1
|
Baciu AP, Baciu C, Baciu G, Gurau G. The burden of antibiotic resistance of the main microorganisms causing infections in humans - review of the literature. J Med Life 2024; 17:246-260. [PMID: 39044924 PMCID: PMC11262613 DOI: 10.25122/jml-2023-0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/21/2024] [Indexed: 07/25/2024] Open
Abstract
One of the biggest threats to human well-being and public health is antibiotic resistance. If allowed to spread unchecked, it might become a major health risk and trigger another pandemic. This proves the need to develop antibiotic resistance-related global health solutions that take into consideration microdata from various global locations. Establishing positive social norms, guiding individual and group behavioral habits that support global human health, and ultimately raising public awareness of the need for such action could all have a positive impact. Antibiotic resistance is not just a growing clinical concern but also complicates therapy, making adherence to current guidelines for managing antibiotic resistance extremely difficult. Numerous genetic components have been connected to the development of resistance; some of these components have intricate paths of transfer between microorganisms. Beyond this, the subject of antibiotic resistance is becoming increasingly significant in medical microbiology as new mechanisms underpinning its development are identified. In addition to genetic factors, behaviors such as misdiagnosis, exposure to broad-spectrum antibiotics, and delayed diagnosis contribute to the development of resistance. However, advancements in bioinformatics and DNA sequencing technology have completely transformed the diagnostic sector, enabling real-time identification of the components and causes of antibiotic resistance. This information is crucial for developing effective control and prevention strategies to counter the threat.
Collapse
Key Words
- AOM, acute otitis media
- CDC, Centers for Disease Control and Prevention
- CRE, carbapenem-resistant Enterobacterales
- ESBL, extended-spectrum beta-lactamase
- Hib, Haemophilus influenzae type b
- LVRE, linezolid/vancomycin -resistant enterococci
- MBC, minimum bactericidal concentration
- MBL, metallo-beta-lactamases
- MDR, multidrug-resistant
- MIC, minimum inhibitor concentration
- MRSA, methicillin-resistant Staphylococcus aureus
- PBP, penicillin-binding protein
- SCCmec staphylococcal chromosomal cassette mec
- VRE, vancomycin-resistant enterococci
- XDR, extensively drug-resistant
- antibiotic resistance
- antibiotics
- beta-lactamase
- cIAI, complicated intra-abdominal infection
- cUTI, complicated urinary tract infection
- carbapenems
- methicillin-resistant Staphylococcus aureus
- vancomycin
Collapse
Affiliation(s)
| | - Carmen Baciu
- MedLife Hyperclinic Nicolae Balcescu, Galati, Romania
| | - Ginel Baciu
- Sf. Ioan Emergency Clinical Hospital for Children, Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University, Galati, Romania
| | - Gabriela Gurau
- Sf. Ioan Emergency Clinical Hospital for Children, Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University, Galati, Romania
| |
Collapse
|
2
|
Wen S, Mai Y, Chen X, Xiao K, Lin Y, Xu Z, Yang L. Molecular Epidemiology and Antibiotic Resistance Analysis of Non-Typeable Haemophilus influenzae (NTHi) in Guangzhou: A Representative City of Southern China. Antibiotics (Basel) 2023; 12:antibiotics12040656. [PMID: 37107018 PMCID: PMC10135204 DOI: 10.3390/antibiotics12040656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 02/20/2023] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
This study aimed to investigate the molecular epidemiology and antibiotic resistance of Haemophilus influenzae in Guangzhou, China. A total of 80 H. influenzae isolates were collected from the First Affiliated Hospital of Guangzhou Medical University from January 2020 to April 2021. Species identification, antimicrobial susceptibility, molecular capsular typing, multilocus sequence typing and the clinical characteristics analysis of patients were performed. For all recruited isolates, the majority of H. influenzae strains from patients with respiratory symptoms were found to be non-typeable H. influenzae (NTHi). The isolates were relative susceptible to third- and fourth-generation cephalosporins, quinolones and chloramphenicol, despite having a high ampicillin resistance rate (>70%). The genotyping results reveal a total of 36 sequence types (STs), with ST12 being the most prevalent ST. Remarkably, the 36 STs identified from 80 NTHi isolates within a short period of 15 months and in a single medical setting have revealed a high genetic diversity in NTHi isolates. In comparison, it is noteworthy that the most prevalent STs found in the present study have rarely been found to overlap with those from previous studies. This is the first study on the molecular epidemiology of NTHi isolates in Guangzhou, a city that is representative of southern China.
