1
|
Pang Y, Shui J, Li C, Li Y, Chen H, Tang S. The serodiagnositic value of Chlamydia trachomatis antigens in antibody detection using luciferase immunosorbent assay. Front Public Health 2024; 12:1333559. [PMID: 38476494 PMCID: PMC10927828 DOI: 10.3389/fpubh.2024.1333559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Among the different antigens used in the detection of anti-Chlamydia trachomatis antibodies, significant differences in sensitivity and specificity have been observed. Further evaluation of C. trachomatis antigens in antibody detection is urgently needed for the development and application of C. trachomatis serologic assays. Methods Chlamydia trachomatis antigens Pgp3, TmeA, InaC, and HSP60 were selected and used in luciferase immunosorbent assay (LISA). The detection results obtained from well-defined C. trachomatis positive and negative samples were compared with the commercial C. trachomatis ELISA (Mikrogen) for performance evaluation. Results Pgp3, TmeA, InaC, and HSP60-based LISA showed sensitivity of 92.8, 88.8, 90.4, and 94.4%, and specificity of 99.2, 99.2, 99.2, and 92%, respectively. ROC analysis indicated that Pgp3-based LISA showed similar performance to Mikrogen ELISA (AUC 0.986 vs. 0.993, p = 0.207). Furthermore, four C. trachomatis antigens achieved strong diagnostic efficiency, i.e., positive likelihood ratios [+LR] ≥ 10 in C. trachomatis-infected women and negative likelihood ratios [-LR] ≤ 0.1 in C. trachomatis negative low exposure risk children, but only Pgp3 and TmeA showed strong diagnostic value in general adults. In addition, Pgp3, TmeA, and InaC, but not HSP60, achieved high performance, i.e., both positive predictive value (PPV) and negative predictive value (NPV) ≥ 90.9%, and showed no significant cross-reactivity with anti-Chlamydiapneumoniae. Conclusion Three C. trachomatis species-specific antigens Pgp3, TmeA, and InaC show superior performance in the detection of anti-C. trachomatis antibody, indicating the potential to be used in developing C. trachomatis serologic tests.
Collapse
Affiliation(s)
- Yulian Pang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jingwei Shui
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
- Department of Emergency, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Changchang Li
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yongzhi Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | | | - Shixing Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Yu H, Geisler WM, Dai C, Gupta K, Cutter G, Brunham RC. Antibody responses to Chlamydia trachomatis vaccine candidate antigens in Chlamydia-infected women and correlation with antibody-mediated phagocytosis of elementary bodies. Front Cell Infect Microbiol 2024; 14:1342621. [PMID: 38371301 PMCID: PMC10869445 DOI: 10.3389/fcimb.2024.1342621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
Murine research has revealed a significant role for antibody responses in protection against Chlamydia reinfection. To explore potential humoral immune markers of protection elicited by Chlamydia trachomatis (CT) antigens in humans in the context of presumed clinical correlates of protection, we used both an IgG1-based ELISA and a conventional total IgG ELISA to evaluate antibody responses. We evaluated responses to five CT outer membrane proteins (PmpE, PmpF, PmpG, PmpH, and MOMP), along with other promising CT antigens (Pgp3 and HSP60), negative control antigens (RecO and AtpE), and CT elementary bodies (EBs) in sera from a well-characterized cohort of 60 women with different CT infection outcomes, including two outcomes that are likely clinical correlates of protective immunity: spontaneous resolution of infection and absence of reinfection after treatment. Furthermore, we used a flow cytometry-based assay to measure antibody-mediated phagocytosis by neutrophils in these sera. Results demonstrated that IgG1 ELISA displayed higher sensitivity than conventional total IgG ELISA in assessing antibody responses to CT EBs and antigens. Pgp3 IgG1 ELISA exhibited the highest sensitivity compared to IgG1 ELISA incorporating CT EBs or other antigens, confirming Pgp3 IgG1 ELISA as an ideal assay for CT antibody detection. Most (95%) sera from women with CT infection outcomes exhibited antibody-mediated phagocytosis of CT EBs, which was significantly correlated with IgG1 antibody responses to MOMP, Pgp3, HSP60, and PmpF. However, neither IgG1 responses to CT antigens and EBs nor antibody-mediated phagocytosis were associated with clinical correlates of protection. These findings suggest that neither CT IgG1 antibody detection nor antibody-mediated phagocytosis will be useful as immune correlates of protection against CT infection in humans.
