectra from either pre-incubated fast-frozen serum or pre-incubated dried serum spot eluted serum contained the same information on protein composition. CONCLUSIONS A workflow that avoids the conventional cold-chain and yet enables the investigation of intact serum proteins and/or serum proteolysis products by MALDI-MS profiling was developed. The presented protocol tremendously broadens the clinical application of MALDI-MS and simultaneously allows a reduction in the costs for storage and shipping of serum samples. This will pave the way for clinical screening of patients also in areas with limited access to health care systems, and/or specialized laboratories.
Collapse
Affiliation(s)
- Charles A Okai
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Schillingallee 69, Rostock, 18057, Germany
| | - Manja Wölter
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Schillingallee 69, Rostock, 18057, Germany
- Department of Obstetrics and Gynecology, Medical Faculty, University of Rostock, Clinic Südstadt, Rostock, 18059, Germany
| | - Manuela Russ
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Schillingallee 69, Rostock, 18057, Germany
| | - Cornelia Koy
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Schillingallee 69, Rostock, 18057, Germany
| | - Brindusa A Petre
- Department of Chemistry, Alexandru Ioan Cuza University, Bd. Carol I, No.11, Iasi, 700506, Romania
- Transcend Research Center, Regional Institute of Oncology, General Henri Mathias, No.2-4, Iasi, 700483, Romania
| | - Werner Rath
- Department of Obstetrics and Gynecology, Medical Faculty, RWTH Aachen University, Aachen, 52062, Germany
| | - Ulrich Pecks
- Department of Obstetrics and Gynecology, Medical Faculty, University of Schleswig-Holstein, Campus Kiel, Arnold-Heller-Straße 3, Kiel, 24105, Germany
| | - Michael O Glocker
- Proteome Center Rostock, Medical Faculty and Natural Science Faculty, University of Rostock, Schillingallee 69, Rostock, 18057, Germany
| |
Collapse
|
10
|
Abstract
Over the past decade, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry has revolutionized the practice of clinical microbiology and infectious disease diagnostics. Rapid advancement has occurred through the development and implementation of mass spectrometric protein profiling technologies that are widely available. Ease of sample preparation, rapid turnaround times, and high throughput accuracy have accelerated acceptance within the clinical laboratory. New mass spectrometric technologies centered on multiple microbial diagnostic markers are in development. Such new applications, reviewed in this article and on the near horizon, stand to greatly enhance the capabilities and utility for improved mass spectrometric microbial identification and patient care.
Collapse
|
11
|
Comparison of Autof ms1000 and Bruker Biotyper MALDI-TOF MS Platforms for Routine Identification of Clinical Microorganisms. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6667623. [PMID: 33763483 PMCID: PMC7952152 DOI: 10.1155/2021/6667623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/01/2021] [Accepted: 02/10/2021] [Indexed: 11/17/2022]
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used in clinical microbiology laboratories because it is cost-effective, reliable, and fast. This study is aimed at comparing the identification performance of the recently developed Autof ms1000 (Autobio, China) with that of the Bruker Biotyper (Bruker Daltonics, Germany). From January to June 2020, 205 preserved strains and 302 clinical isolates were used for comparison. Bacteria were tested with duplicates of the direct transfer method, and formic acid extraction was performed if the results were not at the species level. Fungi were tested with formic acid extraction followed by ethanol extraction methods. 16S rRNA or ITS region sequence analysis was performed on isolates that could not be identified by any of the instruments and on isolates that showed inconsistent results. The time to result of each instrument was also compared. Among preserved strains, species-level identification results were obtained in 202 (98.5%) strains by the Autof ms1000 and 200 (97.6%) strains by the Bruker Biotyper. Correct identification at the species/complex level was obtained for 200 (97.6%) strains by the Autof ms1000 and for 199 (97.1%) strains by the Bruker Biotyper. Among clinical isolates, species-level identification results were obtained in 301 (99.7%) strains and 300 (99.3%) strains by the Autof ms1000 and Bruker Biotyper, respectively. Correct identification at the species/complex level was achieved for 299 (99.0%) strains by the Autof ms1000 and for 300 (99.3%) strains by the Bruker Biotyper. The time to analyze 96 spots was approximately 14 min for the Autof ms1000 and approximately 27 min for the Bruker Biotyper. The two instruments showed comparable performance for the routine identification of clinical microorganisms. In addition, the Autof ms1000 has a short test time, making it convenient for use in clinical microbiology laboratories.
Collapse
|
12
|
Du X, Wang M, Zhou H, Li Z, Xu J, Li Z, Kan B, Chen D, Wang X, Jin Y, Ren Y, Ma Y, Liu J, Luan Y, Cui Z, Lu X. Comparison of the Multiple Platforms to Identify Various Aeromonas Species. Front Microbiol 2021; 11:625961. [PMID: 33537023 PMCID: PMC7848130 DOI: 10.3389/fmicb.2020.625961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/18/2020] [Indexed: 12/02/2022] Open
Abstract
We compared several identification methods for Aeromonas genus members, including traditional biochemical testing, multiplex-PCR amplification, mass spectrometry identification, whole-genome sequencing, multilocus phylogenetic analysis (MLPA), and rpoD, gyrA, and rpoD-gyrA gene sequencing. Isolates (n = 62) belonging to the Aeromonas genus, which were came from the bacterial bank in the laboratory, were used to assess the identification accuracy of the different methods. Whole-genome sequencing showed that the Aeromonas spp. isolates comprised A. caviae (n = 21), A. veronii (n = 18), A. dhakensis (n = 8), A. hydrophila (n = 7), A. jandaei (n = 5), A. enteropelogenes (n = 2), and A. media (n = 1). Using the whole-genome sequencing results as the standard, the consistency of the other methods was compared with them. The results were 46.77% (29/62) for biochemical identification, 83.87% (52/62) for mass spectrometric identification, 67.74% (42/62) for multiplex-PCR, 100% (62/62) for MLPA typing, 72.58% for gyrA, and 59.68% for rpoD and gyrA-rpoD. MLPA was the most consistent, followed by mass spectrometry. Therefore, in the public health laboratory, both MLPA and whole-genome sequencing methods can be used to identify various Aeromonas species. However, rapid and relatively accurate mass spectrometry is recommended for clinical lab.