Collapse
Affiliation(s)
- Shuxian Wen
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Ying Mai
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Xu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Kun Xiao
- Department of Laboratory Medicine, People’s Hospital of HUAIJI, Zhaoqing 526400, China
| | - Yongping Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Correspondence: (Z.X.); (L.Y.)
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
- Correspondence: (Z.X.); (L.Y.)
| |
Collapse
|
3
|
Zhou Y, Wang Y, Cheng J, Zhao X, Liang Y, Wu J. Molecular epidemiology and antimicrobial resistance of Haemophilus influenzae in Guiyang, Guizhou, China. Front Public Health 2022; 10:947051. [PMID: 36530676 PMCID: PMC9751421 DOI: 10.3389/fpubh.2022.947051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background The widespread use of antimicrobials and Haemophilus influenzae type b (Hib) vaccine worldwide has altered the epidemiological patterns of invasive H. influenzae. Nonetheless, little is currently known on the epidemiological characteristics of H. influenzae in Guiyang, Guizhou, China. Objective To determine the serotype distribution, antimicrobial resistance and Multilocus Sequence Typing (MLST) of H. influenzae in hospitalized patients in Guiyang City. Methods A total of 196 clinical isolates from hospitalized patients were collected. Serotypes were determined according to the specific capsule gene, bexA, amplified by PCR. According to the guidelines of Clinical and Laboratory Standards Institute (CLSI) 2020 drug susceptibility tested, and the results determined. The chromogenic cephalosporin nitrocefin method was used to detect β-lactamase production, β-lactamase negative, ampicillin-resistant (BLNAR) strains were detected by PCR amplification and sequencing of the penicillin-binding protein 3 (PBP3) locus of ftsI. Multilocus Sequence Typing was performed for molecular typing. Results All isolates studied were non-typeable H. influenzae (NTHi). Most patients originated from the pediatrics department (78.6%, 154/196), and suffered from lung with respiratory tract infection (pneumonia and bronchitis, 68.4%, 134/196). The resistance rates of ampicillin, cefaclor and azithromycin were 71.4% (140/196), 36.7% (72/196) and 34.2% (67/196), respectively. 40.3% (79/196) of strains were β-lactamase positive ampicillin-resistant (BLPAR). All BLPAR carried the TEM-1 gene. 9.2% (18/196) were β-lactamase negative ampicillin-resistant strains (BLNAR). The PBP3 mutation was detected in the ampicillin-resistant strains (n = 113), of which 18 belonged to group IIa. A total of 49 sequence types (ST) and 23 clonal complexes (CC) were detected, among which CC107 (ST107, n = 27; ST1002, n = 5; ST1218, n = 5) was the most frequent clonal complexes. BLPAR isolates mostly belonged to ST107 (20/79), while BLNAR was predominantly distributed in ST12 (5/18). Conclusion H. influenzae infections are predominately caused by genetically diverse NTHi among hospitalized patients in Guiyang. The prevalence of β-lactamase production and PBP3 mutation may contribute to the high local ampicillin resistance rate.