Collapse
Affiliation(s)
- Hong Yu
- Department of Medicine, British Columbia Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada
| | - William M. Geisler
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Chuanbin Dai
- Department of Medicine, British Columbia Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada
| | - Kanupriya Gupta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert C. Brunham
- Department of Medicine, British Columbia Centre for Disease Control, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
Chan YT, Cheok YY, Cheong HC, Tan GMY, Seow SR, Tang TF, Sulaiman S, Looi CY, Gupta R, Arulanandam B, Wong WF. Influx of podoplanin-expressing inflammatory macrophages into the genital tract following Chlamydia infection. Immunol Cell Biol 2023; 101:305-320. [PMID: 36658328 DOI: 10.1111/imcb.12621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/25/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Genital Chlamydia trachomatis infection remains a major health issue as it causes severe complications including pelvic inflammatory disease, ectopic pregnancy and infertility in females as a result of infection-associated chronic inflammation. Podoplanin, a transmembrane receptor, has been previously reported on inflammatory macrophages. Thus, strategies that specifically target podoplanin might be able to reduce local inflammation. This study investigated the expression level and function of podoplanin in a C. trachomatis infection model. C57BL/6 mice infected with the mouse pathogen Chlamydia muridarum were examined intermittently from days 1 to 60 using flow cytometry analysis. Percentages of conventional macrophages (CD11b+ CD11c- F4/80+ ) versus inflammatory macrophages (CD11b+ CD11c+ F4/80+ ), and the expression of podoplanin in these cells were investigated. Subsequently, a podoplanin-knockout RAW264.7 cell was used to evaluate the function of podoplanin in C. trachomatis infection. Our findings demonstrated an increased CD11b+ cell volume in the spleen at day 9 after the infection, with augmented podoplanin expression, especially among the inflammatory macrophages. A large number of podoplanin-expressing macrophages were detected in the genital tract of C. muridarum-infected mice. Furthermore, analysis of the C. trachomatis-infected patients demonstrated a higher percentage of podoplanin-expressing monocytes than that in the noninfected controls. Using an in vitro infection in a transwell migration assay, we identified that macrophages deficient in podoplanin displayed defective migratory function toward C. trachomatis-infected HeLa 229 cells. Lastly, using immunoprecipitation-mass spectrometry method, we identified two potential podoplanin interacting proteins, namely, Cofilin 1 and Talin 1 actin-binding proteins. The present study reports a role of podoplanin in directing macrophage migration to the chlamydial infection site. Our results suggest a potential for reducing inflammation in individuals with chronic chlamydial infections by targeting podoplanin.
Collapse
Affiliation(s)
- Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shi Rui Seow
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Bioscience, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Rishein Gupta
- Center of Excellence in Infection Genomics, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA
| | - Bernard Arulanandam
- Center of Excellence in Infection Genomics, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, USA.,Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Association between Chlamydial Infection with Ectopic and Full-Term Pregnancies: A Case-Control Study. Trop Med Infect Dis 2022; 7:tropicalmed7100285. [PMID: 36288026 PMCID: PMC9609621 DOI: 10.3390/tropicalmed7100285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022] Open
Abstract
Ectopic pregnancies (EPs) are potentially fatal if not recognized early. Evidence of an association with chlamydial infection in South East Asia is lacking. This case-control study aims to (i) compare chlamydial infection in women with EP to women who delivered a full-term pregnancy, (ii) investigate classical factors associated with EP, and (iii) investigate rupture status in EP. Seventy-two women with a confirmed diagnosis of EP and sixty-nine who delivered a full-term pregnancy in a tertiary hospital in Malaysia were recruited from November 2019 to January 2022. Demographic and relevant clinical data and intraoperative findings were documented. Blood samples for testing IgG levels of chlamydia were obtained. Women with EP were more likely to have tested positive for chlamydia than those with a full-term delivery (34.7% vs. 13.0%, AOR = 4.18, 95% CI = 1.67-10.48, p = 0.002). The majority did not have the classic risk factors associated with EP. An amount of 52.8% presented with a ruptured EP, with 84.2% of ruptures occurring after six weeks of gestation. An amount of 44.2% had an estimated blood loss of more than 500 cc, with 20% losing more than 1500 cc of blood. The prevalence of prior chlamydial infection in women with EP is significant enough to necessitate a review of early pregnancy care.
Collapse
|
5
|
Wang L, Hou Y, Yuan H, Chen H. The role of tryptophan in Chlamydia trachomatis persistence. Front Cell Infect Microbiol 2022; 12:931653. [PMID: 35982780 PMCID: PMC9378776 DOI: 10.3389/fcimb.2022.931653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022] Open
Abstract
Chlamydia trachomatis (C. trachomatis) is the most common etiological agent of bacterial sexually transmitted infections (STIs) and a worldwide public health issue. The natural course with C. trachomatis infection varies widely between individuals. Some infections clear spontaneously, others can last for several months or some individuals can become reinfected, leading to severe pathological damage. Importantly, the underlying mechanisms of C. trachomatis infection are not fully understood. C. trachomatis has the ability to adapt to immune response and persist within host epithelial cells. Indoleamine-2,3-dioxygenase (IDO) induced by interferon-gamma (IFN-γ) degrades the intracellular tryptophan pool, to which C. trachomatis can respond by converting to a non-replicating but viable state. C. trachomatis expresses and encodes for the tryptophan synthase (TS) genes (trpA and trpB) and tryptophan repressor gene (trpR). Multiple genes interact to regulate tryptophan synthesis from exogenous indole, and persistent C. trachomatis can recover its infectivity by converting indole into tryptophan. In this review, we discuss the characteristics of chlamydial infections, biosynthesis and regulation of tryptophan, the relationship between tryptophan and C. trachomatis, and finally, the links between the tryptophan/IFN-γ axis and C. trachomatis persistence.
