1
|
Carvia-Hermoso C, Cuéllar V, Bernabéu-Roda LM, van Dillewijn P, Soto MJ. Sinorhizobium meliloti GR4 Produces Chromosomal- and pSymA-Encoded Type IVc Pili That Influence the Interaction with Alfalfa Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:628. [PMID: 38475474 DOI: 10.3390/plants13050628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Type IVc Pili (T4cP), also known as Tad or Flp pili, are long thin microbial filaments that are made up of small-sized pilins. These appendages serve different functions in bacteria, including attachment, biofilm formation, surface sensing, motility, and host colonization. Despite their relevant role in diverse microbial lifestyles, knowledge about T4cP in bacteria that establish symbiosis with legumes, collectively referred to as rhizobia, is still limited. Sinorhizobium meliloti contains two clusters of T4cP-related genes: flp-1 and flp-2, which are located on the chromosome and the pSymA megaplasmid, respectively. Bundle-forming pili associated with flp-1 are involved in the competitive nodulation of alfalfa plants, but the role of flp-2 remains elusive. In this work, we have performed a comprehensive bioinformatic analysis of T4cP genes in the highly competitive S. meliloti GR4 strain and investigated the role of its flp clusters in pilus biogenesis, motility, and in the interaction with alfalfa. Single and double flp-cluster mutants were constructed on the wild-type genetic background as well as in a flagellaless derivative strain. Our data demonstrate that both chromosomal and pSymA flp clusters are functional in pili biogenesis and contribute to surface translocation and nodule formation efficiency in GR4. In this strain, the presence of flp-1 in the absence of flp-2 reduces the competitiveness for nodule occupation.
Collapse
Affiliation(s)
- Cristina Carvia-Hermoso
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Virginia Cuéllar
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Lydia M Bernabéu-Roda
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Pieter van Dillewijn
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - María J Soto
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
2
|
Zhang L, Sun L, Srinivasan R, Lin M, Gong L, Lin X. Unveiling a Virulence-Regulating Mechanism in Aeromonas hydrophila: a Quantitative Exoproteomic Analysis of an AraC-Like Protein. Front Immunol 2023; 14:1191209. [PMID: 37228602 PMCID: PMC10203433 DOI: 10.3389/fimmu.2023.1191209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Bacterial AraC is a transcription factor family that initiates transcription by recruiting RNA polymerase to the promoter and directly regulating various bacterial phenotypes. It also directly regulates various bacterial phenotypes. However, how this transcription factor regulates bacterial virulence and affects host immunity is still largely unknown. In this study, deleting the orf02889 (AraC-like transcription factor) gene in virulent Aeromonas hydrophila LP-2 affected several important phenotypes, such as increasing biofilm formation and siderophore production abilities. Moreover, Δorf02889 also significantly decreased the virulence of A. hydrophila and has promising attenuated vaccine potential. To better understand the effects of orf02889 on biological functions, a data independent acquisition (DIA)-based quantitative proteomics method was performed to compare the differentially expressed proteins between Δorf02889 and the wild-type strain in extracellular fractions. The following bioinformatics analysis suggested that ORF02889 may regulate various metabolic pathways, such as quorum sensing and ATP binding cassette (ABC) transporter metabolism. Moreover, 10 selected genes from the top 10 decreasing abundances in proteomics data were deleted, and their virulence to zebrafish was evaluated, respectively. The results showed that ΔcorC, Δorf00906, and Δorf04042 significantly reduced bacterial virulence. Finally, the following chromatin immunoprecipitation and polymerase chain reaction (ChIP-PCR) assay validated that the promoter of corC was directly regulated by ORF02889. Overall, these results provide insight into the biological function of ORF02889 and demonstrate its inherent regulatory mechanism for the virulence of A. hydrophila.
Collapse
Affiliation(s)
- Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Centre for Research, Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, India
| | - Meizhen Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Lanqing Gong
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences, Fujian Agriculture and Forestry University), Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| |
Collapse
|
3
|
Brito-Santana P, Duque-Pedraza JJ, Bernabéu-Roda LM, Carvia-Hermoso C, Cuéllar V, Fuentes-Romero F, Acosta-Jurado S, Vinardell JM, Soto MJ. Sinorhizobium meliloti DnaJ Is Required for Surface Motility, Stress Tolerance, and for Efficient Nodulation and Symbiotic Nitrogen Fixation. Int J Mol Sci 2023; 24:ijms24065848. [PMID: 36982921 PMCID: PMC10055731 DOI: 10.3390/ijms24065848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Bacterial surface motility is a complex microbial trait that contributes to host colonization. However, the knowledge about regulatory mechanisms that control surface translocation in rhizobia and their role in the establishment of symbiosis with legumes is still limited. Recently, 2-tridecanone (2-TDC) was identified as an infochemical in bacteria that hampers microbial colonization of plants. In the alfalfa symbiont Sinorhizobium meliloti, 2-TDC promotes a mode of surface motility that is mostly independent of flagella. To understand the mechanism of action of 2-TDC in S. meliloti and unveil genes putatively involved in plant colonization, Tn5 transposants derived from a flagellaless strain that were impaired in 2-TDC-induced surface spreading were isolated and genetically characterized. In one of the mutants, the gene coding for the chaperone DnaJ was inactivated. Characterization of this transposant and newly obtained flagella-minus and flagella-plus dnaJ deletion mutants revealed that DnaJ is essential for surface translocation, while it plays a minor role in swimming motility. DnaJ loss-of-function reduces salt and oxidative stress tolerance in S. meliloti and hinders the establishment of efficient symbiosis by affecting nodule formation efficiency, cellular infection, and nitrogen fixation. Intriguingly, the lack of DnaJ causes more severe defects in a flagellaless background. This work highlights the role of DnaJ in the free-living and symbiotic lifestyles of S. meliloti.
Collapse
Affiliation(s)
- Paula Brito-Santana
- Estación Experimental del Zaidín, CSIC, Department of Biotechnology and Environmental Protection, 18008 Granada, Spain
| | - Julián J Duque-Pedraza
- Estación Experimental del Zaidín, CSIC, Department of Biotechnology and Environmental Protection, 18008 Granada, Spain
| | - Lydia M Bernabéu-Roda
- Estación Experimental del Zaidín, CSIC, Department of Biotechnology and Environmental Protection, 18008 Granada, Spain
| | - Cristina Carvia-Hermoso
- Estación Experimental del Zaidín, CSIC, Department of Biotechnology and Environmental Protection, 18008 Granada, Spain
| | - Virginia Cuéllar
- Estación Experimental del Zaidín, CSIC, Department of Biotechnology and Environmental Protection, 18008 Granada, Spain
| | - Francisco Fuentes-Romero
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Sebastián Acosta-Jurado
- Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - José-María Vinardell
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - María J Soto
- Estación Experimental del Zaidín, CSIC, Department of Biotechnology and Environmental Protection, 18008 Granada, Spain
| |
Collapse
|
4
|
Cai J, Hao Y, Xu R, Zhang Y, Ma Y, Zhang Y, Wang Q. Differential binding of LuxR in response to temperature gauges switches virulence gene expression in Vibrio alginolyticus. Microbiol Res 2022; 263:127114. [PMID: 35878491 DOI: 10.1016/j.micres.2022.127114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/04/2022] [Accepted: 07/05/2022] [Indexed: 12/26/2022]
Abstract
Vibrio pathogens must cope with temperature changes for proper thermo-adaptation and virulence gene expression. LuxR is a quorum-sensing (QS) master regulator of vibrios, playing roles in response to temperature alteration. However, the molecular mechanisms how LuxR is involved in adapting to different temperatures in bacteria have not been precisely elucidated. In this study, using chromatin immunoprecipitation and nucleotide sequencing (ChIP-seq), we identified 272 and 22 enriched loci harboring LuxR-binding peaks at ambient temperature (30 ˚C) and heat shock (42 ˚C) in the Vibrio alginolyticus genome, respectively. Analysis with the MEME (multiple EM for motif elicitation) algorithm indicated that the binding motifs of LuxR varied from temperatures. Three novel binding regions (the promoter of orf00292, orf00397 and fadD) of LuxR were identified and verified that the rising temperature causes the decreasing binding affinity of LuxR to these promoters. Meanwhile, the expression of orf00292, orf00397 and fadD were regulated by LuxR. Moreover, the weak binding of LuxR to the promoter of extracellular protease (Asp) was attributed to the attenuated Asp expression at thermal stress conditions. Taken together, our study demonstrated distinct binding characteristics of LuxR in response to temperature changes, thus highlighting LuxR as a thermo-sensor to switch and control virulence gene expression in V. alginolyticus.