Collapse
Affiliation(s)
- Yuhong Zhou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
| | - Yu Wang
- Department of Clinical Laboratory, The First People's Hospital of Guiyang, Guiyang, China,*Correspondence: Yu Wang
| | - Jinzhi Cheng
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xue Zhao
- Department of Clinical Laboratory, The First People's Hospital of Guiyang, Guiyang, China
| | - Yuedong Liang
- Guiyang Public Health Treatment Center, Guiyang, China
| | - Jiahong Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China,Jiahong Wu
| |
Collapse
|
4
|
Li Z, Fu C, Li P, Ba W, Ma S, Tang X, Yang X, Hao Z, A K. The prevalence and influencing factors of the oropharyngeal carriage of Haemophilus influenzae in healthy children in a high-altitude area of China: A cross-sectional study. Medicine (Baltimore) 2022; 101:e30363. [PMID: 36086673 PMCID: PMC10980498 DOI: 10.1097/md.0000000000030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Haemophilus influenzae is a common commensal organism of the human upper respiratory tract and an important cause of human disease. No data on H influenzae carriage rate has been carried out on the Qinghai-Tibet Plateau of China. This study aims to present the H influenzae carriage rate and influencing factors of H influenzae in healthy children <15 years of age in Qinghai Province, an area located on the Qinghai-Tibet Plateau in China. Oropharyngeal swabs for the detection of H influenzae DNA were collected between September and October 2019. Taqman real-time polymerase chain reaction was used to detect the nucleic acids from the oropharyngeal swabs. Self-designed questionnaires were used to investigate the related information among this group of children. A number of 284 children were enrolled in this study. The carriage rate of H influenzae was 44.7%. The carriage rate in cities was 47.5%, in rural areas was 21.9%, and in pastoral areas was 52.8%. The carriage rate was found to be higher among children of minority ethnic groups than those of Han ethnicity (55.6% vs 38.1%). H influenzae carriage rate was influenced by tobacco smoke exposure (adjusted odds ratio [aOR] = 2.31, 95% CI [confidence interval]: 1.14-4.70), having siblings <5 years of age (aOR = 2.36, 95% CI: 1.21-4.59), respiratory infections during the last 30 days (aOR = 2.37, 95% CI: 1.11-5.06), and parent/guardian education level (aOR = 0.08, 95% CI: 0.02-0.27). H influenzae was highly prevalent in healthy children in Qinghai Province, especially among children of minority ethnicities and those living in pastoral areas. Tobacco smoke exposure, having siblings <5 years of age, and respiratory infections during the last 30 days were risk factors for H influenzae carriage. Parents or guardians having education levels of college or higher was a protective factor for H influenzae carriage. It is of critical importance that the government take effective measures to reduce the carriage rate and the occurrence of H influenzae related diseases in susceptible populations.
Collapse
Affiliation(s)
- Zhen Li
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| | - Chang Fu
- Department of Health Service and Management, School of Public Health and Management, Binzhou Medical University, Yantai, Shandong, China
- Department of Health Psychology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Puren Li
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| | - WenSheng Ba
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| | - Shaohui Ma
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| | - Xiaolei Tang
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| | - Xueqin Yang
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| | - Zengping Hao
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| | - Kezhong A
- Qinghai Provincial Center for Disease Control and Prevention, Xining, China
| |
Collapse
|
5
|
Zhang S, Chen X, Wang J, Dai C, Gou Y, Wang H. Particulate air pollution and respiratory Haemophilus influenzae infection in Mianyang, southwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-13103-5. [PMID: 33638077 DOI: 10.1007/s11356-021-13103-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/18/2021] [Indexed: 02/05/2023]
Abstract
Particulate air pollution is correlated with many respiratory diseases. However, few studies have focused on the relationship between air particulate exposure and respiratory Heamophilus influenzae infection. Therefore, we detected respiratory Heamophilus influenzae infection by bacterial culture of sputum of patients, and we collected particulate air pollution data (including PM2.5 and PM10) from a national real-time urban air quality platform to analyze the relationship between particulate air pollution and respiratory Heamophilus influenzae infection. The mean concentrations of PM2.5 and PM10 were 37.58 μg/m3 and 58.44 μg/m3, respectively, showing particulate air pollution remains a severe issue in Mianyang. A total of 828 strains of Heamophilus influenzae were detected in sputum by bacterial culture. Multiple correspondence analysis suggested the heaviest particulate air pollution and the highest Heamophilus influenzae infection rates were all in winter, while the lowest particulate air pollution and the lowest Heamophilus influenzae infection rates were all in summer. In a single-pollutant model, each elevation of 10 μg/m3 of PM2.5, PM10, and PM2.5/10 (combined exposure level) increased the risk of respiratory Heamophilus influenzae infection by 34%, 23%, and 29%, respectively. Additionally, in the multiple-pollutant model, only PM2.5 was significantly associated with respiratory Heamophilus influenzae infection (B, 0.46; 95% confidence interval, 0.05-0.87), showing PM2.5 is an independent risk factor for respiratory Heamophilus influenzae infection. In summary, this study highlights air particulate exposure could increase the risk of respiratory Heamophilus influenzae infection, implying that stronger measures need to be taken to protect against respiratory infection induced by particulate air pollution.