Collapse
Affiliation(s)
- Li Wang
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - YingLan Hou
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - HongXia Yuan
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
| | - Hongliang Chen
- The First School of Clinical Medicine, Chenzhou No.1 People’s Hospital, Southern Medical University, Guangzhou, China
- Department of Clinical Microbiology Laboratory, Chenzhou No.1 People’s Hospital, Chenzhou, China
- *Correspondence: Hongliang Chen,
| |
Collapse
|
6
|
Anyalechi GE, Hong J, Kirkcaldy RD, Wiesenfeld HC, Horner P, Wills GS, McClure MO, Hammond KR, Haggerty CL, Kissin DM, Hook EW, Steinkampf MP, Bernstein K, Geisler WM. Chlamydial Pgp3 Seropositivity and Population-Attributable Fraction Among Women With Tubal Factor Infertility. Sex Transm Dis 2022; 49:527-533. [PMID: 34110735 PMCID: PMC9208281 DOI: 10.1097/olq.0000000000001434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Chlamydial infection is associated with tubal factor infertility (TFI); however, assessment of prior chlamydial infection and TFI is imperfect. We previously evaluated a combination of serological assays for association with TFI. We now describe the chlamydial contribution to TFI using a newer Chlamydia trachomatis Pgp3-enhanced serological (Pgp3) assay. METHODS In our case-control study of women 19 to 42 years old with hysterosalpingogram-diagnosed TFI (cases) and non-TFI (controls) in 2 US infertility clinics, we assessed possible associations and effect modifiers between Pgp3 seropositivity and TFI using adjusted odds ratios with 95% confidence intervals (CIs) stratified by race. We then estimated the adjusted chlamydia population-attributable fraction with 95% CI of TFI. RESULTS All Black (n = 107) and 618 of 620 non-Black women had Pgp3 results. Pgp3 seropositivity was 25.9% (95% CI, 19.3%-33.8%) for non-Black cases, 15.2% (95% CI, 12.3%-18.7%) for non-Black controls, 66.0% (95% CI, 51.7%-77.8%) for Black cases, and 71.7% (95% CI, 59.2%-81.5%) for Black controls. Among 476 non-Black women without endometriosis (n = 476), Pgp3 was associated with TFI (adjusted odds ratio, 2.6 [95% CI, 1.5-4.4]), adjusting for clinic, age, and income; chlamydia TFI-adjusted population-attributable fraction was 19.8% (95% CI, 7.7%-32.2%) in these women. Pgp3 positivity was not associated with TFI among non-Black women with endometriosis or among Black women (regardless of endometriosis). CONCLUSIONS Among non-Black infertile women without endometriosis in these clinics, 20% of TFI was attributed to chlamydia. Better biomarkers are needed to estimate chlamydia TFI PAF, especially in Black women.
