1
|
Alba C, Arroyo R, Fernández L, Narbad A, Rodríguez JM. Characterization of a Ligilactobacillus salivarius Strain Isolated from a Cheese Seal Which Was Last Used in 1936. Foods 2024; 13:2005. [PMID: 38998510 PMCID: PMC11241558 DOI: 10.3390/foods13132005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024] Open
Abstract
Cheesemaking played a pivotal role in the life of the Pyrenean villages where cheese was a most prized commodity and the subject of much local competition. In one of them (Sasa de Sobrepuerto), Mrs. Sebastiana Palacio decided in 1877 to label all the cheeses made in her household with a seal to differentiate them from those made by other local producers. The cheese seal was last used in 1936 and, since then, it has been kept under excellent storage conditions. Since well-preserved cheese seals are rare, and bacterial cells may survive desiccation for long periods, the objective of this work was to isolate and characterize any lactic acid bacteria that survived in the seal. Analysis of the milky crust material revealed the presence of sheep caseins. Culture-based analysis led to the isolation of a strain of Bacillus licheniformis and a strain of Ligilactobacillus salivarius (L. salivarius SP36). The latter was characterized in vitro for safety and dairy-related functional properties. Its genome encodes several genes involved in protein, peptide, and amino acid catabolism, and flavor. Overall, the phenotypic and genetic features of this strain support a high potential for being used as adjunct culture in cheesemaking.
Collapse
Affiliation(s)
- Claudio Alba
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| | - Rebeca Arroyo
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| | - Leónides Fernández
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Arjan Narbad
- Food Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Rosalind Franklin Road, Colney, Norwich NR4 7UQ, UK;
| | - Juan M. Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, 28040 Madrid, Spain; (C.A.); (R.A.)
| |
Collapse
|
2
|
Jiang Y, Pan Y, Yin J. Prevalence, toxin-genotype distribution, and transmission of Clostridium perfringens from the breeding and milking process of dairy farms. Food Microbiol 2024; 120:104485. [PMID: 38431330 DOI: 10.1016/j.fm.2024.104485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/03/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to elucidate the distribution, transmission, and cross-contamination of Clostridium perfringens during the breeding and milking process from dairy farms. The prevalence of 22.3% (301/1351) yielded 494 C. perfringens isolates; all isolates were type A, except for one type D, and 69.8% (345/494) of the isolates carried atyp. cpb2 and only 0.6% (3/494) of the isolates carried cons. cpb2. C. perfringens detected throughout the whole process but without type F. 150 isolates were classified into 94 pulsed-field gel electrophoresis (PFGE) genotypes; among them, six clusters contained 34 PFGE genotypes with 58.0% isolates which revealed epidemic correlation and genetic diversity; four PFGE genotypes (PT57, PT9, PT61, and PT8) were the predominant genotypes. The isolates from different farms demonstrated high homology. Our study confirmed that C. perfringens demonstrated broad cross-contamination from nipples and hides of dairy cattle, followed by personnel and tools and air-introduced raw milk during the milking process. In conclusion, raw milk could serve as a medium for the transmission of C. perfringens, which could result in human food poisoning. Monitoring and controlling several points of cross-contamination during the milking process are essential as is implementing stringent hygiene measures to prevent further spread and reduce the risk of C. perfringens infection.
Collapse
Affiliation(s)
- Yanfen Jiang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China.
| | - Yifan Pan
- College of Food Science and Engineering, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Jingyi Yin
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Cruz-Facundo IM, Toribio-Jiménez J, Castro-Alarcón N, Leyva-Vázquez MA, Rodríguez-Ruíz HA, Pérez-Olais JH, Adame-Gómez R, Rodríguez-Bataz E, Reyes-Roldán J, Muñoz-Barrios S, Ramírez-Peralta A. Bacillus cereus in the Artisanal Cheese Production Chain in Southwestern Mexico. Microorganisms 2023; 11:1290. [PMID: 37317264 DOI: 10.3390/microorganisms11051290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/09/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Bacillus cereus is associated with milk, dairy product, and dairy farm contamination. The aim of this study was to characterize strains of B. cereus in the small-scale artisanal cheese production chain in southwestern Mexico. METHODS 130 samples were collected. B. cereus isolation was performed on Mannitol Egg Yolk Polymyxin (MYP) agar. Genotyping, enterotoxigenic profile, and determination of genes involved in the formation of B. cereus biofilm were performed by PCR. An antimicrobial susceptibility test was made by broth microdilution assay. The phylogenetic analysis was performed by amplification and sequencing of 16s rRNA. RESULTS B. cereus sensu lato was isolated and molecularly identified in 16 samples and B. cereus sensu stricto (B. cereus) was the most frequently isolated and identified species (81.25%). Of all the isolated B. cereus sensu lato strains, 93.75% presented at least one gene for some diarrheagenic toxins, 87.5% formed biofilms, and 18.75% were amylolytic. All B. cereus sensu lato strains were resistant to beta-lactams and folate inhibitors. A close phylogenetic relationship between isolates was found between the cheese isolates and the air isolates. CONCLUSIONS Strains of B. cereus sensu lato were found in small-scale artisanal cheeses on a farm in southwestern Mexico.