Collapse
Affiliation(s)
- Shaocheng Zhang
- Department of Clinical Laboratory Medicine, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Xi Chen
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, 12 Changjia Lane, Jingzhong St, Mianyang, 621000, Sichuan, China.
| | - Jing Wang
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, 12 Changjia Lane, Jingzhong St, Mianyang, 621000, Sichuan, China
| | - Chunmei Dai
- Department of Clinical Laboratory Medicine, Mianyang Central Hospital, 12 Changjia Lane, Jingzhong St, Mianyang, 621000, Sichuan, China
| | - Yeran Gou
- Department of Respiratory and Critical Care Medicine, Chengdu Second People's Hospital, Chengdu, 610017, Sichuan, China
| | - Huanhuan Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd, Shantou, 515041, Guangdong, China.
| |
Collapse
|
6
|
Li XX, Xiao SZ, Gu FF, He WP, Ni YX, Han LZ. Molecular Epidemiology and Antimicrobial Resistance of Haemophilus influenzae in Adult Patients in Shanghai, China. Front Public Health 2020; 8:95. [PMID: 32292774 PMCID: PMC7135888 DOI: 10.3389/fpubh.2020.00095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/06/2020] [Indexed: 11/18/2022] Open
Abstract
Background: The serotype and antimicrobial resistance of Haemophilus influenzae in adult patients have changed due to the application of antimicrobials and H. influenzae type b (Hib) vaccine worldwide. However, the epidemiologic characteristics of H. influenzae in Shanghai are still unavailable. Objective: To determine the serotype distribution, antimicrobial resistance and multilocus sequence type (MLST) of H. influenzae in adult patients in Shanghai. Methods: A total of 51 clinical isolates from adult patients were consecutively collected. Serotypes were determined according to specific capsule gene, bexA, amplified by PCR. Antimicrobial susceptibility test was carried out by the broth microdilution method. β-lactamase production was detected by cefinase disk and the ftsI gene were amplified and sequenced to determine the penicillin binding protein 3 (PBP3) mutation. Molecular epidemiology was performed by MLST analyses. Results: All isolates studied were nontypeable H. influenzae (NTHi) and three of them (5.88%) caused invasive infection. The resistant rates of ampicillin and trimethoprim/sulfamethoxazole were both 45.10%. One third of these isolates produced TEM-1 type β-lactamase and 11.76% were β-lactamase negative ampicillin resistant strains (BLNAR). The PBP3 mutation was detected in 74.51% of the isolates, of which 12 belonged to group III. A total of 36 sequence types (STs) were identified among all isolates. Four isolates of ST103 (7.84%) all produced β-lactamase without mutation of PBP3. Conclusion:H. influenzae infections among adults in Shanghai are predominately caused by NTHi with genetic diversity among adult patients. The prevalence of both β-lactamase production and PBP3 mutation may contribute to high ampicillin resistance rate in Shanghai.