Collapse
Affiliation(s)
- Gloria E. Anyalechi
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta GA
| | - Jaeyoung Hong
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta GA
| | - Robert D. Kirkcaldy
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta GA
| | - Harold C. Wiesenfeld
- University of Pittsburgh School of Medicine and Magee-Womens Research Institute, Pittsburgh, PA
| | - Paddy Horner
- Population Health Sciences and National Institute for Health Research, Health Protection Research Unit in Behavioural Science and Evaluation in Partnership with Public Health England, University of Bristol, Bristol, UK
| | - Gillian S. Wills
- Section of Infectious Diseases Jefferiss Research Trust Laboratories Wright-Fleming Institute, Faculty of Medicine, Imperial College London, St Mary’s Campus
| | - Myra O. McClure
- Section of Infectious Diseases Jefferiss Research Trust Laboratories Wright-Fleming Institute, Faculty of Medicine, Imperial College London, St Mary’s Campus
| | | | - Catherine L. Haggerty
- University of Pittsburgh Graduate School of Public Health Department of Epidemiology and Magee-Womens Research Institute, Pittsburgh, PA
| | - Dmitry M. Kissin
- Division of Reproductive Health, Centers for Disease Control and Prevention, Atlanta GA
| | - Edward W. Hook
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Kyle Bernstein
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta GA
| | - William M. Geisler
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
7
|
López-Pintor JM, Martínez-García L, Maruri A, Menéndez B, Puerta T, Rodríguez C, González-Alba JM, Rodríguez-Domínguez M, Galán JC. Quantification of plasmid copy number as surrogate marker of virulence among different invasive and non-invasive genotypes of Chlamydia trachomatis. Diagn Microbiol Infect Dis 2022; 102:115610. [DOI: 10.1016/j.diagmicrobio.2021.115610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 02/04/2023]
|
8
|
Cheok YY, Tan GMY, Fernandez KC, Chan YT, Lee CYQ, Cheong HC, Looi CY, Vadivelu J, Abdullah S, Wong WF. Podoplanin Drives Motility of Active Macrophage via Regulating Filamin C During Helicobacter pylori Infection. Front Immunol 2021; 12:702156. [PMID: 34707599 PMCID: PMC8543000 DOI: 10.3389/fimmu.2021.702156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/10/2021] [Indexed: 01/12/2023] Open
Abstract
Podoplanin (Pdpn) is a mucin-type transmembrane protein that has been implicated in multiple physiological settings including lymphangiogenesis, platelet aggregation, and cancer metastasis. Here, we reported an absence of Pdpn transcript expression in the resting mouse monocytic macrophages, RAW264.7 cells; intriguingly, a substantial upregulation of Pdpn was observed in activated macrophages following Helicobacter pylori or lipopolysaccharide stimulation. Pdpn-knockout macrophages demonstrated intact phagocytic and intracellular bactericidal activities comparable to wild type but exhibited impaired migration due to attenuated filopodia formation. In contrast, an ectopic expression of Pdpn augmented filopodia protrusion in activated macrophages. NanoString analysis uncovered a close dependency of Filamin C gene on the presence of Pdpn, highlighting an involvement of Filamin C in modulation of actin polymerization activity, which controls cell filopodia formation and migration. In addition, interleukin-1β production was significantly declined in the absence of Pdpn, suggesting a role of Pdpn in orchestrating inflammation during H. pylori infection besides cellular migration. Together, our findings unravel the Pdpn network that modulates movement of active macrophages.
Collapse
Affiliation(s)
- Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Keith Conrad Fernandez
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Bioscience, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suhailah Abdullah
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Sweeney EL, Bletchly C, Gupta R, Whiley DM. False-negative Chlamydia polymerase chain reaction result caused by a cryptic plasmid-deficient Chlamydia trachomatis strain in Australia. Sex Health 2020; 16:394-396. [PMID: 31270010 DOI: 10.1071/sh18205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/25/2019] [Indexed: 11/23/2022]
Abstract
Background The 7.5-kb chlamydial cryptic plasmid remains a widely used sequence target for Chlamydia trachomatis nucleic acid amplification tests, but sequence variation in this plasmid, particularly a previously reported 377-bp deletion, can cause false-negative results. Here we report the presence in Australia of a C. trachomatis strain lacking the cryptic plasmid. METHODS A rectal swab from a male in his 50s provided a positive result for C. trachomatis using the Roche Cobas 4800 test, but a negative result in our confirmatory in-house polymerase chain reaction (PCR) method targeting the chlamydial cryptic plasmid. This result was unexpected given our in-house PCR assay targeted a region of sequence outside the recognised 377-bp deletion. To further investigate this discrepancy, the sample was retested using a second in-house PCR targeting a chromosomal (ompA) gene as well as six primer sets flanking various regions of the cryptic plasmid. RESULTS The sample provided positive results in the second in-house method, confirming the presence of C. trachomatis DNA. All other primer sets targeting the cryptic plasmid failed to amplify, indicating a lack of the chlamydial cryptic plasmid in this sample. CONCLUSIONS The recognition of a plasmid-deficient strain of C. trachomatis within Australia highlights further limitations of using the chlamydial cryptic plasmid for C. trachomatis diagnostics and re-emphasises the benefits of using multitarget assays to avoid false-negative results.
Collapse
Affiliation(s)
- Emma L Sweeney
- University of Queensland Centre for Clinical Research (UQ-CCR), The University of Queensland, Brisbane, Qld 4029, Australia; and Corresponding author.