Collapse
Affiliation(s)
- Itzel-Maralhi Cruz-Facundo
- Laboratorio de Investigación en Patometabolismo Microbiano, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Jeiry Toribio-Jiménez
- Laboratorio de Investigación en Microbiología Molecular y Biotecnología Ambiental, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Natividad Castro-Alarcón
- Laboratorio de Investigación en Microbiologia, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Marco-Antonio Leyva-Vázquez
- Laboratorio de Investigación en Biomedicina Molecular, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Hugo-Alberto Rodríguez-Ruíz
- Laboratorio de Investigación en Biomedicina Molecular, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
- Laboratorio de Investigación en Obesidad y Diabetes, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - José-Humberto Pérez-Olais
- Unidad de Investigación en Virología y Cancer, Hospital Infantil de México Federico Gomez, Ciudad de Mexico 06720, Mexico
| | - Roberto Adame-Gómez
- Laboratorio de Investigación en Patometabolismo Microbiano, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Elvia Rodríguez-Bataz
- Laboratorio de Investigación en Parasitologia, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Joel Reyes-Roldán
- Laboratorio de Investigación en Patometabolismo Microbiano, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Salvador Muñoz-Barrios
- Laboratorio de Investigación en Inmunotoxigenomica, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| | - Arturo Ramírez-Peralta
- Laboratorio de Investigación en Patometabolismo Microbiano, Universidad Autónoma de Guerrero, Guerrero 39074, Mexico
| |
Collapse
|
4
|
Ma Y, Sannino D, Linden JR, Haigh S, Zhao B, Grigg JB, Zumbo P, Dündar F, Butler D, Profaci CP, Telesford K, Winokur PN, Rumah KR, Gauthier SA, Fischetti VA, McClane BA, Uzal FA, Zexter L, Mazzucco M, Rudick R, Danko D, Balmuth E, Nealon N, Perumal J, Kaunzner U, Brito IL, Chen Z, Xiang JZ, Betel D, Daneman R, Sonnenberg GF, Mason CE, Vartanian T. Epsilon toxin-producing Clostridium perfringens colonize the multiple sclerosis gut microbiome overcoming CNS immune privilege. J Clin Invest 2023; 133:e163239. [PMID: 36853799 PMCID: PMC10145940 DOI: 10.1172/jci163239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/23/2023] [Indexed: 03/01/2023] Open
Abstract
Multiple sclerosis (MS) is a complex disease of the CNS thought to require an environmental trigger. Gut dysbiosis is common in MS, but specific causative species are unknown. To address this knowledge gap, we used sensitive and quantitative PCR detection to show that people with MS were more likely to harbor and show a greater abundance of epsilon toxin-producing (ETX-producing) strains of C. perfringens within their gut microbiomes compared with individuals who are healthy controls (HCs). Isolates derived from patients with MS produced functional ETX and had a genetic architecture typical of highly conjugative plasmids. In the active immunization model of experimental autoimmune encephalomyelitis (EAE), where pertussis toxin (PTX) is used to overcome CNS immune privilege, ETX can substitute for PTX. In contrast to PTX-induced EAE, where inflammatory demyelination is largely restricted to the spinal cord, ETX-induced EAE caused demyelination in the corpus callosum, thalamus, cerebellum, brainstem, and spinal cord, more akin to the neuroanatomical lesion distribution seen in MS. CNS endothelial cell transcriptional profiles revealed ETX-induced genes that are known to play a role in overcoming CNS immune privilege. Together, these findings suggest that ETX-producing C. perfringens strains are biologically plausible pathogens in MS that trigger inflammatory demyelination in the context of circulating myelin autoreactive lymphocytes.