Collapse
Affiliation(s)
- Xin-Xin Li
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-Zhen Xiao
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei-Fei Gu
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Ping He
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Xing Ni
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Zhong Han
- Department of Clinical Microbiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Zarei AE, Linjawi MH, Redwan EM. Circulating innate and adaptive immunity against anti-Haemophilus influenzae type b. Hum Antibodies 2020; 27:201-212. [PMID: 30958343 DOI: 10.3233/hab-190373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Haemophilus influenzae type b (Hib) are one of most dangerous microbes that occupies the paediatric nasopharyngeal as a commensal opportunistic bacterium, which may lead to meningitis in uncontrolled infection. Colonisation of pharyngeal tissues is the starting point for most H. influenzae infections, which may develop into invasive diseases, such meningitis. The vaccination against Hib in specific, as well as against most of vaccines preventable diseases; in general, play a major role in reducing children (< 5 years old) Hib meningitis from 57/100,000 to the lowest known Hib meningitis incidents in the history. First invented Hib vaccine was licensed in 1985 and contained Hib capsular polysaccharide (CPS); afterward, conjugate vaccines have been innovated and licensed on the road to improve Hib vaccine efficacy. Polyribosylribitol phosphate (PRP) is the main vaccine unite structure. Since anti-CPS antibodies in the serum reflect the extent of the acquired immunity against Hib infections, the concentration of ⩾ 0.15 g/ml of anti-CPS is believed to be an indicator for short-term protection from invasive Hib diseases, whereas one-month post-completion of primary Hib immunization concentration of ⩾ 1.0 g/ml is trusted to be immunological protective. As considered that serum anti-CPS antibodies are effectively linked to protection, the evaluation of antibodies concentration and reconsideration of published worldwide populations antibodies concentration are consider vital strides on the way to accurate valuation of Hib immunity that induced by vaccination; either direct or herd. As documented, some populations; worldwide, still susceptible to invasive Hib infections. Several populations worldwide remain vulnerable to Hib-related infections. We believe that up-to-date review article regarding circulated Hib immunology, represented in anti-Hib antibodies and worldwide Hib incidences will provide a precious information for microbiologists, public health officials, epidemiologists, immunologists, and strategic preventive healthcare executives.
Collapse
Affiliation(s)
- Adi E Zarei
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Main Medical Laboratory, Medical Services, Saudi Airlines, Jeddah, Saudi Arabia
| | - Mustafa H Linjawi
- Department of Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Main Medical Laboratory, Medical Services, Saudi Airlines, Jeddah, Saudi Arabia.,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria, Egypt
| |
Collapse
|
8
|
Dong Q, Shi W, Cheng X, Chen C, Meng Q, Yao K, Qian S. Widespread of non-typeable Haemophilus influenzae with high genetic diversity after two decades use of Hib vaccine in China. J Clin Lab Anal 2019; 34:e23145. [PMID: 31846125 PMCID: PMC7171301 DOI: 10.1002/jcla.23145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The aim of this study was to analyze the microbiological characteristics of nasopharyngeal carriage Haemophilus influenzae isolates collected from children with respiratory infections in Beijing hospital and Youyang Hospital of China. METHODS The serotypes of all isolates were determined using latex agglutinated antisera (a-f). The minimum inhibitory concentrations (MICs) of 11 antibiotics were determined using E-test strips. For the beta-lactamase-negative ampicillin-resistant (BLNAR) isolates, ftsI gene was sequenced based on fragments amplified by PCR. STs of H influenzae isolates were determined by multi-locus sequence typing. RESULTS The overall carriage rate of H influenzae in the study population was 9.1% (362/3984). One hundred and ninety H influenzae isolates which were selected in our study were non-typeable (NTHi) and 44 (23.2%) of them were positive for β-lactamase. All isolates were susceptible to ceftriaxone and levofloxacin. Susceptibility rates to erythromycin and sulfamethoxazole-trimethoprim in Beijing were significantly higher than Youyang (P < .05). Thirty-six BLNAR isolates were identified. The MLST analysis showed 108 STs in 190 isolates, the most common of which were ST408 (11, 5.8%), ST914 (10, 5.3%), ST57 (9, 4.7%), and ST834 (6, 3.2%). Twelve STs were detected in both of the study sites, which covered 63 isolates. CONCLUSIONS All isolates in the present study were NTHi, which suggested widespread of this type in China. The BLNAR isolates were detected more frequently than before. Because high genetic diversity of NTHi isolates of H influenzae exists worldwide, it is important to continuously monitor these bacteria in the future.