| | - Cheryl Bletchly
- Pathology Queensland, Central Laboratory, Brisbane, Qld 4006, Australia
| | - Rita Gupta
- Pathology Queensland, Central Laboratory, Brisbane, Qld 4006, Australia
| | - David M Whiley
- University of Queensland Centre for Clinical Research (UQ-CCR), The University of Queensland, Brisbane, Qld 4029, Australia; and Pathology Queensland, Central Laboratory, Brisbane, Qld 4006, Australia
| |
Collapse
|
10
|
Chlamydia trachomatis Plasmid Gene Protein 3 Is Essential for the Establishment of Persistent Infection and Associated Immunopathology. mBio 2020; 11:mBio.01902-20. [PMID: 32817110 PMCID: PMC7439461 DOI: 10.1128/mbio.01902-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chlamydia trachomatis can cause persistent infection that drives damaging inflammatory responses resulting in infertility and blindness. Little is known about chlamydial genes that cause persistence or factors that drive damaging pathology. In this work, we show that the C. trachomatis plasmid protein gene 3 (Pgp3) is the essential virulence factor for establishing persistent female genital tract infection and provide supportive evidence that Pgp3 functions similarly in a nonhuman primate trachoma model. We further show that persistent Ppg3-dependent infection drives damaging immunopathology. These results are important advances in understanding the pathophysiology of chlamydial persistence. Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes blinding trachoma and sexually transmitted disease afflicting hundreds of millions of people globally. A fundamental but poorly understood pathophysiological characteristic of chlamydial infection is the propensity to cause persistent infection that drives damaging inflammatory disease. The chlamydial plasmid is a virulence factor, but its role in the pathogenesis of persistent infection capable of driving immunopathology is unknown. Here, we show by using mouse and nonhuman primate infection models that the secreted plasmid gene protein 3 (Pgp3) is essential for establishing persistent infection. Ppg3-dependent persistent genital tract infection resulted in a severe endometritis caused by an intense infiltration of endometrial submucosal macrophages. Pgp3 released from the cytosol of lysed infected oviduct epithelial cells, not organism outer membrane-associated Pgp3, inhibited the chlamydial killing activity of antimicrobial peptides. Genetic Pgp3 rescue experiments in cathelin-related antimicrobial peptide (CRAMP)-deficient mice showed Pgp3-targeted antimicrobial peptides to subvert innate immunity as a pathogenic strategy to establish persistent infection. These findings provide important advances in understanding the role of Pgp3 in the pathogenesis of persistent chlamydial infection and associated immunopathology.
Collapse
|
11
|
Jones CA, Hadfield J, Thomson NR, Cleary DW, Marsh P, Clarke IN, O’Neill CE. The Nature and Extent of Plasmid Variation in Chlamydia trachomatis. Microorganisms 2020; 8:microorganisms8030373. [PMID: 32155798 PMCID: PMC7143637 DOI: 10.3390/microorganisms8030373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen of humans, causing both the sexually transmitted infection, chlamydia, and the most common cause of infectious blindness, trachoma. The majority of sequenced C. trachomatis clinical isolates carry a 7.5-Kb plasmid, and it is becoming increasingly evident that this is a key determinant of pathogenicity. The discovery of the Swedish New Variant and the more recent Finnish variant highlight the importance of understanding the natural extent of variation in the plasmid. In this study we analysed 524 plasmid sequences from publicly available whole-genome sequence data. Single nucleotide polymorphisms (SNP) in each of the eight coding sequences (CDS) were identified and analysed. There were 224 base positions out of a total 7550 bp that carried a SNP, which equates to a SNP rate of 2.97%, nearly three times what was previously calculated. After normalising for CDS size, CDS8 had the highest SNP rate at 3.97% (i.e., number of SNPs per total number of nucleotides), whilst CDS6 had the lowest at 1.94%. CDS5 had the highest total number of SNPs across the 524 sequences analysed (2267 SNPs), whereas CDS6 had the least SNPs with only 85 SNPs. Calculation of the genetic distances identified CDS6 as the least variable gene at the nucleotide level (d = 0.001), and CDS5 as the most variable (d = 0.007); however, at the amino acid level CDS2 was the least variable (d = 0.001), whilst CDS5 remained the most variable (d = 0.013). This study describes the largest in-depth analysis of the C. trachomatis plasmid to date, through the analysis of plasmid sequence data mined from whole genome sequences spanning 50 years and from a worldwide distribution, providing insights into the nature and extent of existing variation within the plasmid as well as guidance for the design of future diagnostic assays. This is crucial at a time when single-target diagnostic assays are failing to detect natural mutants, putting those infected at risk of a serious long-term and life-changing illness.