Collapse
Affiliation(s)
- Yinghua Ma
- Feil Family Brain and Mind Research Institute
| | | | | | | | - Baohua Zhao
- Feil Family Brain and Mind Research Institute
| | - John B. Grigg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease
- Joan and Sanford I. Weill Department of Medicine, and
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Immunology and Microbial Pathogenesis Program and
| | - Paul Zumbo
- Applied Bioinformatics Core, Division of Hematology/Oncology, Department of Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Friederike Dündar
- Applied Bioinformatics Core, Division of Hematology/Oncology, Department of Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Daniel Butler
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Caterina P. Profaci
- Departments of Pharmacology and Neurosciences, UCSD, San Diego, California, USA
| | | | - Paige N. Winokur
- Harold and Margaret Milliken Hatch Laboratory of Neuro-endocrinology and
| | - Kareem R. Rumah
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Susan A. Gauthier
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, UCD, Davis, California, USA
| | - Lily Zexter
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | | | | | - David Danko
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | | | - Nancy Nealon
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Jai Perumal
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ulrike Kaunzner
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, USA
| | - Zhengming Chen
- Division of Biostatistics, Department of Population Health Sciences, and
| | - Jenny Z. Xiang
- Genomics Resources Core Facility, Core Laboratories Center, Weill Cornell Medicine, New York, New York, USA
| | - Doron Betel
- Applied Bioinformatics Core, Division of Hematology/Oncology, Department of Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Richard Daneman
- Departments of Pharmacology and Neurosciences, UCSD, San Diego, California, USA
| | - Gregory F. Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease
- Joan and Sanford I. Weill Department of Medicine, and
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Immunology and Microbial Pathogenesis Program and
| | - Christopher E. Mason
- Feil Family Brain and Mind Research Institute
- Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, New York, USA
| | - Timothy Vartanian
- Feil Family Brain and Mind Research Institute
- Immunology and Microbial Pathogenesis Program and
- Department of Neurology, Weill Cornell Medical College, Cornell University, New York, New York, USA
| |
Collapse
|
5
|
Bianco A, Normanno G, Capozzi L, Del Sambro L, Di Fato L, Miccolupo A, Di Taranto P, Caruso M, Petruzzi F, Ali A, Parisi A. High Genetic Diversity and Virulence Potential in Bacillus cereus sensu lato Isolated from Milk and Cheeses in Apulia Region, Southern Italy. Foods 2023; 12:foods12071548. [PMID: 37048369 PMCID: PMC10094235 DOI: 10.3390/foods12071548] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
The Bacillus cereus group includes species that act as food-borne pathogens causing diarrheal and emetic symptoms. They are widely distributed and can be found in various foods. In this study, out of 550 samples of milk and cheeses, 139 (25.3%) were found to be contaminated by B. cereus sensu lato (s.l.). One isolate per positive sample was characterized by Multilocus Sequence Typing (MLST) and for the presence of ten virulence genes. Based on MLST, all isolates were classified into 73 different sequence types (STs), of which 12 isolates were assigned to new STs. Virulence genes detection revealed that 90% and 61% of the isolates harboured the nheABC and the hblCDA gene cluster, respectively. Ninety-four percent of the isolates harboured the enterotoxin genes entS and entFM; 8% of the isolates possessed the ces gene. Thirty-eight different genetic profiles were identified, suggesting a high genetic diversity. Our study clearly shows the widespread diffusion of potentially toxigenic isolates of B. cereus s.l. in milk and cheeses in the Apulia region highlighting the need to adopt GMP and HACCP procedures along every step of the milk and cheese production chain in order to reduce the public health risk linked to the consumption of foods contaminated by B. cereus s.l.
Collapse
Affiliation(s)
- Angelica Bianco
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Giovanni Normanno
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Loredana Capozzi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Laura Del Sambro
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Laura Di Fato
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Angela Miccolupo
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Pietro Di Taranto
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Marta Caruso
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| | - Fiorenza Petruzzi
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Ashraf Ali
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Antonio Parisi
- Experimental Zooprophylactic Institute of Apulia and Basilicata, Via Manfredonia 20, 71121 Foggia, Italy
| |
Collapse
|
6
|
Dynamics of Germinosome Formation and FRET-Based Analysis of Interactions between GerD and Germinant Receptor Subunits in Bacillus cereus Spores. Int J Mol Sci 2021; 22:ijms222011230. [PMID: 34681888 PMCID: PMC8539644 DOI: 10.3390/ijms222011230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Spores of the bacterium Bacillus cereus can cause disease in humans due to contamination of raw materials for food manufacturing. These dormant, resistant spores can survive for years in the environment, but can germinate and grow when their surroundings become suitable, and spore germination proteins play an important role in the decision to germinate. Since germinated spores have lost dormant spores’ extreme resistance, knowledge about the formation and function of germination proteins could be useful in suggesting new preservation strategies to control B. cereus spores. In this study, we confirmed that the GerR germinant receptor’s (GR) A, B, and C subunits and GerD co-localize in B. cereus spore inner membrane (IM) foci termed germinosomes. The interaction between these proteins was examined by using fusions to the fluorescent reporter proteins SGFP2 and mScarlet-I and Förster Resonance Energy Transfer (FRET). This work found that the FRET efficiency was 6% between GerR(A-C-B)–SGFP2 and GerD–mScarlet-I, but there was no FRET between GerD–mScarlet-I and either GerRA–SGFP2 or GerRC–SGFP2. These results and that GerD does not interact with a GR C-subunit in vitro suggest that, in the germinosome, GerD interacts primarily with the GR B subunit. The dynamics of formation of germinosomes with GerR(A-C-B)–SGFP2 and GerD–mScarlet-I was also followed during sporulation. Our results showed heterogeneity in the formation of FRET positive foci of GerR(A-C-B)–SGFP2 and GerD–mScarlet-I; and while some foci formed at the same time, the formation of foci in the FRET channel could be significantly delayed. The latter finding suggests that either the GerR GR can at least transiently form IM foci in the absence of GerD, or that, while GerD is essential for GerR foci formation, the time to attain the final germinosome structure with close contacts between GerD and GerR can be heterogeneous.