Collapse
Affiliation(s)
- Xiaoli Du
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengyu Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,School of Public Health, Nanchang University, Nanchang, Jiangxi, China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Haijian Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenpeng Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jialiang Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Zhe Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Daoli Chen
- Department of Microbiology Laboratory, Maanshan Center for Disease Control and Prevention of Anhui Province, Maanshan, China
| | - Xiaoli Wang
- Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, China
| | - Yujuan Jin
- Longgang Center for Disease Control and Prevention, Shenzhen, China
| | - Yan Ren
- LongHua District Center for Disease Control and Prevention, Shenzhen, China
| | - Yanping Ma
- Nanshan Center for Disease Control and Prevention, Shenzhen, China
| | - Jiuyin Liu
- Liaocheng Center for Disease Control and Prevention, Liaocheng, China
| | - Yang Luan
- Xi'an Center for Disease Control and Prevention, Xi'an, China
| | - Zhigang Cui
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
13
|
Performance and Application of 16S rRNA Gene Cycle Sequencing for Routine Identification of Bacteria in the Clinical Microbiology Laboratory. Clin Microbiol Rev 2020; 33:33/4/e00053-19. [PMID: 32907806 DOI: 10.1128/cmr.00053-19] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review provides a state-of-the-art description of the performance of Sanger cycle sequencing of the 16S rRNA gene for routine identification of bacteria in the clinical microbiology laboratory. A detailed description of the technology and current methodology is outlined with a major focus on proper data analyses and interpretation of sequences. The remainder of the article is focused on a comprehensive evaluation of the application of this method for identification of bacterial pathogens based on analyses of 16S multialignment sequences. In particular, the existing limitations of similarity within 16S for genus- and species-level differentiation of clinically relevant pathogens and the lack of sequence data currently available in public databases is highlighted. A multiyear experience is described of a large regional clinical microbiology service with direct 16S broad-range PCR followed by cycle sequencing for direct detection of pathogens in appropriate clinical samples. The ability of proteomics (matrix-assisted desorption ionization-time of flight) versus 16S sequencing for bacterial identification and genotyping is compared. Finally, the potential for whole-genome analysis by next-generation sequencing (NGS) to replace 16S sequencing for routine diagnostic use is presented for several applications, including the barriers that must be overcome to fully implement newer genomic methods in clinical microbiology. A future challenge for large clinical, reference, and research laboratories, as well as for industry, will be the translation of vast amounts of accrued NGS microbial data into convenient algorithm testing schemes for various applications (i.e., microbial identification, genotyping, and metagenomics and microbiome analyses) so that clinically relevant information can be reported to physicians in a format that is understood and actionable. These challenges will not be faced by clinical microbiologists alone but by every scientist involved in a domain where natural diversity of genes and gene sequences plays a critical role in disease, health, pathogenicity, epidemiology, and other aspects of life-forms. Overcoming these challenges will require global multidisciplinary efforts across fields that do not normally interact with the clinical arena to make vast amounts of sequencing data clinically interpretable and actionable at the bedside.
Collapse
|
14
|
Imai M, Kimura Y, Tanno D, Saito K, Honda M, Takano Y, Ohashi K, Toyokawa M, Ohana N, Yamadera Y, Shimura H. Validation of MALDI-TOF MS devices in reanalysis of unidentified pathogenic bacteria detected in blood cultures. Fukushima J Med Sci 2020; 66:103-112. [PMID: 32713872 PMCID: PMC7470759 DOI: 10.5387/fms.2020-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In hospital microbial laboratories, morphological and biochemical analyses are performed to identify pathogenic microbes;however, these procedures lack rapidity and accuracy. Recently, Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) has been clinically utilized, and is expected to enable rapid and accurate microbial identification. We aimed to validate two MALDI-TOF MS devices available in Japan: the VITEK-MS (BioMérieux) and the Microflex LT (Bruker Daltonics). Clinically isolated bacteria, 100 samples in all, detected in blood cultures but incompletely identified by conventional procedures, were reanalyzed using the two devices. The VITEK-MS and Microflex LT, respectively, identified 49% (49/100) and 80% (80/100) of the tested bacteria at the species level, as well as 96% (96/100) and 95% (95/100) at the genus level. Among those reidentified strains, 26% (26/100) at the species level and 88% (88/100) at the genus level were concordant with each other, though three strains were unmatched. Moreover, four bacterial strains were unable to be identified using the VITEK-MS, versus five using the Microflex LT. MALDI-TOF MS devices can provide more rapid and accurate bacterial identification than ever before;however, the characteristics of each system were slightly different;therefore, it is necessary to understand the difference in performance of MALDI-TOF MS models.
Collapse
Affiliation(s)
- Minako Imai
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital
| | - Yukio Kimura
- Department of Laboratory Medicine, Fukushima Medical University
| | - Daiki Tanno
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital.,Department of Laboratory Medicine, Fukushima Medical University
| | - Kyoichi Saito
- Department of Laboratory Medicine, Fukushima Medical University
| | - Mutsuko Honda
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital
| | - Yukiko Takano
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital
| | - Kazutaka Ohashi
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital
| | - Masahiro Toyokawa
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital.,Department of Laboratory Medicine, Fukushima Medical University.,Preparing Section for New Faculty of Medical Science, Fukushima Medical University
| | - Noboru Ohana
- Department of Laboratory Medicine, Fukushima Medical University
| | - Yukio Yamadera
- Department of Clinical Laboratory Medicine, Fukushima Medical University Hospital
| | - Hiroki Shimura
- Department of Laboratory Medicine, Fukushima Medical University
| |
Collapse
|
15
|
Maboni G, Seguel M, Lorton A, Sanchez S. Antimicrobial resistance patterns of Acinetobacter spp. of animal origin reveal high rate of multidrug resistance. Vet Microbiol 2020; 245:108702. [PMID: 32456823 DOI: 10.1016/j.vetmic.2020.108702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 01/12/2023]
Abstract
Antimicrobial resistance has been declared by the World Health Organization as one of the biggest threats to public health and Acinetobacter baumannii is a notable example. A. baumannii is an important human nosocomial pathogen, being along with other multidrug resistant (MDR) bacteria, one of the biggest public health concerns worldwide. In Veterinary Medicine, resistance patterns of Acinetobacter species other than A. baumanii are unclear, and the scarce information available is limited and fragmented. We applied a statistical modeling approach to investigate the occurrence, clinical relevance and antimicrobial resistant phenotypes of Acinetobacter spp. originated from animals. Seven Acinetobacter species were identified in clinical specimens of more than 15 different domestic, zoo and exotic animal species. We found a high rate of MDR A. baumannii of canine origin with some of these isolates originating from serious systemic or wound infections, which highlights their potential pathogenic profile and spread in the human environment. Data also revealed different antimicrobial resistance patterns of animal-origin Acinetobacter species, emphasizing the necessity to implement specific antimicrobial susceptibility recommendations for animal isolates as there are no such clinical breakpoints currently in place. This study provides substantial advancing in our understanding of Acinetobacter spp. in animal clinical specimens, and highlights the role of animals in the dynamics of multidrug resistance in bacteria. The data presented here is a valuable source of information for further establishment of clinical breakpoints for susceptibility testing of animal-associated Acinetobacter isolates.