Collapse
Affiliation(s)
- Charlotte A. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA;
| | - Nicholas R. Thomson
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK;
| | - David W. Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - Peter Marsh
- Public Health England, Porton Down, Wiltshire SP40JG, UK;
| | - Ian N. Clarke
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - Colette E. O’Neill
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
- Correspondence:
| |
Collapse
|
12
|
Ma C, Du J, He W, Chen R, Li Y, Dou Y, Yuan X, Zhao L, Gong H, Liu P, Liu H. Rapid and accurate diagnosis of Chlamydia trachomatis in the urogenital tract by a dual-gene multiplex qPCR method. J Med Microbiol 2019; 68:1732-1739. [PMID: 31613208 DOI: 10.1099/jmm.0.001084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Chlamydia trachomatis (C. trachomatis, CT) is an obligatory intracellular bacterium that causes urogenital tract infections and leads to severe reproductive consequences. Therefore, a rapid and accurate detection method with high sensitivity and specificity is an urgent requirement for the routine diagnosis of C. trachomatis infections.Aim. In this study, we aimed to develop a multiplex quantitative real-time PCR (qPCR) assay based on two target regions for accurate detection of C. trachomatis in urogenital tract infections.Methodology. Primers and probes based on the conserved regions of the cryptic plasmid and 23S rRNA gene were designed. Then, two qPCR assays were established to screen for the optimal probe and primers for each of the two target regions. Subsequently, the multiplex qPCR method was developed and optimized. For the diagnostic efficiency evaluation, 1284 urogenital specimens were tested by the newly developed multiplex qPCR method, an immunological assay and a singleplex qPCR assay widely used in hospitals.Results. The multiplex qPCR method could amplify both target regions in the range of 1.0×102-1.0×108 copies ml-1 with a strong linear relationship, and lower limits of detection (LODs) for both targets reached 2 copies PCR-1. For the multiplex qPCR method, the diagnostic sensitivity and specificity was 100.0 % (134/134) and 99.3 % (1142/1150), respectively. For the singleplex qPCR assay, the diagnostic sensitivity and specificity was 88.8 % (119/134) and 100.0 % (1150/1150), respectively. For the immunological assay, the diagnostic sensitivity and specificity was 47.0 % (63/134) and 100.0 % (1150/1150), respectively.Conclusion. In this study, a multiplex qPCR assay with high sensitivity and specificity for rapid (≤2.0 h) and accurate diagnosis of C. trachomatis was developed. The qPCR assay has the potential to be used as a routine diagnostic method in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Caifeng Ma
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Jikun Du
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Weina He
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Rui Chen
- Department of Clinical Laboratory, The Second People's Hospital of Futian District, Shenzhen, PR China
| | - Yuxia Li
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Yuhong Dou
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Xiaoxue Yuan
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Lijun Zhao
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Huijiao Gong
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Ping Liu
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| | - Helu Liu
- Department of Clinical Laboratory, Central Research Laboratory, The Second People's Hospital of Bao'an Shenzhen (Group), Shajing People's Hospital of Bao'an Shenzhen, Shenzhen Shajing Hospital affiliated to Guangzhou Medical University, Shenzhen, PR China
| |
Collapse
|
13
|
Cheong HC, Yap PSX, Chong CW, Cheok YY, Lee CYQ, Tan GMY, Sulaiman S, Hassan J, Sabet NS, Looi CY, Gupta R, Arulanandam B, AbuBakar S, Teh CSJ, Chang LY, Wong WF. Diversity of endocervical microbiota associated with genital Chlamydia trachomatis infection and infertility among women visiting obstetrics and gynecology clinics in Malaysia. PLoS One 2019; 14:e0224658. [PMID: 31738795 PMCID: PMC6860443 DOI: 10.1371/journal.pone.0224658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022] Open
Abstract
The cervical microbiota constitutes an important protective barrier against the invasion of pathogenic microorganisms. A disruption of microbiota within the cervical milieu has been suggested to be a driving factor of sexually transmitted infections. These include Chlamydia trachomatis which frequently causes serious reproductive sequelae such as infertility in women. In this study, we profiled the cervical microbial composition of a population of 70 reproductive-age Malaysian women; among which 40 (57.1%) were diagnosed with genital C. trachomatis infection, and 30 (42.8%) without C. trachomatis infection. Our findings showed a distinct compositional difference between the cervical microbiota of C. trachomatis-infected subjects and subjects without C. trachomatis infection. Specifically, significant elevations of mostly strict and facultative anaerobes such as Streptococcus, Megasphaera, Prevotella, and Veillonella in the cervical microbiota of C. trachomatis-positive women were detected. The results from the current study highlights an interaction of C. trachomatis with the environmental microbiome in the endocervical region.
Collapse
Affiliation(s)
- Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Polly Soo Xi Yap
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, Malaysia
| | - Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jamiyah Hassan
- Department of Obstetrics and Gynecology, Faculty of medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Chung Yeng Looi
- School of Bioscience, Taylor’s University, Subang Jaya, Selangor, Malaysia
- * E-mail: (WFW); (CYL)
| | - Rishein Gupta
- Center of Excellence in Infection Genomics, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Bernard Arulanandam
- Center of Excellence in Infection Genomics, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Tropical Infectious Disease Research and Education Center, University of Malaya, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Li Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (WFW); (CYL)
| |
Collapse
|
14
|
Chlamydia and Its Many Ways of Escaping the Host Immune System. J Pathog 2019; 2019:8604958. [PMID: 31467721 PMCID: PMC6699355 DOI: 10.1155/2019/8604958] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The increasing number of new cases of Chlamydia infection worldwide may be attributed to the pathogen's ability to evade various host immune responses. Summarized here are means of evasion utilized by Chlamydia enabling survival in a hostile host environment. The pathogen's persistence involves a myriad of molecular interactions manifested in a variety of ways, e.g., formation of membranous intracytoplasmic inclusions and cytokine-induced amino acid synthesis, paralysis of phagocytic neutrophils, evasion of phagocytosis, inhibition of host cell apoptosis, suppression of antigen presentation, and induced expression of a check point inhibitor of programmed host cell death. Future studies could focus on the targeting of these molecules associated with immune evasion, thus limiting the spread and tissue damage caused by this pathogen.