Collapse
|
7
|
The Food Poisoning Toxins of Bacillus cereus. Toxins (Basel) 2021; 13:toxins13020098. [PMID: 33525722 PMCID: PMC7911051 DOI: 10.3390/toxins13020098] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While the emetic type, a food intoxication, manifests in nausea and vomiting, food infections with enteropathogenic strains cause diarrhea and abdominal pain. Causative toxins are the cyclic dodecadepsipeptide cereulide, and the proteinaceous enterotoxins hemolysin BL (Hbl), nonhemolytic enterotoxin (Nhe) and cytotoxin K (CytK), respectively. This review covers the current knowledge on distribution and genetic organization of the toxin genes, as well as mechanisms of enterotoxin gene regulation and toxin secretion. In this context, the exceptionally high variability of toxin production between single strains is highlighted. In addition, the mode of action of the pore-forming enterotoxins and their effect on target cells is described in detail. The main focus of this review are the two tripartite enterotoxin complexes Hbl and Nhe, but the latest findings on cereulide and CytK are also presented, as well as methods for toxin detection, and the contribution of further putative virulence factors to the diarrheal disease.
Collapse
|
8
|
Igo MJ, Hedeen N, Schaffner DW. Validation of a Simple Two-Point Method To Assess Restaurant Compliance with Food Code Cooling Rates. J Food Prot 2021; 84:6-13. [PMID: 32766839 DOI: 10.4315/jfp-20-257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/01/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Outbreaks from improperly cooled foods continue to occur despite clearly described Food Code cooling guidelines. It is difficult for regulators to enforce these guidelines because they are typically in an establishment for less than the 6 h needed to document proper cooling. Prior research proposed using a novel method to estimate cooling rates based on two time-temperature points, but this method has not yet been validated. Time-temperature profiles of 29 different foods were collected in 25 different restaurants during cooling. Cooling curves were divided into two categories: typical (21 foods) and atypical (eight foods) prior to further analysis. Analysis of the typical cooling curves used simple linear regression to calculate cooling rates. The atypical cooling profiles were studied using Monte Carlo simulations of the cooling rate. Almost all linearized typical cooling curves had high (>0.90) R2 values. Six foods with typical cooling profiles that did not pass Food Code cooling times were correctly identified by the two-point model as having slow cooling rates. Three foods that did not pass Food Code cooling times were identified by the two-point model as having marginal cooling rates. Ten of 12 foods identified by the two-point model as having acceptable cooling rates met Food Code cooling times. Most (six of eight) foods that were considered to have atypical cooling curves failed to meet the Food Code cooling times. The two-point model was also able to determine whether these foods would fail based on Food Code guidelines depending upon the simulation criteria used. Our data show that food depth has a strong influence on cooling rate. Containers with a food depth ≥7.6 cm (3 in.) were more likely to have cooling rates slower than the U.S. Food and Drug Administration Model Food Code cooling rate. This analysis shows that the two-point method can be a useful screening tool to identify potential cooling rate problems during a routine restaurant inspection visit. HIGHLIGHTS
Collapse
Affiliation(s)
- Matthew J Igo
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901 (ORCID: https://orcid.org/0000-0001-9200-0400 [D.W.S.])
| | - Nicole Hedeen
- Minnesota Department of Health, 625 North Robert Street, P.O. Box 64975, St. Paul, Minnesota 55164, USA
| | - Donald W Schaffner
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901 (ORCID: https://orcid.org/0000-0001-9200-0400 [D.W.S.])
| |
Collapse
|
9
|
Moschonas G, Lianou A, Nychas GJE, Panagou EZ. Spoilage potential of Bacillus subtilis in a neutral-pH dairy dessert. Food Microbiol 2020; 95:103715. [PMID: 33397628 DOI: 10.1016/j.fm.2020.103715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 11/11/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
The objective of this study was the characterization of the microbiota associated with spoilage of vanilla cream pudding during storage at different temperatures. Commercial cream samples were stored aerobically at 4, 8, 12 and 15 °C for a maximum time period of 40 days. At appropriate time intervals, cream samples were subjected to: (i) microbiological analyses, and (ii) high-performance liquid chromatography (HPLC). Furthermore, the spoilage microbiota was identified through repetitive extragenic palindrome-PCR, while selected isolates were further characterized based on sequencing of the V1-V3 region of the 16S rRNA gene. Microbial growth was observed only during storage of cream samples at 12 and 15 °C, with the applied genotypic analysis demonstrating that Bacillus subtilis subsp. subtilis was the dominant spoilage microorganism of this product. Based on the HPLC analysis results, citric acid and sucrose were the most abundant organic acid and sugar, respectively throughout storage of cream pudding, whereas notable changes mainly included: (i) increase in the concentration of lactic acid and to a lesser extent of formic and acetic acids, and (ii) increase in the concentration of glucose and fructose at the expense of sucrose and lactose. The results of this study should be useful for the dairy industry in detecting and controlling microbiological spoilage in cream pudding and other chilled, neutral-pH dairy desserts.