Collapse
Affiliation(s)
- Grazieli Maboni
- Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, GA, USA.
| | - Mauricio Seguel
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Ana Lorton
- Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, GA, USA
| | - Susan Sanchez
- Athens Veterinary Diagnostic Laboratory, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| |
Collapse
|
16
|
Rocca MF, Barrios R, Zintgraff J, Martínez C, Irazu L, Vay C, Prieto M. Utility of platforms Viteks MS and Microflex LT for the identification of complex clinical isolates that require molecular methods for their taxonomic classification. PLoS One 2019; 14:e0218077. [PMID: 31269022 PMCID: PMC6608940 DOI: 10.1371/journal.pone.0218077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/09/2019] [Indexed: 01/21/2023] Open
Abstract
Mass spectrometry has revolutionized the clinical microbiology field in America’s and Europe’s industrialized countries, for being a fast, reliable and inexpensive technique. Our study is based on the comparison of the performance of two commercial platforms, Microflex LT (Bruker Daltonics, Bremen, Germany) and Vitek MS (bioMérieux, Marcy l´Etoile, France) for the identification of unusual and hard-to-diagnose microorganisms in a Reference Laboratory in Argentina. During a four-month period (February–May 2018) the diagnostic efficiency and the concordance between both systems were assessed, and the results were compared with the polyphasic taxonomic identification of all isolates. The study included 265 isolates: 77 Gram-Negative Bacilli, 33 Gram-Positive Cocci, 40 Anaerobes, 35 Actinomycetales, 19 Fastidious Microorganisms and 61 Gram-Positive Bacilli. All procedures were practiced according to the manufacturer’s recommendations in each case by duplicate, and strictly in parallel. Other relevant factors, such as the utility of the recommended extraction protocols, reagent stability and connectivity were also evaluated. Both systems correctly identified the majority of the isolates to species and complex level (82%, 217/265). Vitex MS achieved a higher number of correct species-level identifications between the gram-positive microorganisms; however, it presented greater difficulty in the identification of non-fermenting bacilli and a higher number of incorrect identifications when the profile of the microorganism was not represented in the commercial database. Both platforms showed an excellent performance on the identification of anaerobic bacteria and fastidious species. Both systems enabled the fast and reliable identification of most of the tested isolates and were shown to be very practical for the user.
Collapse
Affiliation(s)
- María Florencia Rocca
- Laboratorio Bacteriología Especial, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas (INEI)–Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| | - Rubén Barrios
- Laboratorio de Bacteriología, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jonathan Zintgraff
- Laboratorio Bacteriología Clínica, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas (INEI)–Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Claudia Martínez
- Laboratorio Bacteriología Especial, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas (INEI)–Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía Irazu
- Instituto Nacional de Enfermedades Infecciosas (INEI)–Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlos Vay
- Instituto de Fisiopatología y Bioquímica Clínica, Hospital de Clínicas José de San Martín, Facultad de Farmacia y Bioquímica, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mónica Prieto
- Laboratorio Bacteriología Especial, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas (INEI)–Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos G. Malbrán”, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
17
|
Schwarz P, Guedouar H, Laouiti F, Grenouillet F, Dannaoui E. Identification of Mucorales by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. J Fungi (Basel) 2019; 5:jof5030056. [PMID: 31269718 PMCID: PMC6787577 DOI: 10.3390/jof5030056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/13/2019] [Accepted: 06/28/2019] [Indexed: 12/28/2022] Open
Abstract
More than 20 different species of Mucorales can be responsible for human mucormycosis. Accurate identification to the species level is important. The morphological identification of Mucorales is not reliable, and the currently recommended identification standard is the molecular technique of sequencing the internal transcribed spacer regions. Nevertheless, matrix-assisted laser desorption ionization time-of-flight mass spectrometry has been shown to be an accurate alternative for the identification of bacteria, yeasts, and even filamentous fungi. Therefore, 38 Mucorales isolates, belonging to 12 different species or varieties, mainly from international collections, including 10 type or neo-type strains previously identified by molecular methods, were used to evaluate the usefulness of matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the identification of human pathogenic Mucorales to the species level. One to three reference strains for each species were used to create a database of main spectrum profiles, and the remaining isolates were used as test isolates. A minimum of 10 spectra was used to build the main spectrum profile of each database strain. Interspecies discrimination for all the isolates, including species belonging to the same genus, was possible. Twenty isolates belonging to five species were used to test the database accuracy, and were correctly identified to the species level with a log-score >2. In summary, matrix-assisted laser desorption ionization time-of-flight mass spectrometry is a reliable and rapid method for the identification of most of the human pathogenic Mucorales to the species level.
Collapse
Affiliation(s)
- Patrick Schwarz
- Department of Internal Medicine, Respiratory and Critical Care Medicine, University Hospital Marburg, D-35043 Marburg, Germany.