Collapse
|
15
|
Chlamydiaceae: Diseases in Primary Hosts and Zoonosis. Microorganisms 2019; 7:microorganisms7050146. [PMID: 31137741 PMCID: PMC6560403 DOI: 10.3390/microorganisms7050146] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
Abstract
Bacteria of the Chlamydiaceae family are a type of Gram-negative microorganism typified by their obligate intracellular lifestyle. The majority of the members in the Chlamydiaceae family are known pathogenic organisms that primarily infect the host mucosal surfaces in both humans and animals. For instance, Chlamydia trachomatis is a well-known etiological agent for ocular and genital sexually transmitted diseases, while C. pneumoniae has been implicated in community-acquired pneumonia in humans. Other chlamydial species such as C. abortus, C. caviae, C. felis, C. muridarum, C. pecorum, and C. psittaci are important pathogens that are associated with high morbidities in animals. Importantly, some of these animal pathogens have been recognized as zoonotic agents that pose a significant infectious threat to human health through cross-over transmission. The current review provides a succinct recapitulation of the characteristics as well as transmission for the previously established members of the Chlamydiaceae family and a number of other recently described chlamydial organisms.
Collapse
|
16
|
CPAF, HSP60 and MOMP antigens elicit pro-inflammatory cytokines production in the peripheral blood mononuclear cells from genital Chlamydia trachomatis-infected patients. Immunobiology 2018; 224:34-41. [PMID: 30477893 DOI: 10.1016/j.imbio.2018.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Persistent inflammation caused by Chlamydia trachomatis in the female genital compartment represents one of the major causes of pelvic inflammatory disease (PID), ectopic pregnancy and infertility in females. Here, we examined the pro-inflammatory cytokine response following stimulation with three different types of C. trachomatis antigens, viz. chlamydial protease-like factor (CPAF), heat shock protein 60 (HSP60) and major outer membrane protein (MOMP). METHODS A total of 19 patients with genital C. trachomatis infection and 10 age-matched healthy controls were recruited for the study. Peripheral blood mononuclear cells (PBMCs) isolated from genital C. trachomatis-infected females were cultured in the presence of CPAF, HSP60 and MOMP antigens, and cytokines were measured by ELISA assay. RESULTS We reported that pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) were robustly secreted following antigenic exposure. Notably, CPAP and MOMP were more potent in triggering IL-1β, as compared to HSP60. Elevated levels of the proinflammatory cytokines were also noted in the samples infected with plasmid-bearing C. trachomatis as compared to those infected with plasmid-free strains. CONCLUSIONS Our study highlights distinct ability of chlamydial antigens in triggering pro-inflammatory response in the host immune cells.
Collapse
|
17
|
Escobedo-Guerra MR, Katoku-Herrera M, Lopez-Hurtado M, Villagrana-Zesati JR, de Haro-Cruz MDJ, Guerra-Infante FM. Identification of a new variant of Chlamydia trachomatis in Mexico. Enferm Infecc Microbiol Clin 2018; 37:93-99. [PMID: 29636285 DOI: 10.1016/j.eimc.2018.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Chlamydia trachomatis is one of the main etiological agents of sexually transmitted infections worldwide. In 2006, a Swedish variant of C. trachomatis (Swedish-nvCT), which has a deletion of 377bp in the plasmid, was reported. In Latin America, Swedish-nvCT infections have not been reported. We investigated the presence of Swedish-nvCT in women with infertility in Mexico. METHODS Swedish-nvCT was searched in 69C. trachomatis positive samples from 2339 endocervical specimens. We designed PCR primers to identify the deletion in the plasmid in the ORF1, and the presence of a repeated 44bp in the ORF3. The sample with the deletion was genotyped with the genes of the major outer membrane protein A (ompA) and the polymorphic membrane protein (pmpH). RESULTS The deletion was detected in one of the 69 samples positive C. trachomatis of 2339 endocervical exudates. The nucleotide sequence analysis of the ompA shows a high degree of similarity with the Swedish nvCT (98%), however the variant found belongs to serovar D. The nucleotide sequence of the pmpH gene associates to the variant found in the genitourinary pathotype of the Swedish-nvCT but in different clusters. CONCLUSIONS Our results revealed the presence of a new variant of C. trachomatis in Mexican patients. This variant found in Mexico belongs to serovar D based on the in silico analysis of the ompA and pmpH genes and differs to the Swedish-nvCT (serovars E). For these variants of C. trachomatis that have been found it is necessary to carry out a more detailed analysis, although the role of this mutation has not been demonstrated in the pathogenesis.