Collapse
Affiliation(s)
- Galatios Moschonas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, 11855, Greece; Athens Analysis Laboratories S.A., 29 Nafpliou Str., Metamorfosi, Athens, 14452, Greece
| | - Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, 11855, Greece; Division of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece
| | - George-John E Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, 11855, Greece
| | - Efstathios Z Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Athens, 11855, Greece.
| |
Collapse
|
10
|
Liu Y, Wang N, Wei Y, Dang K, Li M, Li Y, Li Q, Mu R. Pilot study on the upgrading configuration of UASB-MBBR with two carriers: Treatment effect, sludge reduction and functional microbial identification. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Sánchez Chica J, Correa MM, Aceves-Diez AE, Rasschaert G, Heyndrickx M, Castañeda-Sandoval LM. Genomic and Toxigenic Heterogeneity of Bacillus cereus sensu lato Isolated from Ready-to-Eat Foods and Powdered Milk in Day Care Centers in Colombia. Foodborne Pathog Dis 2019; 17:340-347. [PMID: 31738585 DOI: 10.1089/fpd.2019.2709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bacillus cereus sensu lato (s.l.) is a group of bacteria commonly found in diverse environments, including foods, with potential to cause emesis and diarrhea. In Colombia, it is one of the main foodborne pathogens. The aim of this study was to determine the genomic and toxigenic heterogeneity of B. cereus s.l. isolated from ready-to-eat foods and powdered milk collected in day care centers of Medellin, Colombia. Of 112 B. cereus s.l. isolates obtained, 94% were β-hemolytic. Toxigenic heterogeneity was established by the presence of nheABC, hblCDAB, cytK2, entFM, and cesB toxigenic genes. The nheABC operon and entFM gene were most frequently detected in the isolates, whereas the cesB gene was not found. According to the toxin genes content, nine toxigenic profiles were identified. A 44% of isolates had profiles with all genes for nonhemolytic enterotoxin, hemolysin BL, and enterotoxin FM production (profiles II and IV). Pulsed-field gel electrophoresis analysis indicated a high genomic heterogeneity among the B. cereus s.l., with 68 isolates grouping into 16 clusters and 33 placed separately in the dendrogram. This study provides useful information on the safety of ready-to-eat foods and powdered milk in day care centers where children, a susceptible population, are exposed and it should incentive for more studies to understand the distribution of different toxin-encoding genes among B. cereus s.l. isolates, enabling detailed risk assessment.
Collapse
Affiliation(s)
- Jennifer Sánchez Chica
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Margarita M Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Angel E Aceves-Diez
- Laboratorios Minkab, Departamento de Investigación y Desarrollo, Guadalajara, Jalisco, Mexico
| | - Geertrui Rasschaert
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology and Food Science Unit, Melle, Belgium.,Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | | |
Collapse
|
12
|
Webb MD, Barker GC, Goodburn KE, Peck MW. Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends Food Sci Technol 2019; 93:94-105. [PMID: 31764911 PMCID: PMC6853023 DOI: 10.1016/j.tifs.2019.08.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 11/13/2022]
Abstract
BACKGROUND Spores of psychrotrophic Bacillus cereus may survive the mild heat treatments given to minimally processed chilled foods. Subsequent germination and cell multiplication during refrigerated storage may lead to bacterial concentrations that are hazardous to health. SCOPE AND APPROACH This review is concerned with the characterisation of factors that prevent psychrotrophic B. cereus reaching hazardous concentrations in minimally processed chilled foods and associated foodborne illness. A risk assessment framework is used to quantify the risk associated with B. cereus and minimally processed chilled foods. KEY FINDINGS AND CONCLUSIONS Bacillus cereus is responsible for two types of food poisoning, diarrhoeal (an infection) and emetic (an intoxication); however, no reported outbreaks of food poisoning have been associated with B. cereus and correctly stored commercially-produced minimally processed chilled foods. In the UK alone, more than 1010 packs of these foods have been sold in recent years without reported illness, thus the risk presented is very low. Further quantification of the risk is merited, and this requires additional data. The lack of association between diarrhoeal food poisoning and correctly stored commercially-produced minimally processed chilled foods indicates that an infectious dose has not been reached. This may reflect low pathogenicity of psychrotrophic strains. The lack of reported association of psychrotrophic B. cereus with emetic illness and correctly stored commercially-produced minimally processed chilled foods indicates that a toxic dose of the emetic toxin has not been formed. Laboratory studies show that strains form very small quantities of emetic toxin at chilled temperatures.