Collapse
Affiliation(s)
- Jingxiao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Hao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rongjing Xu
- Yantai Tianyuan Aquatic Co. Ltd., Yantai, Shandong, China
| | - Yuanxing Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| | - Yibei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
5
|
Alías-Villegas C, Fuentes-Romero F, Cuéllar V, Navarro-Gómez P, Soto MJ, Vinardell JM, Acosta-Jurado S. Surface Motility Regulation of Sinorhizobium fredii HH103 by Plant Flavonoids and the NodD1, TtsI, NolR, and MucR1 Symbiotic Bacterial Regulators. Int J Mol Sci 2022; 23:7698. [PMID: 35887044 PMCID: PMC9316994 DOI: 10.3390/ijms23147698] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023] Open
Abstract
Bacteria can spread on surfaces to colonize new environments and access more resources. Rhizobia, a group of α- and β-Proteobacteria, establish nitrogen-fixing symbioses with legumes that rely on a complex signal interchange between the partners. Flavonoids exuded by plant roots and the bacterial transcriptional activator NodD control the transcription of different rhizobial genes (the so-called nod regulon) and, together with additional bacterial regulatory proteins (such as TtsI, MucR or NolR), influence the production of different rhizobial molecular signals. In Sinorhizobium fredii HH103, flavonoids and NodD have a negative effect on exopolysaccharide production and biofilm production. Since biofilm formation and motility are often inversely regulated, we have analysed whether flavonoids may influence the translocation of S. fredii HH103 on surfaces. We show that the presence of nod gene-inducing flavonoids does not affect swimming but promotes a mode of surface translocation, which involves both flagella-dependent and -independent mechanisms. This surface motility is regulated in a flavonoid-NodD1-TtsI-dependent manner, relies on the assembly of the symbiotic type 3 secretion system (T3SS), and involves the participation of additional modulators of the nod regulon (NolR and MucR1). To our knowledge, this is the first evidence indicating the participation of T3SS in surface motility in a plant-interacting bacterium. Interestingly, flavonoids acting as nod-gene inducers also participate in the inverse regulation of surface motility and biofilm formation, which could contribute to a more efficient plant colonisation.
Collapse
Affiliation(s)
- Cynthia Alías-Villegas
- Centro Andaluz de Biología del Desarrollo, CSIC/Junta de Andalucía, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, 41013 Seville, Spain;
| | - Francisco Fuentes-Romero
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain; (F.F.-R.); (P.N.-G.)
| | - Virginia Cuéllar
- Estación Experimental del Zaidín, CSIC, Departamento de Biotecnología y Protección Ambiental, 18008 Granada, Spain; (V.C.); (M.J.S.)
| | - Pilar Navarro-Gómez
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain; (F.F.-R.); (P.N.-G.)
| | - María J. Soto
- Estación Experimental del Zaidín, CSIC, Departamento de Biotecnología y Protección Ambiental, 18008 Granada, Spain; (V.C.); (M.J.S.)
| | - José-María Vinardell
- Facultad de Biología, Departamento de Microbiología, Universidad de Sevilla, 41012 Sevilla, Spain; (F.F.-R.); (P.N.-G.)
| | - Sebastián Acosta-Jurado
- Centro Andaluz de Biología del Desarrollo, CSIC/Junta de Andalucía, Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, 41013 Seville, Spain;
| |
Collapse
|
6
|
Custódio V, Gonin M, Stabl G, Bakhoum N, Oliveira MM, Gutjahr C, Castrillo G. Sculpting the soil microbiota. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:508-522. [PMID: 34743401 DOI: 10.1111/tpj.15568] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Soil is a living ecosystem, the health of which depends on fine interactions among its abiotic and biotic components. These form a delicate equilibrium maintained through a multilayer network that absorbs certain perturbations and guarantees soil functioning. Deciphering the principles governing the interactions within soils is of critical importance for their management and conservation. Here, we focus on soil microbiota and discuss the complexity of interactions that impact the composition and function of soil microbiota and their interaction with plants. We discuss how physical aspects of soils influence microbiota composition and how microbiota-plant interactions support plant growth and responses to nutrient deficiencies. We predict that understanding the principles determining the configuration and functioning of soil microbiota will contribute to the design of microbiota-based strategies to preserve natural resources and develop more environmentally friendly agricultural practices.
Collapse
Affiliation(s)
- Valéria Custódio
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, UK
| | - Mathieu Gonin
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, UK
| | - Georg Stabl
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, Freising, 85354, Germany
| | - Niokhor Bakhoum
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, UK
| | - Maria Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, Freising, 85354, Germany
| | - Gabriel Castrillo
- Future Food Beacon of Excellence, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, UK
| |
Collapse
|
7
|
Comparative Genomics across Three Ensifer Species Using a New Complete Genome Sequence of the Medicago Symbiont Sinorhizobium ( Ensifer) meliloti WSM1022. Microorganisms 2021; 9:microorganisms9122428. [PMID: 34946030 PMCID: PMC8706082 DOI: 10.3390/microorganisms9122428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we report an improved and complete genome sequence of Sinorhizobium (Ensifer) meliloti strain WSM1022, a microsymbiont of Medicago species, revealing its tripartite structure. This improved genome sequence was generated combining Illumina and Oxford nanopore sequencing technologies to better understand the symbiotic properties of the bacterium. The 6.75 Mb WSM1022 genome consists of three scaffolds, corresponding to a chromosome (3.70 Mb) and the pSymA (1.38 Mb) and pSymB (1.66 Mb) megaplasmids. The assembly has an average GC content of 62.2% and a mean coverage of 77X. Genome annotation of WSM1022 predicted 6058 protein coding sequences (CDSs), 202 pseudogenes, 9 rRNAs (3 each of 5S, 16S, and 23S), 55 tRNAs, and 4 ncRNAs. We compared the genome of WSM1022 to two other rhizobial strains, closely related Sinorhizobium (Ensifer) meliloti Sm1021 and Sinorhizobium (Ensifer) medicae WSM419. Both WSM1022 and WSM419 species are high-efficiency rhizobial strains when in symbiosis with Medicago truncatula, whereas Sm1021 is ineffective. Our findings report significant genomic differences across the three strains with some similarities between the meliloti strains and some others between the high efficiency strains WSM1022 and WSM419. The addition of this high-quality rhizobial genome sequence in conjunction with comparative analyses will help to unravel the features that make a rhizobial symbiont highly efficient for nitrogen fixation.
Collapse
|
8
|
Transcriptome Analysis Reveals the Genes Involved in Bifidobacterium Longum FGSZY16M3 Biofilm Formation. Microorganisms 2021; 9:microorganisms9020385. [PMID: 33672820 PMCID: PMC7917626 DOI: 10.3390/microorganisms9020385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Biofilm formation has evolved as an adaptive strategy for bacteria to cope with harsh environmental conditions. Currently, little is known about the molecular mechanisms of biofilm formation in bifidobacteria. A time series transcriptome sequencing analysis of both biofilm and planktonic cells of Bifidobacterium longum FGSZY16M3 was performed to identify candidate genes involved in biofilm formation. Protein–protein interaction network analysis of 1296 differentially expressed genes during biofilm formation yielded 15 clusters of highly interconnected nodes, indicating that genes related to the SOS response (dnaK, groS, guaB, ruvA, recA, radA, recN, recF, pstA, and sufD) associated with the early stage of biofilm formation. Genes involved in extracellular polymeric substances were upregulated (epsH, epsK, efp, frr, pheT, rfbA, rfbJ, rfbP, rpmF, secY and yidC) in the stage of biofilm maturation. To further investigate the genes related to biofilm formation, weighted gene co-expression network analysis (WGCNA) was performed with 2032 transcript genes, leading to the identification of nine WGCNA modules and 133 genes associated with response to stress, regulation of gene expression, quorum sensing, and two-component system. These results indicate that biofilm formation in B. longum is a multifactorial process, involving stress response, structural development, and regulatory processes.