- Center for Invasive Mycoses and Antifungals, Philipps University Marburg, D-35037 Marburg, Germany.
| | - Houssem Guedouar
- Université Paris Descartes, Faculté de Médecine, AP-HP, Hôpital Européen Georges Pompidou, Unité de Parasitologie-Mycologie, F-75015 Paris, France
| | - Farah Laouiti
- Université Paris Descartes, Faculté de Médecine, AP-HP, Hôpital Européen Georges Pompidou, Unité de Parasitologie-Mycologie, F-75015 Paris, France
| | - Frédéric Grenouillet
- Centre Hospitalier Régional Universitaire, Hôpital Jean Minjoz, Sérologies Parasitaires et Fongiques, F-25030 Besançon, France
| | - Eric Dannaoui
- Université Paris Descartes, Faculté de Médecine, AP-HP, Hôpital Européen Georges Pompidou, Unité de Parasitologie-Mycologie, F-75015 Paris, France
- Working Group Dynamyc, Faculté de Médecine, Hôpital Henri Mondor, F-94010 Créteil, France
| |
Collapse
|
18
|
False-Positive Carbapenem-Hydrolyzing Confirmatory Tests Due to ACT-28, a Chromosomally Encoded AmpC with Weak Carbapenemase Activity from Enterobacter kobei. Antimicrob Agents Chemother 2019; 63:AAC.02388-18. [PMID: 30783006 DOI: 10.1128/aac.02388-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/12/2019] [Indexed: 11/20/2022] Open
Abstract
In Enterobacter cloacae complex (ECC), the overproduction of the chromosome-encoded cephalosporinase (cAmpC) associated with decreased outer membrane permeability may result in carbapenem resistance. In this study, we have characterized ACT-28, a cAmpC with weak carbapenemase activity, from a single Enterobacter kobei lineage. ECC clinical isolates were characterized by whole-genome sequencing (WGS), susceptibility testing, and MIC, and carbapenemase activity was monitored using diverse carbapenem hydrolysis methods. ACT-28 steady-state kinetic parameters were determined. Among 1,039 non-carbapenemase-producing ECC isolates with decreased susceptibility to carbapenems received in 2016-2017 at the French National Reference Center for antibiotic resistance, only 8 had a positive carbapenemase detection test (Carba NP). These eight ECC isolates were resistant to broad-spectrum cephalosporins due to AmpC derepression, showed decreased susceptibility to carbapenems, and were categorized as carbapenemase-producing Enterobacteriaceae (CPE) according to several carbapenemase detection assays. WGS identified a single clone of E. kobei ST125 expressing only its cAmpC, ACT-28. The bla ACT-28 gene was expressed in a wild-type and in a porin-deficient Escherichia coli background and compared to the bla ACT-1 gene. Detection of carbapenemase activity was positive only for E. coli expressing the bla ACT-28 gene. Kinetic parameters of purified ACT-28 revealed a slightly increased imipenem hydrolysis compared to that of ACT-1. In silico porin analysis revealed the presence of a peculiar OmpC-like protein specific to E. kobei ST125 that could impair carbapenem influx into the periplasm and thus enhance carbapenem-resistance caused by ACT-28. We described a widespread lineage of E. kobei ST125 producing ACT-28, with weak carbapenemase activity that can lead to false-positive detection by several biochemical and phenotypic diagnostic tests.
Collapse
|
19
|
Schuetz AN. Emerging agents of gastroenteritis: Aeromonas, Plesiomonas, and the diarrheagenic pathotypes of Escherichia coli. Semin Diagn Pathol 2019; 36:187-192. [PMID: 31036328 DOI: 10.1053/j.semdp.2019.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Knowledge of the pathogenic roles of certain bacterial agents in gastroenteritis has been growing over the past few decades. With the increasing use of multiplex molecular-based syndromic stool pathogen panels, the roles of Plesiomonas shigelloides and some of the diarrheagenic pathotypes of Escherichia coli (enterotoxigenic E. coli [ETEC], enteropathogenic E. coli [EPEC], enteroinvasive E. coli [EIEC], and enteroaggregative E. coli [EAEC]) have been better understood. Although not currently targeted on Food and Drug Administration (FDA)-cleared commercial multiplex stool panels, Aeromonas has also emerged as a possible cause of bacterial gastroenteritis. The clinical presentation, pathophysiology, and diagnostic approaches to these pathogens in stool specimens are reviewed. Variability in inclusion of these pathogens on multiplex molecular panels and difficulties in detection by stool culture techniques utilized by clinical microbiology laboratories have contributed to an unclear understanding of the pathogenic role of several of these pathogens. Nonetheless, most evidence points towards a clear pathogenic role for P. shigelloides and ETEC, and possibly EPEC and EIEC. The contribution of Aeromonas spp. and EAEC to bacterial gastroenteritis has not been fully established. Further studies of pathogenicity of these pathogens are needed.
Collapse
Affiliation(s)
- Audrey N Schuetz
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, United States.
| |
Collapse
|
20
|
Beyrouthy R, Barets M, Marion E, Dananché C, Dauwalder O, Robin F, Gauthier L, Jousset A, Dortet L, Guérin F, Bénet T, Cassier P, Vanhems P, Bonnet R. Novel Enterobacter Lineage as Leading Cause of Nosocomial Outbreak Involving Carbapenemase-Producing Strains. Emerg Infect Dis 2019; 24:1505-1515. [PMID: 30014838 PMCID: PMC6056098 DOI: 10.3201/eid2408.180151] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We investigated unusual carbapenemase-producing Enterobacter cloacae complex isolates (n = 8) in the novel sequence type (ST) 873, which caused nosocomial infections in 2 hospitals in France. Whole-genome sequence typing showed the 1-year persistence of the epidemic strain, which harbored a blaVIM-4 ST1-IncHI2 plasmid, in 1 health institution and 2 closely related strains harboring blaCTX-M-15 in the other. These isolates formed a new subgroup in the E. hormaechei metacluster, according to their hsp60 sequences and phylogenomic analysis. The average nucleotide identities, specific biochemical properties, and pangenomic and functional investigations of isolates suggested isolates of a novel species that had acquired genes associated with adhesion and mobility. The emergence of this novel Enterobacter phylogenetic lineage within hospitals should be closely monitored because of its ability to persist and spread.
Collapse
|
21
|
Guo D, Xi Y, Wang S, Wang Z. Is a positive Christie-Atkinson-Munch-Peterson (CAMP) test sensitive enough for the identification of Streptococcus agalactiae? BMC Infect Dis 2019; 19:7. [PMID: 30606123 PMCID: PMC6318942 DOI: 10.1186/s12879-018-3561-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/27/2018] [Indexed: 11/22/2022] Open
Abstract
Background For a long time, the Christie-Atkinson-Munch-Peterson (CAMP) test has been a standard test for the identification of Streptococcus agalactiae, and a positive result for S.agalactiae has been considered sensitive enough. Methods To confirm whether a positive CAMP test is a requirement for the identification of S.agalactiae, five suspected CAMP-negative S.agalactiae isolates from two hospitals, confirmed as Gram-positive and catalase-negative streptococci, were verified by the CAMP test in three batches of plates from two manufacturers and identified by the Phoenix system, MALDI-TOF MS, the PCR assay and the 16S rDNA gene sequencing. Results All five suspected strains were S.agalactiae, four of which were CAMP-negative and one of which was not S.agalactiae by the PCR assay. Conclusions A positive CAMP test was lacking sensitivity for the identification of S.agalactiae, and the question of whether the cfb gene is worthy of targeting should be further studied.