Collapse
Affiliation(s)
- Martin D. Webb
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Gary C. Barker
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Kaarin E. Goodburn
- Chilled Food Associates, c/o 3 Weekley Wood Close, Kettering, NN14 1UQ, UK
| | - Michael W. Peck
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| |
Collapse
|
13
|
Goat Colostrum—Source of Toxigenic Bacillus Cereus. FOLIA VETERINARIA 2019. [DOI: 10.2478/fv-2019-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of this study was to evaluate the toxigenic potential of Bacillus cereus strains isolated from frozen goat colostrum. Of the 50 phenotypically suspected B. cereus isolates, 39 (78.0 %) were confirmed as B. cereus by the polymerase chain reaction (PCR) method based on the gyrB gene detection. In these isolates, genes encoding the production of haemolysin BL (Hbl), a complex of non-haemolytic enterotoxins (Nhe) and emetic toxin were detected by the PCR method. In 36 (92.3 %) confirmed B. cereus isolates, genes encoding at least one type of toxins of interest were detected. In all toxigenic isolates, we found the presence of genes for Nhe production, and in 16 (41.0 %) of the isolates, genes encoding both Nhe and haemolysin BL were shown. Eight (20.5 %) of the emetic strains of B. cereus were identified. The emetic toxin production gene was always detected simultaneously with genes encoding non-haemolytic enterotoxin production. The ability to produce BL haemolysin and non-haemolytic enterotoxins were confirmed by the immunochromatographic method. In summary, goat colostrum can be a significant source of toxigenic strains of B. cereus.
Collapse
|
14
|
Microbiota of milk powders and the heat resistance and spoilage potential of aerobic spore-forming bacteria. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Regan SB, Anwar Z, Miraflor P, Williams LB, Shetty S, Sepulveda J, Moreh J, Bogdanov S, Haigh S, Lustig A, Gaehde S, Vartanian A, Rubin N, Linden JR. Identification of epsilon toxin-producing Clostridium perfringens strains in American retail food. Anaerobe 2018; 54:124-127. [PMID: 30170047 DOI: 10.1016/j.anaerobe.2018.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/10/2018] [Accepted: 08/17/2018] [Indexed: 01/05/2023]
Abstract
Food samples (n = 216) from New York city were tested for the presence of C. perfringens via PCR for specific toxin genes. Thirty-four (16%) samples were positive for C. perfringens. Of these 34, 31 (91.2%) were type A or E, one (2.9%) was type B, and two (5.9%) were type D.
Collapse
Affiliation(s)
- Samantha B Regan
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Zuha Anwar
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Patricia Miraflor
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Libra B Williams
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Sarah Shetty
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Juan Sepulveda
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Jake Moreh
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Sam Bogdanov
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Sylvia Haigh
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Abigail Lustig
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Steffi Gaehde
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Anthony Vartanian
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Noah Rubin
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA
| | - Jennifer R Linden
- Brain and Mind Institute, Weill Cornell Medical College, 1300 York Ave, New York, 10065, NY, USA.
| |
Collapse
|
16
|
Fox EM, Jiang Y, Gobius KS. Key pathogenic bacteria associated with dairy foods: On-farm ecology and products associated with foodborne pathogen transmission. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Liu Y, Ge W, Zhang J, Li X, Wu X, Li T, Zhang X, Wang X. Detection of Bacillus cereus sensu lato from environments associated with goat milk powdered infant formula production facilities. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Gao T, Ding Y, Wu Q, Wang J, Zhang J, Yu S, Yu P, Liu C, Kong L, Feng Z, Chen M, Wu S, Zeng H, Wu H. Prevalence, Virulence Genes, Antimicrobial Susceptibility, and Genetic Diversity of Bacillus cereus Isolated From Pasteurized Milk in China. Front Microbiol 2018; 9:533. [PMID: 29632521 PMCID: PMC5879084 DOI: 10.3389/fmicb.2018.00533] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/08/2018] [Indexed: 12/28/2022] Open
Abstract
Bacillus cereus is a common and important food-borne pathogen that can be found in various food products. Due to low-temperature sterilization for a short period of time, pasteurization is not sufficient for complete elimination of B. cereus in milk, thereby cause severe economic loss and food safety problems. It is therefore of paramount importance to perform risk assessment of B. cereus in pasteurized milk. In this study, we isolated B. cereus from pasteurized milk samples in different regions of China, and evaluated the contamination situation, existence of virulence genes, antibiotic resistance profile and genetic polymorphism of B. cereus isolates. Intriguingly, 70 samples (27%) were found to be contaminated by B. cereus and the average contamination level was 111 MPN/g. The distribution of virulence genes was assessed toward 10 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK, entFM, bceT, and hlyII) and one emetic gene (cesB). Forty five percent strains harbored enterotoxigenic genes hblACD and 93% isolates contained nheABC gene cluster. The positive rate of cytK, entFM, bceT, hlyII, and cesB genes were 73, 96, 75, 54, and 5%, respectively. Antibiotic susceptibility assessment showed that most of the isolates were resistant to β-lactam antibiotics and rifampicin, but susceptible to other antibiotics such as ciprofloxacin, gentamicin and chloramphenicol. Total multidrug-resistant population was about 34%. In addition, B. cereus isolates in pasteurized milk showed a high genetic diversity. In conclusion, our findings provide the first reference on the prevalence, contamination level and characteristics of B. cereus isolated from pasteurized milk in China, suggesting a potential high risk of B. cereus to public health and dairy industry.