Collapse
|
9
|
Rosier A, Beauregard PB, Bais HP. Quorum Quenching Activity of the PGPR Bacillus subtilis UD1022 Alters Nodulation Efficiency of Sinorhizobium meliloti on Medicago truncatula. Front Microbiol 2021; 11:596299. [PMID: 33519732 PMCID: PMC7843924 DOI: 10.3389/fmicb.2020.596299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) have enormous potential for solving some of the myriad challenges facing our global agricultural system. Intense research efforts are rapidly moving the field forward and illuminating the wide diversity of bacteria and their plant beneficial activities. In the development of better crop solutions using these PGPR, producers are including multiple different species of PGPR in their formulations in a "consortia" approach. While the intention is to emulate more natural rhizomicrobiome systems, the aspect of bacterial interactions has not been properly regarded. By using a tri-trophic model of Medicago truncatula A17 Jemalong, its nitrogen (N)-fixing symbiont Sinorhizobium meliloti Rm8530, and the PGPR Bacillus subtilis UD1022, we demonstrate indirect influences between the bacteria affecting their plant growth-promoting activities. Co-cultures of UD1022 with Rm8530 significantly reduced Rm8530 biofilm formation and downregulated quorum sensing (QS) genes responsible for symbiotically active biofilm production. This work also identifies the presence and activity of a quorum quenching lactonase in UD1022 and proposes this as the mechanism for non-synergistic activity of this model "consortium." These interspecies interactions may be common in the rhizosphere and are critical to understand as we seek to develop new sustainable solutions in agriculture.
Collapse
Affiliation(s)
- Amanda Rosier
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | | | - Harsh P. Bais
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, United States
- Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| |
Collapse
|
10
|
Cai W, Ou F, Staehelin C, Dai W. Bradyrhizobium sp. strain ORS278 promotes rice growth and its quorum sensing system is required for optimal root colonization. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:656-666. [PMID: 32929871 DOI: 10.1111/1758-2229.12885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/10/2020] [Indexed: 05/25/2023]
Abstract
Many Gram-negative bacteria communicate by using homoserine lactones (HSLs) as quorum sensing (QS) signals in a cell density-dependent manner. In addition to fatty acyl-HSL (acyl-HSL) signals, certain strains, most of them associated with plants, produce non-canonical aryl-HSLs such as cinnamoyl-HSL. However, the role of aryl-HSL in endophytic associations remained elusive. Bradyrhizobium sp. strain ORS278 possesses a LuxI-LuxR type QS system and produces cinnamoyl-HSL as a QS signal. Here, we report that strain ORS278 promotes growth of domesticated rice (Oryza sativa). QS mutants unable to produce cinnamoyl-HSL exhibited reduced plant-growth promoting activity in comparison to the parent strain ORS278. Likewise, the QS mutants were impaired in their ability to colonize rice roots. These findings suggest that genes controlled by cinnamoyl-HSL play an important role in the association between rice and ORS278. However, biofilm production was not visibly altered in these mutants. In conclusion, our study highlights the importance of aryl-HSLs in endophytic plant-bacteria interactions.
Collapse
Affiliation(s)
- Wenjie Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Fuwen Ou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Bioresources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Weijun Dai
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
11
|
Programmed Proteolysis of Chemotaxis Proteins in Sinorhizobium meliloti: Features in the C-Terminal Region Control McpU Degradation. J Bacteriol 2020; 202:JB.00124-20. [PMID: 32571966 DOI: 10.1128/jb.00124-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/12/2020] [Indexed: 11/20/2022] Open
Abstract
Chemotaxis and motility are important traits that support bacterial survival in various ecological niches and in pathogenic and symbiotic host interaction. Chemotactic stimuli are sensed by chemoreceptors or methyl-accepting chemotaxis proteins (MCPs), which direct the swimming behavior of the bacterial cell. In this study, we present evidence that the cellular abundance of chemoreceptors in the plant symbiont Sinorhizobium meliloti can be altered by the addition of several to as few as one amino acid residues and by including common epitope tags such as 3×FLAG and 6×His at their C termini. To further dissect this phenomenon and its underlying molecular mechanism, we focused on a detailed analysis of the amino acid sensor McpU. Controlled proteolysis is important for the maintenance of an appropriate stoichiometry of chemoreceptors and between chemoreceptors and chemotactic signaling proteins, which is essential for an optimal chemotactic response. We hypothesized that enhanced stability is due to interference with protease binding, thus affecting proteolytic efficacy. Location of the protease recognition site was defined through McpU stability measurements in a series of deletion and amino acid substitution mutants. Deletions in the putative protease recognition site had similar effects on McpU abundance, as did extensions at the C terminus. Our results provide evidence that the programmed proteolysis of chemotaxis proteins in S. meliloti is cell cycle regulated. This posttranslational control, together with regulatory pathways on the transcriptional level, limits the chemotaxis machinery to the early exponential growth phase. Our study identified parallels to cell cycle-dependent processes during asymmetric cell division in Caulobacter crescentus IMPORTANCE The symbiotic bacterium Sinorhizobium meliloti contributes greatly to growth of the agriculturally valuable host plant alfalfa by fixing atmospheric nitrogen. Chemotaxis of S. meliloti cells toward alfalfa roots mediates this symbiosis. The present study establishes programmed proteolysis as a factor in the maintenance of the S. meliloti chemotaxis system. Knowledge about cell cycle-dependent, targeted, and selective proteolysis in S. meliloti is important to understand the molecular mechanisms of maintaining a suitable chemotaxis response. While the role of regulated protein turnover in the cell cycle progression of Caulobacter crescentus is well understood, these pathways are just beginning to be characterized in S. meliloti In addition, our study should alert about the cautionary use of epitope tags for protein quantification.
Collapse
|
12
|
A Framework for the Selection of Plant Growth-Promoting Rhizobacteria Based on Bacterial Competence Mechanisms. Appl Environ Microbiol 2020; 86:AEM.00760-20. [PMID: 32358015 PMCID: PMC7357491 DOI: 10.1128/aem.00760-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/28/2020] [Indexed: 01/28/2023] Open
Abstract
Numerous plant growth-promoting rhizobacteria (PGPR) have been inoculated into the soil with the aim of improving the supply of nutrients to crop plants and decreasing the requirement of chemical fertilizers. However, sometimes these microbes fail to competitively colonize the plant roots and rhizosphere. Hence, the plant growth promotion effect is not observed. Here, we describe a new screening strategy aiming at the selection of more competent PGPR. We evaluated bacterial phenotypes related to plant growth promotion, colonization, and persistence. Our results demonstrated that despite the fact that our Rhizobium sp. strains successfully solubilized phosphorus and produced siderophores, their abilities to spread over surfaces, resist hydrogen peroxide, and form biofilms varied. Additionally, a multicriteria decision analysis was used to analyze the data that originated from bacterial physiological characterizations. This analysis allowed us to innovatively evaluate each strain as a whole and compare the performances of the strains under hypothetical scenarios of bacterial-trait requirements. The use of plant growth-promoting rhizobacteria (PGPR) is increasingly meaningful for the development of more environmentally friendly agricultural practices. However, often the PGPR strains selected in the laboratory fail to confer the expected beneficial effects when evaluated in plant experiments. Insufficient rhizosphere colonization is pointed out as one of the causes. With the aim of minimizing this inconsistency, we propose that besides studying plant growth promotion traits (PGP), the screening strategy should include evaluation of the microbial phenotypes required for colonization and persistence. As a model, we carried out this strategy in three Rhizobium sp. strains that showed phosphorus solubilization ability and production of siderophores. All strains displayed colonization phenotypes like surface spreading, resistance to hydrogen peroxide, and formed biofilms. Regarding their ability to persist, biofilm formation was observed to be influenced by pH and the phosphorus nutrient provided in the growth media. Differences in the competence of the strains to use several carbon substrates were also detected. As part of our framework, we compared the phenotypic characteristics of the strains in a quantitative manner. The data analysis was integrated using a multicriteria decision analysis (MCDA). All our results were scored, weighted, and grouped as relevant for PGP, colonization, or persistence. MCDA demonstrated that, when the phenotypes related to PGP and colonization are weighted over those for persistence, strain B02 performs better than the other two Rhizobium sp. strains. The use of our framework could assist the selection of more competent strains to be tested in greenhouse and field trials. IMPORTANCE Numerous plant growth-promoting rhizobacteria (PGPR) have been inoculated into the soil with the aim of improving the supply of nutrients to crop plants and decreasing the requirement of chemical fertilizers. However, sometimes these microbes fail to competitively colonize the plant roots and rhizosphere. Hence, the plant growth promotion effect is not observed. Here, we describe a new screening strategy aiming at the selection of more competent PGPR. We evaluated bacterial phenotypes related to plant growth promotion, colonization, and persistence. Our results demonstrated that despite the fact that our Rhizobium sp. strains successfully solubilized phosphorus and produced siderophores, their abilities to spread over surfaces, resist hydrogen peroxide, and form biofilms varied. Additionally, a multicriteria decision analysis was used to analyze the data that originated from bacterial physiological characterizations. This analysis allowed us to innovatively evaluate each strain as a whole and compare the performances of the strains under hypothetical scenarios of bacterial-trait requirements.