Collapse
Affiliation(s)
- Dacheng Guo
- Institute for Infectious Disease Control and Prevention, Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Yu Xi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Shanmei Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zeyu Wang
- R&D Center, Autobio Diagnostics Co. Ltd, Zhengzhou, China.
| |
Collapse
|
22
|
Burckhardt I. Laboratory Automation in Clinical Microbiology. Bioengineering (Basel) 2018; 5:bioengineering5040102. [PMID: 30467275 PMCID: PMC6315553 DOI: 10.3390/bioengineering5040102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 01/21/2023] Open
Abstract
Laboratory automation is currently the main organizational challenge for microbiologists. Automating classic workflows is a strenuous process for the laboratory personnel and a huge and long-lasting financial investment. The investments are rewarded through increases in quality and shortened time to report. However, the benefits for an individual laboratory can only be estimated after the implementation and depending on the classic workflows currently performed. The two main components of automation are hardware and workflow. This review focusses on the workflow aspects of automation and describes some of the main developments during recent years. Additionally, it tries to define some terms which are related to automation and specifies some developments which would further improve automated systems.
Collapse
Affiliation(s)
- Irene Burckhardt
- Department for Infectious Diseases, Microbiology and Hygiene, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
23
|
Pellegrino FLPC, Chagas TPG, Alves MS, Carvalho-Assef APD, Chapeaurouge A, Asensi MD. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Applications in Bacteriology: brazilian contributions. HU REVISTA 2018. [DOI: 10.34019/1982-8047.2017.v43.2859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among its innumerous applications in Bacteriology, the Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) technique is evolving as a powerful tool for bacterial identification and antimicrobial resistance investigation. Publications have evaluated the MALDI-TOF MS performance in the identification of a series of bacterial pathogens, including the most common severe infectious agents, emergent pathogens involved with outbreaks of healthcare-associated infections, rare pathogens, and those whose isolation in culture media is difficult. As compared to conventional methods of bacterial identification, MALDI-TOF MS has proven to be a fast, accurate and cost-effective technique. Currently, MALDI-TOF MS has been used in antimicrobial resistance studies, since it has shown to be an efficient tool in detecting specific resistance mechanisms in bacteria, such as beta-lactamases production, for example. Here, we describe the advances in this growing field of mass spectrometry applied to Bacteriology, including Brazilian contributions.
Collapse
|
24
|
Oh J, Yoo IY, Song DJ, Lee JW, Kim YJ, Ki CS, Lee NY, Huh HJ. A Case of Cruoricaptor ignavus Isolated From the Blood of a Patient With Ewing Sarcoma. Ann Lab Med 2018; 38:613-615. [PMID: 30027709 PMCID: PMC6056387 DOI: 10.3343/alm.2018.38.6.613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 04/02/2018] [Accepted: 06/16/2018] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jongwon Oh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - In Young Yoo
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Joon Song
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Won Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yae Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang Seok Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
25
|
Shao J, Wan Z, Li R, Yu J. Species Identification and Delineation of Pathogenic Mucorales by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol 2018; 56:e01886-17. [PMID: 29436422 PMCID: PMC5869826 DOI: 10.1128/jcm.01886-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/29/2018] [Indexed: 11/20/2022] Open
Abstract
This study aimed to validate the effectiveness of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based identification of filamentous fungi of the order Mucorales. A total of 111 isolates covering six genera preserved at the Research Center for Medical Mycology of Peking University were selected for MALDI-TOF MS analysis. We emphasized the study of 23 strains of Mucor irregularis predominantly isolated from patients in China. We first used the Bruker Filamentous Fungi library (v1.0) to identify all 111 isolates. To increase the identification rate, we created a compensatory in-house database, the Beijing Medical University (BMU) database, using 13 reference strains covering 6 species, including M. irregularis, Mucor hiemalis, Mucor racemosus, Cunninghamella bertholletiae, Cunninghamella phaeospora, and Cunninghamella echinulata All 111 isolates were then identified by MALDI-TOF MS using a combination of the Bruker library and BMU database. MALDI-TOF MS identified 55 (49.5%) and 74 (66.7%) isolates at the species and genus levels, respectively, using the Bruker Filamentous Fungi library v1.0 alone. A combination of the Bruker library and BMU database allowed MALDI-TOF MS to identify 90 (81.1%) and 111 (100%) isolates at the species and genus levels, respectively, with a significantly increased accuracy rate. MALDI-TOF MS poorly identified Mucorales when the Bruker library was used alone due to its lack of some fungal species. In contrast, this technique perfectly identified M. irregularis after main spectrum profiles (MSPs) of relevant reference strains were added to the Bruker library. With an expanded Bruker library, MALDI-TOF MS is an effective tool for the identification of pathogenic Mucorales.
Collapse
Affiliation(s)
- Jin Shao
- Department of Dermatology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| | - Zhe Wan
- Department of Dermatology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| | - Ruoyu Li
- Department of Dermatology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| | - Jin Yu
- Department of Dermatology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- Research Center for Medical Mycology, Peking University, Beijing, China
| |
Collapse
|
26
|
Kittinger C, Kirschner A, Lipp M, Baumert R, Mascher F, Farnleitner AH, Zarfel GE. Antibiotic Resistance of Acinetobacter spp. Isolates from the River Danube: Susceptibility Stays High. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 15:ijerph15010052. [PMID: 29301193 PMCID: PMC5800151 DOI: 10.3390/ijerph15010052] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 12/13/2022]
Abstract
Acinetobacter spp. occur naturally in many different habitats, including food, soil, and surface waters. In clinical settings, Acinetobacter poses an increasing health problem, causing infections with limited to no antibiotic therapeutic options left. The presence of human generated multidrug resistant strains is well documented but the extent to how widely they are distributed within the Acinetobacter population is unknown. In this study, Acinetobacter spp. were isolated from water samples at 14 sites of the whole course of the river Danube. Susceptibility testing was carried out for 14 clinically relevant antibiotics from six different antibiotic classes. Isolates showing a carbapenem resistance phenotype were screened with PCR and sequencing for the underlying resistance mechanism of carbapenem resistance. From the Danube river water, 262 Acinetobacter were isolated, the most common species was Acinetobacter baumannii with 135 isolates. Carbapenem and multiresistant isolates were rare but one isolate could be found which was only susceptible to colistin. The genetic background of carbapenem resistance was mostly based on typical Acinetobacter OXA enzymes but also on VIM-2. The population of Acinetobacter (baumannii and non-baumannii) revealed a significant proportion of human-generated antibiotic resistance and multiresistance, but the majority of the isolates stayed susceptible to most of the tested antibiotics.