Collapse
Affiliation(s)
- Tiantian Gao
- University of Chinese Academy of Sciences, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jumei Zhang
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shubo Yu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Pengfei Yu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Chengcheng Liu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Li Kong
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Zhao Feng
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
- Department of Food Science and Technology, Jinan University, Guangzhou, China
| | - Moutong Chen
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Shi Wu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haiyan Zeng
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Haoming Wu
- State Key Laboratory of Applied Microbiology, Southern China and Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
19
|
Characterization of Enterotoxigenic Bacillus cereus sensu lato and Staphylococcus aureus Isolates and Associated Enterotoxin Production Dynamics in Milk or Meat-Based Broth. Toxins (Basel) 2017; 9:toxins9070225. [PMID: 28714887 PMCID: PMC5535172 DOI: 10.3390/toxins9070225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/13/2017] [Accepted: 07/13/2017] [Indexed: 02/05/2023] Open
Abstract
Bacillus cereus sensu lato species, as well as Staphylococcus aureus, are important pathogenic bacteria which can cause foodborne illness through the production of enterotoxins. This study characterised enterotoxin genes of these species and examined growth and enterotoxin production dynamics of isolates when grown in milk or meat-based broth. All B. cereus s. l. isolates harboured nheA, hblA and entFM toxin genes, with lower prevalence of bceT and hlyII. When grown at 16 °C, toxin production by individual B. cereus s. l. isolates varied depending on the food matrix; toxin was detected at cell densities below 5 log10(CFU/mL). At 16 °C no staphylococcal enterotoxin C (SEC) production was detected by S. aureus isolates, although low levels of SED production was noted. At 30 °C all S. aureus isolates produced detectable enterotoxin in the simulated meat matrix, whereas SEC production was significantly reduced in milk. Relative to B. cereus s. l. toxin production, S. aureus typically required reaching higher cell numbers to produce detectable levels of enterotoxin. Phylogenetic analysis of the sec and sel genes suggested population evolution which correlated with animal host adaptation, with subgroups of bovine isolates or caprine/ovine isolates noted, which were distinct from human isolates. Taken together, this study highlights the marked differences in the production of enterotoxins both associated with different growth matrices themselves, but also in the behaviour of individual strains when exposed to different food matrices.
Collapse
|
20
|
Abstract
To survive adverse conditions, some bacterial species are capable of developing into a cell type, the "spore," which exhibits minimal metabolic activity and remains viable in the presence of multiple environmental challenges. For some pathogenic bacteria, this developmental state serves as a means of survival during transmission from one host to another. Spores are the highly infectious form of these bacteria. Upon entrance into a host, specific signals facilitate germination into metabolically active replicating organisms, resulting in disease pathogenesis. In this article, we will review spore structure and function in well-studied pathogens of two genera, Bacillus and Clostridium, focusing on Bacillus anthracis and Clostridium difficile, and explore current data regarding the lifestyles of these bacteria outside the host and transmission from one host to another.