Collapse
Affiliation(s)
- Qiaoli Dong
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Department of Pediatrics, Affiliated Hospital of Hebei University, Baoding, China
| | - Wei Shi
- Key Laboratory of Major Diseases in Children, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiaoping Cheng
- Youyang Hospital, People's Hospital of Chongqing Youyang County, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changhui Chen
- Youyang Hospital, People's Hospital of Chongqing Youyang County, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghong Meng
- Key Laboratory of Major Diseases in Children, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Kaihu Yao
- Key Laboratory of Major Diseases in Children, Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, National Key Discipline of Pediatrics (Capital Medical University), National Clinical Research Center for Respiratory Diseases, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Suyun Qian
- Pediatric Intensive Care Unit, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Isolation and Antibiotic Susceptibility Testing of Haemophilus influenzae from Nasopharynx of Children under Five Years Attending Maternal and Child Health Clinic in Mbarara Regional Referral Hospital. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2019; 2019:6542919. [PMID: 30944683 PMCID: PMC6421742 DOI: 10.1155/2019/6542919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/31/2018] [Accepted: 02/11/2019] [Indexed: 11/23/2022]
Abstract
Background. H. influenzae remains an organism of a major public health challenge worldwide despite the availability of the Hib vaccine, particularly among children under 5 years. Information on the current carriage status and antibiotic susceptibility is key on proper health-care provision. Therefore, we conducted a study to determine H. influenzae carriage rate and antibiotic susceptibility testing of the isolates among the children. Methods. This was a cross-sectional study conducted between January and May 2018, among clinically healthy children under five years attending Maternal and Child Health (MCH) Clinic in Mbarara Regional Referral Hospital (MRRH). We carried out standard microbiology methods to culture, isolate, and identify H. influenzae, and then, we tested for their susceptibility to commonly used antibiotics following the CLSI standards. Results. Of the 248 participants included in the study, 116 (46.77%) were females and 132 (53.23%) males and 78 (31.45%) were below the age of 3 months. Fifty one of the study participants had H. influenzae in their nasopharynx, which represents 20.56% carriage (95% CI 15.49 to 25.63). There was a general high susceptibility of the isolates to the antimicrobial agents commonly used. There was 100% susceptibility to ciprofloxacin and imipenem antibiotic agents, though 6 (11.76%) and 4 (7.84%) of the isolates showed resistance to chloramphenicol and ampicillin, respectively. Conclusion. The high burden presented by H. influenzae and the resultant impact on child health require much attention to prevention of infections associated with the organism. A well-funded molecular study focusing on typing the isolates would determine the impact of the vaccine, given the carriage rates are still high.
Collapse
|
10
|
Antibiotic Resistance Among Pediatric-Sourced Ocular Pathogens: 8-Year Findings From the Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) Surveillance Study. Pediatr Infect Dis J 2019; 38:138-145. [PMID: 30281547 PMCID: PMC6343952 DOI: 10.1097/inf.0000000000002206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND The Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) study is a nationwide longitudinal antibiotic resistance surveillance program specific to bacterial pathogens commonly encountered in ocular infections. We evaluated in vitro resistance rates and trends among isolates obtained from pediatric patients (≤17 years of age). METHODS Clinical centers across the United States were invited to submit ocular isolates of Staphylococcus aureus, coagulase-negative staphylococci (CoNS), Streptococcus pneumoniae, Haemophilus influenzae and Pseudomonas aeruginosa to a central laboratory. Minimum inhibitory concentrations for various antibiotic classes were determined by broth microdilution per Clinical and Laboratory Standards Institute guidelines and interpreted as susceptible, intermediate or resistant based on available breakpoints. Longitudinal trends were analyzed using a Cochran-Armitage test for linear trends in a proportion. RESULTS Of 4829 isolates collected from January 2009 to December 2016, 995 isolates, sourced primarily from hospitals and referral centers, were obtained from pediatric patients (n = 286 H. influenzae, n = 284 S. aureus, n = 213 CoNS, n = 150 S. pneumoniae and n = 62 P. aeruginosa). With few exceptions, P. aeruginosa and H. influenzae were generally susceptible to the antibiotics tested. Of S. aureus and CoNS isolates, respectively, 56% and 72% were resistant to azithromycin and 24% and 47% were methicillin-resistant (MR); concurrent resistance to other drug classes and multidrug resistance (≥3 drug classes) were prevalent among MR staphylococci. Of S. pneumoniae isolates, 38% and 35% demonstrated resistance to azithromycin and penicillin, respectively. Besifloxacin had the lowest minimum inhibitory concentration against the Gram-positive isolates. CONCLUSIONS These in vitro data suggest antibiotic resistance is common among staphylococcal and pneumococcal isolates collected from pediatric patients with ocular infections. Methicillin resistance was prevalent among staphylococci with many strains demonstrating multidrug resistance. These findings may not be representative of resistance trends in community-based practices.