Collapse
|
13
|
Becerra-Rivera VA, Arteaga A, Leija A, Hernández G, Dunn MF. Polyamines produced by Sinorhizobium meliloti Rm8530 contribute to symbiotically relevant phenotypes ex planta and to nodulation efficiency on alfalfa. MICROBIOLOGY-SGM 2020; 166:278-287. [PMID: 31935179 DOI: 10.1099/mic.0.000886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In nitrogen-fixing rhizobia, emerging evidence shows significant roles for polyamines in growth and abiotic stress resistance. In this work we show that a polyamine-deficient ornithine decarboxylase null mutant (odc2) derived from Sinorhizobium meliloti Rm8530 had significant phenotypic differences from the wild-type, including greatly reduced production of exopolysaccharides (EPS; ostensibly both succinoglycan and galactoglucan), increased sensitivity to oxidative stress and decreased swimming motility. The introduction of the odc2 gene borne on a plasmid into the odc2 mutant restored wild-type phenotypes for EPS production, growth under oxidative stress and swimming. The production of calcofluor-binding EPS (succinoglycan) by the odc2 mutant was also completely or mostly restored in the presence of exogenous spermidine (Spd), norspermidine (NSpd) or spermine (Spm). The odc2 mutant formed about 25 % more biofilm than the wild-type, and its ability to form biofilm was significantly inhibited by exogenous Spd, NSpd or Spm. The odc2 mutant formed a less efficient symbiosis with alfalfa, resulting in plants with significantly less biomass and height, more nodules but less nodule biomass, and 25 % less nitrogen-fixing activity. Exogenously supplied Put was not able to revert these phenotypes and caused a similar increase in plant height and dry weight in uninoculated plants and in those inoculated with the wild-type or odc2 mutant. We discuss ways in which polyamines might affect the phenotypes of the odc2 mutant.
Collapse
Affiliation(s)
- Victor A Becerra-Rivera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Alejandra Arteaga
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Alfonso Leija
- Programa de Genómica Funcional de Eucariotes, Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Georgina Hernández
- Programa de Genómica Funcional de Eucariotes, Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| |
Collapse
|
14
|
Gosai J, Anandhan S, Bhattacharjee A, Archana G. Elucidation of quorum sensing components and their role in regulation of symbiotically important traits in Ensifer nodulating pigeon pea. Microbiol Res 2020; 231:126354. [DOI: 10.1016/j.micres.2019.126354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/12/2019] [Accepted: 10/13/2019] [Indexed: 11/15/2022]
|
15
|
Alhasawi AA, Thomas SC, Tharmalingam S, Legendre F, Appanna VD. Isocitrate Lyase and Succinate Semialdehyde Dehydrogenase Mediate the Synthesis of α-Ketoglutarate in Pseudomonas fluorescens. Front Microbiol 2019; 10:1929. [PMID: 31507554 PMCID: PMC6716453 DOI: 10.3389/fmicb.2019.01929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/05/2019] [Indexed: 01/04/2023] Open
Abstract
Glycerol is an important by-product of the biodiesel industry and its transformation into value-added products like keto acids is being actively pursued in order to improve the efficacy of this renewable energy sector. Here, we report that the enhanced production of α-ketoglutarate (KG) effected by Pseudomonas fluorescens in a mineral medium supplemented with manganese (Mn) is propelled by the increased activities of succinate semialdehyde dehydrogenase (SSADH), γ-aminobutyric acid aminotransaminase (GABAT), and isocitrate lyase (ICL). The latter generates glyoxylate and succinate two key metabolites involved in this process. Fumarate reductase (FRD) also aids in augmenting the pool of succinate, a precursor of succinate semialdehyde (SSA). The latter is then carboxylated to KG with the assistance of α-ketoglutarate decarboxylase (KDC). These enzymes work in tandem to ensure copious secretion of the keto acid. When incubated with glycerol in the presence of bicarbonate (HCO3−), cell-free extracts readily produce KG with a metabolite fingerprint attributed to glutamate, γ-aminobutyric acid (GABA), succinate and succinate semialdehyde. Further targeted metabolomic and functional proteomic studies with high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and gel electrophoresis techniques provided molecular insights into this KG-generating machinery. Real-time quantitative polymerase chain reaction (RT-qPCR) analyses revealed the transcripts responsible for ICL and SSADH were elevated in the Mn-supplemented cultures. This hitherto unreported metabolic network where ICL and SSADH orchestrate the enhanced production of KG from glycerol, provides an elegant means of converting an industrial waste into a keto acid with wide-ranging application in the medical, cosmetic, and chemical sectors.
Collapse
Affiliation(s)
- Azhar A Alhasawi
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Sean C Thomas
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Sujeethar Tharmalingam
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada.,Department of Biology, Laurentian University, Sudbury, ON, Canada.,Biomolecular Sciences Program, Laurentian University, Sudbury, ON, Canada.,Northern Ontario School of Medicine, Laurentian University, Sudbury, ON, Canada
| | - Felix Legendre
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Vasu D Appanna
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
16
|
Velmourougane K, Prasanna R, Supriya P, Ramakrishnan B, Thapa S, Saxena AK. Transcriptome profiling provides insights into regulatory factors involved in Trichoderma viride-Azotobacter chroococcum biofilm formation. Microbiol Res 2019; 227:126292. [PMID: 31421719 DOI: 10.1016/j.micres.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 06/15/2019] [Indexed: 12/14/2022]
Abstract
Azotobacter chroococcum (Az) and Trichoderma viride (Tv) represent agriculturally important and beneficial plant growth promoting options which contribute towards nutrient management and biocontrol, respectively. When Az and Tv are co-cultured, they form a biofilm, which has proved promising as an inoculant in several crops; however, the basic aspects related to regulation of biofilm formation were not investigated. Therefore, whole transcriptome sequencing (Illumina NextSeq500) and gene expression analyses were undertaken, related to biofilm formation vis a vis Tv and Az growing individually. Significant changes in the transcriptome profiles of biofilm were recorded and validated through qPCR analyses. In-depth evaluation also identified several genes (phoA, phoB, glgP, alg8, sipW, purB, pssA, fadD) specifically involved in biofilm formation in Az, Tv and Tv-Az. Genes coding for RNA-dependent RNA polymerase, ABC transporters, translation elongation factor EF-1, molecular chaperones and double homeobox 4 were either up-regulated or down-regulated during biofilm formation. To our knowledge, this is the first report on the modulation of gene expression in an agriculturally beneficial association, as a biofilm. Our results provide insights into the regulatory factors involved during biofilm formation, which can help to improve the beneficial effects and develop more effective and promising plant- microbe associations.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Puram Supriya
- Centre for Agricultural Bioinformatics, ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Shobit Thapa
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Kusmaur, PO Kaitholi, Mau Nath Bhanjan, Uttar Pradesh 275101, India
| |
Collapse
|
17
|
Zuniga-Soto E, Fitzpatrick DA, Doohan FM, Mullins E. Insights into the transcriptomic response of the plant engineering bacterium Ensifer adhaerens OV14 during transformation. Sci Rep 2019; 9:10344. [PMID: 31316079 PMCID: PMC6637203 DOI: 10.1038/s41598-019-44648-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
The ability to engineer plant genomes has been primarily driven by the soil bacterium Agrobacterium tumefaciens but recently the potential of alternative rhizobia such as Rhizobium etli and Ensifer adhaerens OV14, the latter of which supports Ensifer Mediated Transformation (EMT) has been reported. Surprisingly, a knowledge deficit exists in regards to understanding the whole genome processes underway in plant transforming bacteria, irrespective of the species. To begin to address the issue, we undertook a temporal RNAseq-based profiling study of E. adhaerens OV14 in the presence/absence of Arabidopsis thaliana tissues. Following co-cultivation with root tissues, 2333 differentially expressed genes (DEGs) were noted. Meta-analysis of the RNAseq data sets identified a clear shift from plasmid-derived gene expression to chromosomal-based transcription within the early stages of bacterium-plant co-cultivation. During this time, the number of differentially expressed prokaryotic genes increased steadily out to 7 days co-cultivation, a time at which optimum rates of transformation were observed. Gene ontology evaluations indicated a role for both chromosomal and plasmid-based gene families linked specifically with quorum sensing, flagellin production and biofilm formation in the process of EMT. Transcriptional evaluation of vir genes, housed on the pCAMBIA 5105 plasmid in E. adhaerens OV14 confirmed the ability of E. adhaerens OV14 to perceive and activate its transcriptome in response to the presence of 200 µM of acetosyringone. Significantly, this is the first study to characterise the whole transcriptomic response of a plant engineering bacterium in the presence of plant tissues and provides a novel insight into prokaryotic genetic processes that support T-DNA transfer.