Collapse
Affiliation(s)
- Clemens Kittinger
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 2, 8010 Graz, Austria.
| | - Alexander Kirschner
- Institute for Hygiene and Applied Immunology, Water Hygiene, Medical University of Vienna, 1090 Vienna, Austria.
- Interuniversity Cooperation Centre for Water and Health, Vienna University of Technology, 1060 Vienna, Austria.
| | - Michaela Lipp
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 2, 8010 Graz, Austria.
| | - Rita Baumert
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 2, 8010 Graz, Austria.
| | - Franz Mascher
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 2, 8010 Graz, Austria.
| | - Andreas H Farnleitner
- Interuniversity Cooperation Centre for Water and Health, Vienna University of Technology, 1060 Vienna, Austria.
- Institute of Chemical Engineering, Research Group Environmental Microbiology and Molecular Ecology, Vienna University of Technology, 1060 Vienna, Austria.
- Karl Landsteiner University for Health Sciences, 3500 Krems, Austria.
| | - Gernot E Zarfel
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Neue Stiftingtalstraße 2, 8010 Graz, Austria.
| |
Collapse
|
27
|
The current status on the taxonomy of Pseudomonas revisited: An update. INFECTION GENETICS AND EVOLUTION 2017; 57:106-116. [PMID: 29104095 DOI: 10.1016/j.meegid.2017.10.026] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/20/2022]
Abstract
The genus Pseudomonas described in 1894 is one of the most diverse and ubiquitous bacterial genera which encompass species isolated worldwide. In the last years more than 70 new species have been described, which were isolated from different environments, including soil, water, sediments, air, animals, plants, fungi, algae, compost, human and animal related sources. Some of these species have been isolated in extreme environments, such as Antarctica or Atacama desert, and from contaminated water or soil. Also, some species recently described are plant or animal pathogens. In this review, we revised the current status of the taxonomy of genus Pseudomonas and the methodologies currently used for the description of novel species which includes, in addition to the classic ones, new methodologies such as MALDI-TOF MS, MLSA and genome analyses. The novel Pseudomonas species described in the last years are listed, together with the available genome sequences of the type strains of Pseudomonas species present in different databases.
Collapse
|
28
|
Lin JN, Lai CH, Yang CH, Huang YH, Lin HF, Lin HH. Comparison of four automated microbiology systems with 16S rRNA gene sequencing for identification of Chryseobacterium and Elizabethkingia species. Sci Rep 2017; 7:13824. [PMID: 29062009 PMCID: PMC5653830 DOI: 10.1038/s41598-017-14244-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/06/2017] [Indexed: 11/10/2022] Open
Abstract
Chryseobacterium and Elizabethkingia species have recently emerged as causative agents in life-threatening infections in humans. We aimed to evaluate the rates at which four common microbial identification systems identify Chryseobacterium and Elizabethkingia species in clinical microbiology laboratories. Based on the results of 16S rRNA gene sequencing, a total of 114 consecutive bacteremic isolates, including 36 (31.6%) C. indologenes, 35 (30.7%) E. anophelis, 22 (19.3%) C. gleum, 13 (11.4%) E. meningoseptica, and other species, were included in this study. The overall concordance between each method and 16S rRNA gene sequencing when identifying Chryseobacterium and Elizabethkingia species was 42.1% for API/ID32, 41.2% for Phoenix 100 ID/AST, 43.9% for VITEK 2, and 42.1% for VITEK MS. Among the 22 C. gleum isolates, only one (4.8%) was correctly identified using VITEK 2 and Phoenix 100 ID/AST, and none were accurately recognized using API/ID32 or VITEK MS. Except for two isolates that were not identified using API/ID32, all E. anophelis isolates were misidentified by all four identification systems as E. meningoseptica. Our results show that these approaches have low accuracy when identifying Chryseobacterium and Elizabethkingia species. Hence, we recommend amending the discrimination rate of and adding non-claimed pathogens to databases of microbial identification systems.
Collapse
Affiliation(s)
- Jiun-Nong Lin
- Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan. .,Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan. .,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan.
| | - Chung-Hsu Lai
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Hui Yang
- Department of Biological Science and Technology, Meiho University, Pingtung, Taiwan
| | - Yi-Han Huang
- Department of Critical Care Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hsiu-Fang Lin
- Departments of Clinical Pathology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hsi-Hsun Lin
- Division of Infectious Diseases, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Porte L, García P, Braun S, Ulloa MT, Lafourcade M, Montaña A, Miranda C, Acosta-Jamett G, Weitzel T. Head-to-head comparison of Microflex LT and Vitek MS systems for routine identification of microorganisms by MALDI-TOF mass spectrometry in Chile. PLoS One 2017; 12:e0177929. [PMID: 28542393 PMCID: PMC5436840 DOI: 10.1371/journal.pone.0177929] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 05/05/2017] [Indexed: 12/28/2022] Open
Abstract
Background Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is a new and revolutionary identification method for microorganisms and has recently been introduced into clinical microbiology in many industrialized countries in Europe and North America. Objectives Our study aimed to compare the performance and practicality of two commercial MALDI-TOF MS platforms in a head-to head manner at a routine laboratory in Chile. Methods During a five-month period in 2012–13, the diagnostic efficiency (correct identification rate) and agreement between Microflex LT (Bruker Daltonics) and Vitek MS (bioMérieux) was compared in a parallel manner to conventional identification including genotypic analysis for difficult-to-identify strains. The study included 804 microbial isolates: 252 Enterobacteriaceae, 126 non-fermenters, 36 other gram-negative rods, 279 gram-positive cocci, 32 gram-positive rods, 32 anaerobes, and 47 yeasts. Other relevant factors of the two devices such as user friendliness and connectivity were also evaluated and compared. Results Both systems correctly identified the vast majority (98%) of the isolates to the genus level. Vitek MS reached higher rates of identification to species and species complex level than Microflex LT (81% vs. 85% and 87% vs. 93%, respectively), which was mainly based on the higher performance among coagulase negative staphylococci and Candida isolates. The evaluation of user friendliness and other technical aspects showed only marginal differences, which slightly favored Vitek MS, mainly due to its ready-to-use supplies, easier connectivity and workflow integration, and availability of local technical support. Conclusions Both MALDI-TOF MS systems permitted fast and accurate identification of most microbial strains and showed a high level of user-friendliness. The observed differences were marginal and slightly favored Vitek MS, mainly due to practicality and connectivity issues within our setting.