Collapse
|
11
|
RNA gene profile variation in peripheral blood mononuclear cells from rhesus macaques immunized with Hib conjugate vaccine, Hib capsular polysaccharide and TT carrier protein. BMC Immunol 2018; 19:4. [PMID: 29368591 PMCID: PMC5784715 DOI: 10.1186/s12865-018-0240-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/12/2018] [Indexed: 11/11/2022] Open
Abstract
Background The Haemophilus influenzae type b (Hib) conjugate vaccine has been widely used in children to prevent invasive Hib disease because of its strong immunogenicity and antibody response induction relative to the capsular polysaccharide (CPS) antigen. The data from vaccine studies suggest that the conjugate vaccine contains carrier proteins that enhance and/or regulate the antigen’s immunogenicity, but the mechanism of this enhancement remains unclear. Methods To explore the immunological role of the conjugate vaccine, we compared the immune responses and gene profiles of rhesus macaques after immunization with CPS, carrier protein tetanus toxoid (TT) or conjugate vaccine. Results A distinct immune response was induced by the Hib conjugate vaccine but not by CPS or carrier protein TT. The genes that were dynamically regulated in conjunction with the macaque immune responses to the conjugate vaccine were investigated. Conclusions We propose that these genes are involved in the induction of specific immunity that is characterized by the appearance and maintenance of antibodies against Hib. Electronic supplementary material The online version of this article (10.1186/s12865-018-0240-5) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Phuong NTK, Hoang TT, Van PH, Tu L, Graham SM, Marais BJ. Encouraging rational antibiotic use in childhood pneumonia: a focus on Vietnam and the Western Pacific Region. Pneumonia (Nathan) 2017; 9:7. [PMID: 28702309 PMCID: PMC5471677 DOI: 10.1186/s41479-017-0031-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/03/2017] [Indexed: 01/21/2023] Open
Abstract
Globally, pneumonia is considered to be the biggest killer of infants and young children (aged <5 years) outside the neonatal period, with the greatest disease burden in low- and middle-income countries. Optimal management of childhood pneumonia is challenging in settings where clinicians have limited information regarding the local pathogen and drug resistance profiles. This frequently results in unnecessary and poorly targeted antibiotic use. Restricting antibiotic use is a global priority, particularly in Asia and the Western Pacific Region where excessive use is driving high rates of antimicrobial resistance. The authors conducted a comprehensive literature review to explore the antibiotic resistance profile of bacteria associated with pneumonia in the Western Pacific Region, with a focus on Vietnam. Current management practices were also considered, along with the diagnostic dilemmas faced by doctors and other factors that increase unnecessary antibiotic use. This review offers some suggestions on how these issues may be addressed.
Collapse
Affiliation(s)
- Nguyen T. K. Phuong
- Respiratory Department, Da Nang Hospital for Women and Children, Da Nang, Vietnam
- Infectious Disease Team, The Children’s Hospital at Westmead and Discipline of Paediatrics and Adolescent Medicine, University of Sydney, Sydney, NSW Australia
| | - Tran T. Hoang
- Neonatal Department, Da Nang Hospital for Women and Children, Da Nang, Vietnam
| | - Pham H. Van
- Microbiology Department, The University of Medicine and Pharmacy, Ho Chi Minh, Vietnam
| | - Lolyta Tu
- Antimicrobial Stewardship Team, The Children’s Hospital at Westmead, Sydney, Australia
| | - Stephen M. Graham
- Centre for International Child Health, University of Melbourne and Murdoch Children’s Research Institute, Melbourne, Australia
| | - Ben J. Marais
- Infectious Disease Team, The Children’s Hospital at Westmead and Discipline of Paediatrics and Adolescent Medicine, University of Sydney, Sydney, NSW Australia
| |
Collapse
|