Collapse
Affiliation(s)
- Evelyn Zuniga-Soto
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Fitzpatrick
- Department of Biology, National University of Ireland Maynooth, Maynooth, Ireland
| | - Fiona M Doohan
- School of Biology and Environmental Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ewen Mullins
- Department of Crop Science, Teagasc Crops Research Centre, Oak Park, Carlow, Ireland.
| |
Collapse
|
18
|
Becerra-Rivera VA, Dunn MF. Polyamine biosynthesis and biological roles in rhizobia. FEMS Microbiol Lett 2019; 366:5476500. [DOI: 10.1093/femsle/fnz084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022] Open
Abstract
ABSTRACTPolyamines are ubiquitous molecules containing two or more amino groups that fulfill varied and often essential physiological and regulatory roles in all organisms. In the symbiotic nitrogen-fixing bacteria known as rhizobia, putrescine and homospermidine are invariably produced while spermidine and norspermidine synthesis appears to be restricted to the alfalfa microsymbiont Sinorhizobium meliloti. Studies with rhizobial mutants deficient in the synthesis of one or more polyamines have shown that these compounds are important for growth, stress resistance, motility, exopolysaccharide production and biofilm formation. In this review, we describe these studies and examine how polyamines are synthesized and regulated in rhizobia.
Collapse
Affiliation(s)
- Victor A Becerra-Rivera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| | - Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas-Universidad Nacional Autónoma de México, Cuernavaca, Morelos, C.P. 62210, Mexico
| |
Collapse
|
19
|
Vershinina ZR, Khakimova LR, Lavina AM, Karimova LR, Serbaeva ER, Safronova VI, Shaposhnikov AI, Baimiev AK, Baimiev AK. Effect of Constitutive Expression of the rapA1 Gene on Formation of Bacterial Biofilms and Growth-Stimulating Activity of Rhizobia. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Checcucci A, diCenzo GC, Ghini V, Bazzicalupo M, Becker A, Decorosi F, Döhlemann J, Fagorzi C, Finan TM, Fondi M, Luchinat C, Turano P, Vignolini T, Viti C, Mengoni A. Creation and Characterization of a Genomically Hybrid Strain in the Nitrogen-Fixing Symbiotic Bacterium Sinorhizobium meliloti. ACS Synth Biol 2018; 7:2365-2378. [PMID: 30223644 DOI: 10.1021/acssynbio.8b00158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many bacteria, often associated with eukaryotic hosts and of relevance for biotechnological applications, harbor a multipartite genome composed of more than one replicon. Biotechnologically relevant phenotypes are often encoded by genes residing on the secondary replicons. A synthetic biology approach to developing enhanced strains for biotechnological purposes could therefore involve merging pieces or entire replicons from multiple strains into a single genome. Here we report the creation of a genomic hybrid strain in a model multipartite genome species, the plant-symbiotic bacterium Sinorhizobium meliloti. We term this strain as cis-hybrid, since it is produced by genomic material coming from the same species' pangenome. In particular, we moved the secondary replicon pSymA (accounting for nearly 20% of total genome content) from a donor S. meliloti strain to an acceptor strain. The cis-hybrid strain was screened for a panel of complex phenotypes (carbon/nitrogen utilization phenotypes, intra- and extracellular metabolomes, symbiosis, and various microbiological tests). Additionally, metabolic network reconstruction and constraint-based modeling were employed for in silico prediction of metabolic flux reorganization. Phenotypes of the cis-hybrid strain were in good agreement with those of both parental strains. Interestingly, the symbiotic phenotype showed a marked cultivar-specific improvement with the cis-hybrid strains compared to both parental strains. These results provide a proof-of-principle for the feasibility of genome-wide replicon-based remodelling of bacterial strains for improved biotechnological applications in precision agriculture.
Collapse
Affiliation(s)
- Alice Checcucci
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - George C. diCenzo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Veronica Ghini
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Bazzicalupo
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Anke Becker
- LOEWE − Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Francesca Decorosi
- Department of Agri-food Production and Environmental Science, University of Florence, 50019 Florence, Italy
| | | | - Camilla Fagorzi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Marco Fondi
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
- CERM and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Paola Turano
- CERM & CIRMMP, University of Florence, 50019 Sesto Fiorentino, Italy
- CERM and Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Tiziano Vignolini
- European Laboratory for Non-Linear Spectroscopy, LENS, 50019 Sesto Fiorentino, Italy
| | - Carlo Viti
- Department of Agri-food Production and Environmental Science, University of Florence, 50019 Florence, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
21
|
Zheng Y, Li Y, Long H, Zhao X, Jia K, Li J, Wang L, Wang R, Lu X, Zhang D. bifA Regulates Biofilm Development of Pseudomonas putida MnB1 as a Primary Response to H 2O 2 and Mn 2. Front Microbiol 2018; 9:1490. [PMID: 30042743 PMCID: PMC6048274 DOI: 10.3389/fmicb.2018.01490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas putida (P. putida) MnB1 is a widely used model strain in environment science and technology for determining microbial manganese oxidation. Numerous studies have demonstrated that the growth and metabolism of P. putida MnB1 are influenced by various environmental factors. In this study, we investigated the effects of hydrogen peroxide (H2O2) and manganese (Mn2+) on proliferation, Mn2+ acquisition, anti-oxidative system, and biofilm formation of P. putida MnB1. The related orthologs of 4 genes, mco, mntABC, sod, and bifA, were amplified from P. putida GB1 and their involvement were assayed, respectively. We found that P. putida MnB1 degraded H2O2, and quickly recovered for proliferation, but its intracellular oxidative stress state was maintained, with rapid biofilm formation after H2O2 depletion. The data from mco, mntABC, sod and bifA expression levels by qRT-PCR, elucidated a sensitivity toward bifA-mediated biofilm formation, in contrary to intracellular anti-oxidative system under H2O2 exposure. Meanwhile, Mn2+ ion supply inhibited biofilm formation of P. putida MnB1. The expression pattern of these genes showed that Mn2+ ion supply likely functioned to modulate biofilm formation rather than only acting as nutrient substrate for P. putida MnB1. Furthermore, blockade of BifA activity by GTP increased the formation and development of biofilms during H2O2 exposure, while converse response to Mn2+ ion supply was evident. These distinct cellular responses to H2O2 and Mn2+ provide insights on the common mechanism by which environmental microorganisms may be protected from exogenous factors. We postulate that BifA-mediated biofilm formation but not intracellular anti-oxidative system may be a primary protective strategy adopted by P. putida MnB1. These findings will highlight the understanding of microbial adaptation mechanisms to distinct environmental stresses.