Collapse
Affiliation(s)
- Lorena Porte
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Unidad de Microbiología, Laboratorio Clínico, Hospital Militar, Santiago, Chile
- * E-mail:
| | - Patricia García
- Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Stephanie Braun
- Unidad de Microbiología, Laboratorio Clínico, Hospital Militar, Santiago, Chile
| | - María Teresa Ulloa
- Programa de Microbiología, ICBM Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | - Alisson Montaña
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
- Laboratorio de Microbiología, Clínica Santa María, Santiago, Chile
| | - Carolina Miranda
- Laboratorio de Microbiología, Servicio de Laboratorios Clínicos, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Gerardo Acosta-Jamett
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral, Valdivia, Chile
| | - Thomas Weitzel
- Laboratorio Clínico, Clínica Alemana de Santiago, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
30
|
Performance of the matrix-assisted laser desorption ionization time-of-flight mass spectrometry system for rapid identification of streptococci: a review. Eur J Clin Microbiol Infect Dis 2017; 36:1005-1012. [DOI: 10.1007/s10096-016-2879-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/13/2016] [Indexed: 11/30/2022]
|
31
|
Schröttner P, Gunzer F, Schüppel J, Rudolph WW. Identification of Rare Bacterial Pathogens by 16S rRNA Gene Sequencing and MALDI-TOF MS. J Vis Exp 2016:53176. [PMID: 27500532 PMCID: PMC4993432 DOI: 10.3791/53176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
There are a number of rare and, therefore, insufficiently described bacterial pathogens which are reported to cause severe infections especially in immunocompromised patients. In most cases only few data, mostly published as case reports, are available which investigate the role of such pathogens as an infectious agent. Therefore, in order to clarify the pathogenic character of such microorganisms, it is necessary to conduct epidemiologic studies which include large numbers of these bacteria. The methods used in such a surveillance study have to meet the following criteria: the identification of the strains has to be accurate according to the valid nomenclature, they should be easy to handle (robustness), economical in routine diagnostics and they have to generate comparable results among different laboratories. Generally, there are three strategies for identifying bacterial strains in a routine setting: 1) phenotypic identification characterizing the biochemical and metabolic properties of the bacteria, 2) molecular techniques such as 16S rRNA gene sequencing and 3) mass spectrometry as a novel proteome based approach. Since mass spectrometry and molecular approaches are the most promising tools for identifying a large variety of bacterial species, these two methods are described. Advances, limitations and potential problems when using these techniques are discussed.
Collapse
Affiliation(s)
- Percy Schröttner
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, TU Dresden;
| | - Florian Gunzer
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, TU Dresden
| | - Jana Schüppel
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, TU Dresden
| | - Wolfram W Rudolph
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, TU Dresden
| |
Collapse
|
32
|
Whole genome sequencing as a tool for phylogenetic analysis of clinical strains of Mitis group streptococci. Eur J Clin Microbiol Infect Dis 2016; 35:1615-25. [PMID: 27325438 DOI: 10.1007/s10096-016-2700-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
Abstract
Identification of Mitis group streptococci (MGS) to the species level is challenging for routine microbiology laboratories. Correct identification is crucial for the diagnosis of infective endocarditis, identification of treatment failure, and/or infection relapse. Eighty MGS from Danish patients with infective endocarditis were whole genome sequenced. We compared the phylogenetic analyses based on single genes (recA, sodA, gdh), multigene (MLSA), SNPs, and core-genome sequences. The six phylogenetic analyses generally showed a similar pattern of six monophyletic clusters, though a few differences were observed in single gene analyses. Species identification based on single gene analysis showed their limitations when more strains were included. In contrast, analyses incorporating more sequence data, like MLSA, SNPs and core-genome analyses, provided more distinct clustering. The core-genome tree showed the most distinct clustering.
Collapse
|
33
|
Kittinger C, Lipp M, Baumert R, Folli B, Koraimann G, Toplitsch D, Liebmann A, Grisold AJ, Farnleitner AH, Kirschner A, Zarfel G. Antibiotic Resistance Patterns of Pseudomonas spp. Isolated from the River Danube. Front Microbiol 2016; 7:586. [PMID: 27199920 PMCID: PMC4853796 DOI: 10.3389/fmicb.2016.00586] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/11/2016] [Indexed: 01/22/2023] Open
Abstract
Spread and persistence of antibiotic resistance pose a severe threat to human health, yet there is still lack of knowledge about reservoirs of antibiotic resistant bacteria in the environment. We took the opportunity of the Joint Danube Survey 3 (JDS3), the world's biggest river research expedition of its kind in 2013, to analyse samples originating from different sampling points along the whole length of the river. Due to its high clinical relevance, we concentrated on the characterization of Pseudomonas spp. and evaluated the resistance profiles of Pseudomonas spp. which were isolated from eight sampling points. In total, 520 Pseudomonas isolates were found, 344 (66.0%) isolates were identified as Pseudomonas putida, and 141 (27.1%) as Pseudomonas fluorescens, all other Pseudomonas species were represented by less than five isolates, among those two P. aeruginosa isolates. Thirty seven percent (37%) of all isolated Pseudomonas species showed resistance to at least one out of 10 tested antibiotics. The most common resistance was against meropenem (30.4%/158 isolates) piperacillin/tazobactam (10.6%/55 isolates) and ceftazidime (4.2%/22 isolates). 16 isolates (3.1%/16 isolates) were multi-resistant. For each tested antibiotic at least one resistant isolate could be detected. Sampling points from the upper stretch of the River Danube showed more resistant isolates than downriver. Our results suggest that antibiotic resistance can be acquired by and persists even in Pseudomonas species that are normally not in direct contact with humans. A possible scenario is that these bacteria provide a reservoir of antibiotic resistance genes that can spread to related human pathogens by horizontal gene transfer.