Collapse
|
21
|
Owusu-Kwarteng J, Wuni A, Akabanda F, Tano-Debrah K, Jespersen L. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products. BMC Microbiol 2017; 17:65. [PMID: 28288581 PMCID: PMC5348786 DOI: 10.1186/s12866-017-0975-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 03/08/2017] [Indexed: 01/17/2023] Open
Abstract
Background B. cereus are of particular interest in food safety and public health because of their capacity to cause food spoilage and disease through the production of various toxins. The aim of this study was to determine the prevalence, virulence factor genes and antibiotic resistance profile of B. cereus sensu lato isolated from cattle grazing soils and dairy products in Ghana. A total of 114 samples made up of 25 soil collected from cattle grazing farm land, 30 raw milk, 28 nunu (yoghurt-like product) and 31 woagashie (West African soft cheese). Ninety-six B. cereus sensu lato isolates from 54 positive samples were screened by PCR for the presence of 8 enterotoxigenic genes (hblA, hblC, hblD, nheA, nheB, nheC, cytK and entFM), and one emetic gene (ces). Phenotypic resistance to 15 antibiotics were also determined for 96 B. cereus sensu lato isolates. Results About 72% (18 of 25 soil), 47% (14 of 30 raw milk), 35% (10 of 28 nunu) and 39% (12 of 31 woagashi) were positive for B. cereus sensu lato with mean counts (log10 cfu/g) of 4.2 ± 1.8, 3.3 ± 2.0, 1.8 ± 1.4 and 2.6 ± 1.8 respectively. The distribution of enterotoxigenic genes revealed that 13% (12/96 isolates) harboured all three gene encoding for haemolytic enterotoxin HBL complex genes (hblA, hblC and hblD), 25% (24/96 isolates) possessed no HBL gene, whereas 63% (60/96 isolates) possessed at least one of the three HBL genes. All three genes encoding for non-haemolytic enterotoxin (nheA, nheB and nheC) were detected in 60% (57/96) isolates, 14% (13/96) harboured only one gene, 19% (18/96) whereas 8% possessed none of the NHE genes. The detection rates of cytk, entFM, and ces genes were 75, 67 and 9% respectively. Bacillus cereus s. l. isolates were generally resistant to β-lactam antibiotics such as ampicillin (98%), oxacillin (92%), penicillin (100%), amoxicillin (100%), and cefepime (100%) but susceptible to other antibiotics tested. Conclusions Bacillus cereus s. l. is prevalent in soil, raw milk and dairy products in Ghana. However, loads are at levels considered to be safe for consumption. Various enterotoxin genes associated with virulence of B. cereus are widespread among the isolates.
Collapse
Affiliation(s)
- James Owusu-Kwarteng
- Department of Applied Biology, Faculty of Applied Sciences, University for Development Studies, P. O. Box 24,, Navrongo campus, Navrongo, Ghana.
| | - Alhassan Wuni
- Department of Biotechnology, Faculty of Agriculture, University for Development Studies, Nyankpala, Tamale, Ghana
| | - Fortune Akabanda
- Department of Applied Biology, Faculty of Applied Sciences, University for Development Studies, P. O. Box 24,, Navrongo campus, Navrongo, Ghana
| | - Kwaku Tano-Debrah
- Department of Nutrition and Food Science, Faculty of Science, University of Ghana, Legon, Accra, Ghana
| | - Lene Jespersen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, DK 1958, Frederiksberg C, Denmark
| |
Collapse
|
22
|
Álvarez-Pérez S, Blanco JL, Peláez T, Martínez-Nevado E, García ME. Water Sources in a Zoological Park Harbor Genetically Diverse Strains of Clostridium Perfringens Type A with Decreased Susceptibility to Metronidazole. MICROBIAL ECOLOGY 2016; 72:783-790. [PMID: 27115499 DOI: 10.1007/s00248-016-0772-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
The presence of Clostridium perfringens in water is generally regarded as an indicator of fecal contamination, and exposure to waterborne spores is considered a possible source of infection for animals. We assessed the presence and genetic diversity of C. perfringens in water sources in a zoological park located in Madrid (Spain). A total of 48 water samples from 24 different sources were analyzed, and recovered isolates were toxinotyped, genotyped by fluorophore-enhanced repetitive polymerase chain reaction (rep-PCR) fingerprinting and tested for antimicrobial susceptibility. C. perfringens was recovered from 43.8 % of water samples and 50 % of water sources analyzed. All isolates (n = 70) were type A and 42.9 % were β2-toxigenic (i.e., cpb2+), but none contained the enterotoxin-encoding gene (cpe). Isolates belonged to 15 rep-PCR genotypes and most genetic diversity (88 %) was distributed among isolates obtained from the same sample. Most isolates displayed intermediate susceptibility (57.1 %; MIC = 16 μg ml-1) or resistance (5.7 %; MIC ≥ 32 μg ml-1) to metronidazole. No resistance to other antimicrobials was detected, although some isolates showed elevated MICs to erythromycin and/or linezolid. Finally, a marginally significant association between absence of cpb2 and decreased susceptibility to metronidazole (MIC ≥ 16 μg ml-1) was detected. In conclusion, our results reveal a high prevalence of C. perfringens type A in the studied water reservoirs, which constitutes a health risk for zoo animals. The elevated MICs to metronidazole observed for genetically diverse isolates is a cause of additional concern, but more work is required to clarify the significance of reduced metronidazole susceptibility in environmental strains.
Collapse
Affiliation(s)
- Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| | - José L Blanco
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain.
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain.
| | - Teresa Peláez
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Department of Medicine, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Marta E García
- Department of Animal Health, Faculty of Veterinary, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
23
|
Miller RA, Kent DJ, Watterson MJ, Boor KJ, Martin NH, Wiedmann M. Spore populations among bulk tank raw milk and dairy powders are significantly different. J Dairy Sci 2015; 98:8492-504. [DOI: 10.3168/jds.2015-9943] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/20/2015] [Indexed: 11/19/2022]
|