Collapse
Affiliation(s)
- Yanjing Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yumei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hongyan Long
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaojuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Keke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Juan Li
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing, China
| | - Ruiyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiancai Lu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Dongmei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
22
|
The Catabolite Repressor/Activator Cra Is a Bridge Connecting Carbon Metabolism and Host Colonization in the Plant Drought Resistance-Promoting Bacterium Pantoea alhagi LTYR-11Z. Appl Environ Microbiol 2018; 84:AEM.00054-18. [PMID: 29703735 DOI: 10.1128/aem.00054-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022] Open
Abstract
Efficient root colonization is a prerequisite for application of plant growth-promoting (PGP) bacteria in improving health and yield of agricultural crops. We have recently identified an endophytic bacterium, Pantoea alhagi LTYR-11Z, with multiple PGP properties that effectively colonizes the root system of wheat and improves its growth and drought tolerance. To identify novel regulatory genes required for wheat colonization, we screened an LTYR-11Z transposon (Tn) insertion library and found cra to be a colonization-related gene. By using transcriptome (RNA-seq) analysis, we found that transcriptional levels of an eps operon, the ydiV gene encoding an anti-FlhD4C2 factor, and the yedQ gene encoding an enzyme for synthesis of cyclic dimeric GMP (c-di-GMP) were significantly downregulated in the Δcra mutant. Further studies demonstrated that Cra directly binds to the promoters of the eps operon, ydiV, and yedQ and activates their expression, thus inhibiting motility and promoting exopolysaccharide (EPS) production and biofilm formation. Consistent with previous findings that Cra plays a role in transcriptional regulation in response to carbon source availability, the activating effects of Cra were much more pronounced when LTYR-11Z was grown within a gluconeogenic environment than when it was grown within a glycolytic environment. We further demonstrate that the ability of LTYR-11Z to colonize wheat roots is modulated by the availability of carbon sources. Altogether, these results uncover a novel strategy utilized by LTYR-11Z to achieve host colonization in response to carbon nutrition in the environment, in which Cra bridges a connection between carbon metabolism and colonization capacity of LTYR-11Z.IMPORTANCE Rapid and appropriate response to environmental signals is crucial for bacteria to adapt to competitive environments and to establish interactions with their hosts. Efficient colonization and persistence within the host are controlled by various regulatory factors that respond to specific environmental cues. The most common is nutrient availability. In this work, we unraveled the pivotal role of Cra in regulation of colonization ability of Pantoea alhagi LTYR-11Z in response to carbon source availability. Moreover, we identified three novel members of the Cra regulon involved in EPS synthesis, regulation of flagellar biosynthesis, and synthesis of c-di-GMP and propose a working model to explain the Cra-mediated regulatory mechanism that links carbon metabolism to host colonization. This study elucidates the regulatory role of Cra in bacterial attachment and colonization of plants, which raises the possibility of extending our studies to other bacteria associated with plant and human health.
Collapse
|
23
|
Kopycińska M, Lipa P, Cieśla J, Kozieł M, Janczarek M. Extracellular polysaccharide protects Rhizobium leguminosarum cells against zinc stress in vitro and during symbiosis with clover. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:355-368. [PMID: 29633524 DOI: 10.1111/1758-2229.12646] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Rhizobium leguminosarum bv. trifolii is a soil bacterium that establishes symbiosis with clover (Trifolium spp.) under nitrogen-limited conditions. This microorganism produces exopolysaccharide (EPS), which plays an important role in symbiotic interactions with the host plant. The aim of the current study was to establish the role of EPS in the response of R. leguminosarum bv. trifolii cells, free-living and during symbiosis, to zinc stress. We show that EPS-deficient mutants were more sensitive to Zn2+ exposure than EPS-producing strains, and that EPS overexpression conferred some protection onto the strains beyond that observed in the wild type. Exposure of the bacteria to Zn2+ ions stimulated EPS and biofilm production, and increased cell hydrophobicity. However, zinc stress negatively affected the motility and attachment of bacteria to clover roots, as well as the symbiosis with the host plant. In the presence of Zn2+ ions, cell viability, root attachment, biofilm formation and symbiotic efficiency of EPS-overproducing strains were significantly higher than those of the EPS-deficient mutants. We conclude that EPS plays an important role in the adaptation of rhizobia to zinc stress, in both the free-living stage and during symbiosis.
Collapse
Affiliation(s)
- Magdalena Kopycińska
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Paulina Lipa
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Jolanta Cieśla
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Marta Kozieł
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Monika Janczarek
- Department of Genetics and Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
24
|
Calatrava-Morales N, McIntosh M, Soto MJ. Regulation Mediated by N-Acyl Homoserine Lactone Quorum Sensing Signals in the Rhizobium-Legume Symbiosis. Genes (Basel) 2018; 9:genes9050263. [PMID: 29783703 PMCID: PMC5977203 DOI: 10.3390/genes9050263] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Soil-dwelling bacteria collectively referred to as rhizobia synthesize and perceive N-acyl-homoserine lactone (AHL) signals to regulate gene expression in a population density-dependent manner. AHL-mediated signaling in these bacteria regulates several functions which are important for the establishment of nitrogen-fixing symbiosis with legume plants. Moreover, rhizobial AHL act as interkingdom signals triggering plant responses that impact the plant-bacteria interaction. Both the regulatory mechanisms that control AHL synthesis in rhizobia and the set of bacterial genes and associated traits under quorum sensing (QS) control vary greatly among the rhizobial species. In this article, we focus on the well-known QS system of the alfalfa symbiont Sinorhizobium(Ensifer)meliloti. Bacterial genes, environmental factors and transcriptional and posttranscriptional regulatory mechanisms that control AHL production in this Rhizobium, as well as the effects of the signaling molecule on bacterial phenotypes and plant responses will be reviewed. Current knowledge of S. meliloti QS will be compared with that of other rhizobia. Finally, participation of the legume host in QS by interfering with rhizobial AHL perception through the production of molecular mimics will also be addressed.
Collapse
Affiliation(s)
- Nieves Calatrava-Morales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| | - Matthew McIntosh
- Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, 35392 Giessen, Germany.
| | - María J Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| |
Collapse
|
25
|
López-Lara IM, Nogales J, Pech-Canul Á, Calatrava-Morales N, Bernabéu-Roda LM, Durán P, Cuéllar V, Olivares J, Alvarez L, Palenzuela-Bretones D, Romero M, Heeb S, Cámara M, Geiger O, Soto MJ. 2-Tridecanone impacts surface-associated bacterial behaviours and hinders plant-bacteria interactions. Environ Microbiol 2018; 20:2049-2065. [PMID: 29488306 DOI: 10.1111/1462-2920.14083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 11/30/2022]
Abstract
Surface motility and biofilm formation are behaviours which enable bacteria to infect their hosts and are controlled by different chemical signals. In the plant symbiotic alpha-proteobacterium Sinorhizobium meliloti, the lack of long-chain fatty acyl-coenzyme A synthetase activity (FadD) leads to increased surface motility, defects in biofilm development and impaired root colonization. In this study, analyses of lipid extracts and volatiles revealed that a fadD mutant accumulates 2-tridecanone (2-TDC), a methylketone (MK) known as a natural insecticide. Application of pure 2-TDC to the wild-type strain phenocopies the free-living and symbiotic behaviours of the fadD mutant. Structural features of the MK determine its ability to promote S. meliloti surface translocation, which is mainly mediated by a flagella-independent motility. Transcriptomic analyses showed that 2-TDC induces differential expression of iron uptake, redox and stress-related genes. Interestingly, this MK also influences surface motility and impairs biofilm formation in plant and animal pathogenic bacteria. Moreover, 2-TDC not only hampers alfalfa nodulation but also the development of tomato bacterial speck disease. This work assigns a new role to 2-TDC as an infochemical that affects important bacterial traits and hampers plant-bacteria interactions by interfering with microbial colonization of plant tissues.
Collapse
Affiliation(s)
- Isabel M López-Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, C.P. 62210, Mexico
| | - Joaquina Nogales
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, 18008, Spain
| | - Ángel Pech-Canul
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, C.P. 62210, Mexico
| | - Nieves Calatrava-Morales
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, 18008, Spain
| | - Lydia M Bernabéu-Roda
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, 18008, Spain
| | - Paloma Durán
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, 18008, Spain
| | - Virginia Cuéllar
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, 18008, Spain
| | - José Olivares
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, 18008, Spain
| | - Laura Alvarez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, C.P. 62209, Mexico
| | - Diana Palenzuela-Bretones
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham University Park, Nottingham, NG7 2RD, UK
| | - Manuel Romero
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham University Park, Nottingham, NG7 2RD, UK
| | - Stephan Heeb
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham University Park, Nottingham, NG7 2RD, UK
| | - Miguel Cámara
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham University Park, Nottingham, NG7 2RD, UK
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, C.P. 62210, Mexico
| | - María J Soto
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, 18008, Spain
| |
Collapse
|
26
|
Su Q, Xu G, Guan T, Que Y, Lu H. Mass spectrometry-derived systems biology technologies delineate the system's biochemical applications of siderophores. MASS SPECTROMETRY REVIEWS 2018; 37:188-201. [PMID: 27579891 DOI: 10.1002/mas.21513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Siderophores are chemically diverse secondary metabolites that primarily assist the host organisms to chelate iron. Siderophores are biosynthesized by many biological organisms, including bacteria, fungi, and plants and they are responsible for a variety of biological functions beyond capture iron. Thus, they could provide a novel understanding of host-pathogen interactions, plant physiology, disease pathogenesis, and drug development. However, knowledge gaps in analytical technologies, chemistry, and biology have severely impeded the applications of siderophores, and a new strategy is urgently needed to bridge these gaps. Mass spectrometry (MS) and associated technologies render unparalleled advantages in this niche in terms of high throughput, resolution, and sensitivity. Herein, this critical review briefly summarizes progress in the study of siderophores and specifically identifies MS-based novel strategies that attempt to mimic the complexity of siderophore systems in order to increase the applicability of these compounds in the scientific community. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:188-201, 2018.