Collapse
Affiliation(s)
- Clemens Kittinger
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz Graz, Austria
| | - Michaela Lipp
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz Graz, Austria
| | - Rita Baumert
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz Graz, Austria
| | - Bettina Folli
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz Graz, Austria
| | - Günther Koraimann
- Institute of Molecular Biosciences, University of Graz Graz, Austria
| | - Daniela Toplitsch
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University GrazGraz, Austria; Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - Astrid Liebmann
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University GrazGraz, Austria; Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - Andrea J Grisold
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz Graz, Austria
| | - Andreas H Farnleitner
- Interuniversity Cooperation Centre for Water and HealthVienna, Austria; Research Group Environmental Microbiology and Molecular Ecology, Institute of Chemical Engineering, Vienna University of TechnologyVienna, Austria
| | - Alexander Kirschner
- Interuniversity Cooperation Centre for Water and HealthVienna, Austria; Institute for Hygiene and Applied Immunology, Medical University of ViennaVienna, Austria
| | - Gernot Zarfel
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz Graz, Austria
| |
Collapse
|
34
|
Abstract
After many years in the family Vibrionaceae, the genus Plesiomonas, represented by a single species, P. shigelloides, currently resides in the family Enterobacteriaceae, although its most appropriate phylogenetic position may yet to be determined. Common environmental reservoirs for plesiomonads include freshwater ecosystems and estuaries and inhabitants of these aquatic environs. Long suspected as being an etiologic agent of bacterial gastroenteritis, convincing evidence supporting this conclusion has accumulated over the past 2 decades in the form of a series of foodborne outbreaks solely or partially attributable to P. shigelloides. The prevalence of P. shigelloides enteritis varies considerably, with higher rates reported from Southeast Asia and Africa and lower numbers from North America and Europe. Reasons for these differences may include hygiene conditions, dietary habits, regional occupations, or other unknown factors. Other human illnesses caused by P. shigelloides include septicemia and central nervous system disease, eye infections, and a variety of miscellaneous ailments. For years, recognizable virulence factors potentially associated with P. shigelloides pathogenicity were lacking; however, several good candidates now have been reported, including a cytotoxic hemolysin, iron acquisition systems, and lipopolysaccharide. While P. shigelloides is easy to identify biochemically, it is often overlooked in stool samples due to its smaller colony size or relatively low prevalence in gastrointestinal samples. However, one FDA-approved PCR-based culture-independent diagnostic test system to detect multiple enteropathogens (FilmArray) includes P. shigelloides on its panel. Plesiomonads produce β-lactamases but are typically susceptible to many first-line antimicrobial agents, including quinolones and carbapenems.
Collapse
Affiliation(s)
- J Michael Janda
- Kern County Public Health Laboratory, Department of Public Health Services, Bakersfield, California, USA
| | - Sharon L Abbott
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Christopher J McIver
- Microbiology Department (SEALS), St. George Hospital, Kogarah, and School of Medical Sciences, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
35
|
Yu WS, Lee KM, Hwang KJ. Taxonomic Identification of BacillusSpecies Using Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry. ANNALS OF CLINICAL MICROBIOLOGY 2016. [DOI: 10.5145/acm.2016.19.4.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Won Seon Yu
- Pathogen Resource TF, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Kyeong Min Lee
- Pathogen Resource TF, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| | - Kyu Jam Hwang
- Pathogen Resource TF, Center for Infectious Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju, Korea
| |
Collapse
|
36
|
Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates. PLoS One 2015; 10:e0141350. [PMID: 26529504 PMCID: PMC4631355 DOI: 10.1371/journal.pone.0141350] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 10/06/2015] [Indexed: 11/19/2022] Open
Abstract
The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria.
Collapse
|
37
|
Kleinschmidt S, Huygens F, Faoagali J, Rathnayake IU, Hafner LM. Staphylococcus epidermidis as a cause of bacteremia. Future Microbiol 2015; 10:1859-79. [DOI: 10.2217/fmb.15.98] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus epidermidis is a biofilm-producing commensal organism found ubiquitously on human skin and mucous membranes, as well as on animals and in the environment. Biofilm formation enables this organism to evade the host immune system. Colonization of percutaneous devices or implanted medical devices allows bacteria access to the bloodstream. Isolation of this organism from blood cultures may represent either contamination during the blood collection procedure or true bacteremia. S. epidermidis bloodstream infections may be indolent compared with other bacteria. Isolation of S. epidermidis from a blood culture may present a management quandary for clinicians. Over-treatment may lead to patient harm and increases in healthcare costs. There are numerous reports indicating the difficulty of predicting clinical infection in patients with positive blood cultures with this organism. No reliable phenotypic or genotypic algorithms currently exist to predict the pathogenicity of a S. epidermidis bloodstream infection. This review will discuss the latest advances in identification methods, global population structure, pathogenicity, biofilm formation, antimicrobial resistance and clinical significance of the detection of S. epidermidis in blood cultures. Previous studies that have attempted to discriminate between invasive and contaminating strains of S. epidermidis in blood cultures will be analyzed.
Collapse
Affiliation(s)
- Sharon Kleinschmidt
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Microbiology Department, Pathology Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Flavia Huygens
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joan Faoagali
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Irani U Rathnayake
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Louise M Hafner
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
38
|
Pailhoriès H, Daure S, Eveillard M, Joly-Guillou ML, Kempf M. Using Vitek MALDI-TOF mass spectrometry to identify species belonging to the Acinetobacter calcoaceticus–Acinetobacter baumannii complex: a relevant alternative to molecular biology? Diagn Microbiol Infect Dis 2015. [DOI: 10.1016/j.diagmicrobio.2015.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Lee M, Chung HS, Moon HW, Lee SH, Lee K. Comparative evaluation of two matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems, Vitek MS and Microflex LT, for the identification of Gram-positive cocci routinely isolated in clinical microbiology laboratories. J Microbiol Methods 2015; 113:13-5. [DOI: 10.1016/j.mimet.2015.03.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 11/26/2022]
|
40
|
Bourassa L, Butler-Wu SM. MALDI-TOF Mass Spectrometry for Microorganism Identification. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|