Collapse
Affiliation(s)
- Qiao Su
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
- The Laboratory for Functional Omics and Innovative Chinese Medicine, Innovative Drug Research Center, Chongqing University, Chongqing, 401331, P.R. China
| | - Guang Xu
- The Laboratory for Functional Omics and Innovative Chinese Medicine, Innovative Drug Research Center, Chongqing University, Chongqing, 401331, P.R. China
| | - Tianbing Guan
- The Laboratory for Functional Omics and Innovative Chinese Medicine, Innovative Drug Research Center, Chongqing University, Chongqing, 401331, P.R. China
| | - Yumei Que
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
- The Laboratory for Functional Omics and Innovative Chinese Medicine, Innovative Drug Research Center, Chongqing University, Chongqing, 401331, P.R. China
| | - Haitao Lu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
- The Laboratory for Functional Omics and Innovative Chinese Medicine, Innovative Drug Research Center, Chongqing University, Chongqing, 401331, P.R. China
| |
Collapse
|
27
|
Michavila G, Adler C, De Gregorio PR, Lami MJ, Caram Di Santo MC, Zenoff AM, de Cristobal RE, Vincent PA. Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:608-617. [PMID: 28194866 DOI: 10.1111/plb.12556] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
Citrus canker is a worldwide-distributed disease caused by Xanthomonas citri subsp. citri. One of the most used strategies to control the disease is centred on copper-based compounds that cause environmental problems. Therefore, it is of interest to develop new strategies to manage the disease. Previously, we reported the ability of the siderophore pyochelin, produced by the opportunistic human pathogen Pseudomonas aeruginosa, to inhibit in vitro several bacterial species, including X. citri subsp. citri. The action mechanism, addressed with the model bacterium Escherichia coli, was connected to the generation of reactive oxygen species (ROS). This work aimed to find a non-pathogenic strain from the lemon phyllosphere that would produce pyochelin and therefore serve in canker biocontrol. An isolate that retained its capacity to colonise the lemon phyllosphere and inhibit X. citri subsp. citri was selected and characterised as Pseudomonas protegens CS1. From a liquid culture of this strain, the active compound was purified and identified as the pyochelin enantiomer, enantio-pyochelin. Using the producing strain and the pure compound, both in vitro and in vivo, we determined that the action mechanism of X. citri subsp. citri inhibition also involved the generation of ROS. Finally, the potential application of P. protegens CS1 was evaluated by spraying the bacterium in a model that mimics the natural X. citri subsp. citri infection. The ability of P. protegens CS1 to reduce canker formation makes this strain an interesting candidate as a biocontrol agent.
Collapse
Affiliation(s)
- G Michavila
- Facultad de Bioquímica, Química y Farmacia, UNT, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", San Miguel de Tucumán, Argentina
| | - C Adler
- Facultad de Bioquímica, Química y Farmacia, UNT, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", San Miguel de Tucumán, Argentina
| | - P R De Gregorio
- Facultad de Bioquímica, Química y Farmacia, UNT, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", San Miguel de Tucumán, Argentina
| | - M J Lami
- Facultad de Bioquímica, Química y Farmacia, UNT, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", San Miguel de Tucumán, Argentina
| | - M C Caram Di Santo
- Facultad de Bioquímica, Química y Farmacia, UNT, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", San Miguel de Tucumán, Argentina
| | - A M Zenoff
- Facultad de Bioquímica, Química y Farmacia, UNT, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", San Miguel de Tucumán, Argentina
| | - R E de Cristobal
- Facultad de Bioquímica, Química y Farmacia, UNT, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", San Miguel de Tucumán, Argentina
| | - P A Vincent
- Facultad de Bioquímica, Química y Farmacia, UNT, Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT and Instituto de Química Biológica "Dr. Bernabé Bloj", San Miguel de Tucumán, Argentina
| |
Collapse
|
28
|
Velmourougane K, Prasanna R, Saxena AK. Agriculturally important microbial biofilms: Present status and future prospects. J Basic Microbiol 2017; 57:548-573. [PMID: 28407275 DOI: 10.1002/jobm.201700046] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 11/07/2022]
Abstract
Microbial biofilms are a fascinating subject, due to their significant roles in the environment, industry, and health. Advances in biochemical and molecular techniques have helped in enhancing our understanding of biofilm structure and development. In the past, research on biofilms primarily focussed on health and industrial sectors; however, lately, biofilms in agriculture are gaining attention due to their immense potential in crop production, protection, and improvement. Biofilms play an important role in colonization of surfaces - soil, roots, or shoots of plants and enable proliferation in the desired niche, besides enhancing soil fertility. Although reports are available on microbial biofilms in general; scanty information is published on biofilm formation by agriculturally important microorganisms (bacteria, fungi, bacterial-fungal) and their interactions in the ecosystem. Better understanding of agriculturally important bacterial-fungal communities and their interactions can have several implications on climate change, soil quality, plant nutrition, plant protection, bioremediation, etc. Understanding the factors and genes involved in biofilm formation will help to develop more effective strategies for sustainable and environment-friendly agriculture. The present review brings together fundamental aspects of biofilms, in relation to their formation, regulatory mechanisms, genes involved, and their application in different fields, with special emphasis on agriculturally important microbial biofilms.
Collapse
Affiliation(s)
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau Nath Bhanjan, Uttar Pradesh, India
| |
Collapse
|
29
|
Phytohormone production endowed with antagonistic potential and plant growth promoting abilities of culturable endophytic bacteria isolated from Clerodendrum colebrookianum Walp. Microbiol Res 2016; 193:57-73. [PMID: 27825487 DOI: 10.1016/j.micres.2016.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/23/2016] [Accepted: 09/23/2016] [Indexed: 11/23/2022]
Abstract
In this study, culturable endophytic bacterial isolates obtained from an ethnomedicinal plant Clerodendrum colebrookianum Walp., were assessed for their diversity, in vitro screening for their plant growth promoting (PGP) activities and to use them as inoculant for in vivo PGP activities with biocontrol potential. Totally, 73 isolates were recovered from different tissues of C. colebrookianum were identified by 16S rRNA gene sequencing and phylogenetically analyzed by using BOX-PCR fingerprinting. Out of 73 isolates, 52 exhibited varying extents of antagonistic potential were selected for screening for various PGP traits. Concerning the PGP activities, the percentage of isolates positive for P-solubilisation, indolic compounds production, siderophore and ammonia production were 84.6, 92.3, 78.8 and 98.0 respectively. All isolates were positive for the production of hydrocyanic acid (HCN) and 86.5%, 84.6% and 90.3% of isolates showed significant cellulase, amylase and protease production respectively. Further, the top 10 bacterial isolates based on a bonitur scale with multiple PGP activities were screened for root surface colonization and biofilm formation ability. Out of selected 10 isolates, 9 showed significant potential for root surface colonization on tomato roots. Isolate BPSAC6 identified as Bacillus sp. was most efficient in biofilm formation as assessed with respect to the intensity of crystal violet, which further showed their potential to withstand various biotic and abiotic stresses. Furthermore, Bacillus sp. strain BPSAC6 showed a significant increase in shoot and root height as well as fresh weight after 45 and 60 d of inoculation with tomato seedlings. Additionally, biosynthetic potential of antagonistic isolate was detection by using PKSI, PKSII and NRPS biosynthetic genes. Two isolates Pseudomonas psychrotolerans and Labrys wisconsinensis were reported first time as an endophyte. At last, first time an endophytic bacterial strain Bacillus sp. BPSAC6 was reported to produce altogether three phytohormones (IAA, Kinetin and 6-Benzyladenine). This study is the first report that bacteria isolated from C. colebrookianum has biocontrol as well as PGP abilities endowed with phytohormones production and can be used for the preparation of bioinoculant for plant growth promotion.
Collapse
|
30
|
Skagia A, Zografou C, Vezyri E, Venieraki A, Katinakis P, Dimou M. Cyclophilin PpiB is involved in motility and biofilm formation via its functional association with certain proteins. Genes Cells 2016; 21:833-51. [PMID: 27306110 DOI: 10.1111/gtc.12383] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/09/2016] [Indexed: 12/24/2022]
Abstract
PpiB belongs to the superfamily of peptidyl-prolyl cis/trans isomerases (PPIases, EC: 5.2.1.8), which catalyze the rate-limiting protein folding step at peptidyl-prolyl bonds and control several biological processes. In this study, we show that PpiB acts as a negative effector of motility and biofilm formation ability of Escherichia coli. We identify multicopy suppressors of each ΔppiB phenotype among putative PpiB prey proteins which upon deletion are often characterized by analogous phenotypes. Many putative preys show similar gene expression in wild-type and ΔppiB genetic backgrounds implying possible post-translational modifications by PpiB. We further conducted in vivo and in vitro interaction screens to determine which of them represent true preys. For DnaK, acetyl-CoA carboxylase, biotin carboxylase subunit (AccC) and phosphate acetyltransferase (Pta) we also showed a direct role of PpiB in the functional control of these proteins because it increased the measured enzyme activity of each protein and further interfered with DnaK localization and the correct folding of AccC. Taken together, these results indicate that PpiB is involved in diverse regulatory mechanisms to negatively modulate motility and biofilm formation via its functional association with certain protein substrates.
Collapse
Affiliation(s)
- Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Chrysoula Zografou
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Eleni Vezyri
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Anastasia Venieraki
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| | - Maria Dimou
- Laboratory of General and Agricultural Microbiology, Faculty of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855, Athens, Greece
| |
Collapse
|
31
|
Castiblanco LF, Sundin GW. New insights on molecular regulation of biofilm formation in plant-associated bacteria. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:362-72. [PMID: 26377849 DOI: 10.1111/jipb.12428] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/10/2015] [Indexed: 05/11/2023]
Abstract
Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extracellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multicellular behavior.
Collapse
Affiliation(s)
- Luisa F Castiblanco
- Department of Plant, Soil and Microbial Sciences and Center for Microbial Pathogenesis, Michigan State University, East Lansing, Michigan, 48824, USA
| | - George W Sundin
- Department of Plant, Soil and Microbial Sciences and Center for Microbial Pathogenesis, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
32
|
Discrete Responses to Limitation for Iron and Manganese in Agrobacterium tumefaciens: Influence on Attachment and Biofilm Formation. J Bacteriol 2015; 198:816-29. [PMID: 26712936 DOI: 10.1128/jb.00668-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/13/2015] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED Transition metals such as iron and manganese are crucial trace nutrients for the growth of most bacteria, functioning as catalytic cofactors for many essential enzymes. Dedicated uptake and regulatory systems have evolved to ensure their acquisition for growth, while preventing toxicity. Transcriptomic analysis of the iron- and manganese-responsive regulons of Agrobacterium tumefaciens revealed that there are discrete regulatory networks that respond to changes in iron and manganese levels. Complementing earlier studies, the iron-responsive gene network is quite large and includes many aspects of iron-dependent metabolism and the iron-sparing response. In contrast, the manganese-responsive network is restricted to a limited number of genes, many of which can be linked to transport and utilization of the transition metal. Several of the target genes predicted to drive manganese uptake are required for growth under manganese-limited conditions, and an A. tumefaciens mutant with a manganese transport deficiency is attenuated for plant virulence. Iron and manganese limitation independently inhibit biofilm formation by A. tumefaciens, and several candidate genes that could impact biofilm formation were identified in each regulon. The biofilm-inhibitory effects of iron and manganese do not rely on recognized metal-responsive transcriptional regulators, suggesting alternate mechanisms influencing biofilm formation. However, under low-manganese conditions the dcpA operon is upregulated, encoding a system that controls levels of the cyclic di-GMP second messenger. Mutation of this regulatory pathway dampens the effect of manganese limitation. IMPORTANCE Responses to changes in transition metal levels, such as those of manganese and iron, are important for normal metabolism and growth in bacteria. Our study used global gene expression profiling to understand the response of the plant pathogen Agrobacterium tumefaciens to changes of transition metal availability. Among the properties that are affected by both iron and manganese levels are those required for normal surface attachment and biofilm formation, but the requirement for each of these transition metals is mechanistically independent from the other.
Collapse
|
33
|
Maymon M, Martínez-Hidalgo P, Tran SS, Ice T, Craemer K, Anbarchian T, Sung T, Hwang LH, Chou M, Fujishige NA, Villella W, Ventosa J, Sikorski J, Sanders ER, Faull KF, Hirsch AM. Mining the phytomicrobiome to understand how bacterial coinoculations enhance plant growth. FRONTIERS IN PLANT SCIENCE 2015; 6:784. [PMID: 26442090 PMCID: PMC4585168 DOI: 10.3389/fpls.2015.00784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/10/2015] [Indexed: 05/02/2023]
Abstract
In previous work, we showed that coinoculating Rhizobium leguminosarum bv. viciae 128C53 and Bacillus simplex 30N-5 onto Pisum sativum L. roots resulted in better nodulation and increased plant growth. We now expand this research to include another alpha-rhizobial species as well as a beta-rhizobium, Burkholderia tuberum STM678. We first determined whether the rhizobia were compatible with B. simplex 30N-5 by cross-streaking experiments, and then Medicago truncatula and Melilotus alba were coinoculated with B. simplex 30N-5 and Sinorhizobium (Ensifer) meliloti to determine the effects on plant growth. Similarly, B. simplex 30N-5 and Bu. tuberum STM678 were coinoculated onto Macroptilium atropurpureum. The exact mechanisms whereby coinoculation results in increased plant growth are incompletely understood, but the synthesis of phytohormones and siderophores, the improved solubilization of inorganic nutrients, and the production of antimicrobial compounds are likely possibilities. Because B. simplex 30N-5 is not widely recognized as a Plant Growth Promoting Bacterial (PGPB) species, after sequencing its genome, we searched for genes proposed to promote plant growth, and then compared these sequences with those from several well studied PGPB species. In addition to genes involved in phytohormone synthesis, we detected genes important for the production of volatiles, polyamines, and antimicrobial peptides as well as genes for such plant growth-promoting traits as phosphate solubilization and siderophore production. Experimental evidence is presented to show that some of these traits, such as polyamine synthesis, are functional in B. simplex 30N-5, whereas others, e.g., auxin production, are not.
Collapse
Affiliation(s)
- Maskit Maymon
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Pilar Martínez-Hidalgo
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Stephen S. Tran
- Bioinformatics, University of California, Los AngelesLos Angeles, CA, USA
| | - Tyler Ice
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Karena Craemer
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Teni Anbarchian
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Tiffany Sung
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Lin H. Hwang
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Semel Institute for Neuroscience and Human Behavior, University of California, Los AngelesLos Angeles, CA, USA
| | - Minxia Chou
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - Nancy A. Fujishige
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
| | - William Villella
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los AngelesLos Angeles, CA, USA
| | - Jérôme Ventosa
- Biotechnology, Plants, and Microorganisms Biology, University of Montpellier IIMontpellier, France
| | - Johannes Sikorski
- Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHBraunschweig, Germany
| | - Erin R. Sanders
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los AngelesLos Angeles, CA, USA
| | - Kym F. Faull
- Pasarow Mass Spectrometry Laboratory, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Semel Institute for Neuroscience and Human Behavior, University of California, Los AngelesLos Angeles, CA, USA
- Molecular Biology Institute, University of California, Los AngelesLos Angeles, CA, USA
| | - Ann M. Hirsch
- Departments of Molecular, Cell, and Developmental Biology, University of California, Los AngelesLos Angeles, CA, USA
- Molecular Biology Institute, University of California, Los AngelesLos Angeles, CA, USA
- *Correspondence: Ann M. Hirsch, Departments of Molecular, Cell, and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, 621 Charles Young Drive South, Los Angeles, CA 90095-1606, USA
| |
Collapse
|