Collapse
Affiliation(s)
- Marcos R Escobedo-Guerra
- Departamento de Infectología, Instituto Nacional de Perinatología, CDMX, Mexico; Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional La Raza, IMSS, CDMX, Mexico
| | | | | | | | - María de J de Haro-Cruz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, del Instituto Politécnico Nacional, CDMX, Mexico
| | - Fernando M Guerra-Infante
- Departamento de Infectología, Instituto Nacional de Perinatología, CDMX, Mexico; Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, del Instituto Politécnico Nacional, CDMX, Mexico.
| |
Collapse
|
18
|
Versteeg B, Bruisten SM, Pannekoek Y, Jolley KA, Maiden MCJ, van der Ende A, Harrison OB. Genomic analyses of the Chlamydia trachomatis core genome show an association between chromosomal genome, plasmid type and disease. BMC Genomics 2018; 19:130. [PMID: 29426279 PMCID: PMC5810182 DOI: 10.1186/s12864-018-4522-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/31/2018] [Indexed: 12/02/2022] Open
Abstract
Background Chlamydia trachomatis (Ct) plasmid has been shown to encode genes essential for infection. We evaluated the population structure of Ct using whole-genome sequence data (WGS). In particular, the relationship between the Ct genome, plasmid and disease was investigated. Results WGS data from 157 Ct isolates deposited in the Chlamydiales pubMLST database (http://pubMLST.org/chlamydiales/) were annotated with 902 genes including the core and accessory genome. Plasmid associated genes were annotated and a plasmid MLST scheme was defined allowing plasmid sequence types to be determined. Plasmid allelic variation was investigated. Phylogenetic relationships were examined using the Genome Comparator tool available in pubMLST. Phylogenetic analyses identified four distinct Ct core genome clusters and six plasmid clusters, with a strong association between the chromosomal genotype and plasmid. This in turn was linked to ompA genovars and disease phenotype. Horizontal genetic transfer of plasmids was observed for three urogenital-associated isolates, which possessed plasmids more commonly found in isolates resulting from ocular infections. The pgp3 gene was identified as the most polymorphic plasmid gene and pgp4 was the most conserved. Conclusion A strong association between chromosomal genome, plasmid type and disease was observed, consistent with previous studies. This suggests co-evolution of the Ct chromosome and their plasmids, but we confirmed that plasmid transfer can occur between isolates. These data provide a better understanding of the genetic diversity occurring across the Ct genome in association with the plasmid content. Electronic supplementary material The online version of this article (10.1186/s12864-018-4522-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bart Versteeg
- Public Health Laboratory, Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, the Netherlands.
| | - Sylvia M Bruisten
- Public Health Laboratory, Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, the Netherlands.,Amsterdam Infection & Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Yvonne Pannekoek
- Amsterdam Infection & Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Medical Microbiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Keith A Jolley
- Peter Medawar building, Department of Zoology, University of Oxford, Oxford, UK
| | - Martin C J Maiden
- Peter Medawar building, Department of Zoology, University of Oxford, Oxford, UK
| | - Arie van der Ende
- Amsterdam Infection & Immunity Institute, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Medical Microbiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Odile B Harrison
- Peter Medawar building, Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
19
|
Nonpathogenic Colonization with Chlamydia in the Gastrointestinal Tract as Oral Vaccination for Inducing Transmucosal Protection. Infect Immun 2018; 86:IAI.00630-17. [PMID: 29133348 DOI: 10.1128/iai.00630-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023] Open
Abstract
Chlamydia has been detected in the gastrointestinal tracts of humans and animals. We now report that gastrointestinal Chlamydia muridarum is able to induce robust transmucosal protection in mice. C. muridarum colonization in the gastrointestinal tract correlated with both a shortened course of C. muridarum genital tract infection and stronger protection against subsequent genital tract challenge infection. Mice preinoculated intragastrically with C. muridarum became highly resistant to subsequent C. muridarum infection in the genital tract, resulting in prevention of pathology in the upper genital tract. The transmucosal protection in the genital tract was rapidly induced, durable, and dependent on major histocompatibility complex (MHC) class II antigen presentation but not MHC class I antigen presentation. Although a deficiency in CD4+ T cells only partially reduced the transmucosal protection, depletion of CD4+ T cells from B cell-deficient mice completely abolished the protection, suggesting a synergistic role of both CD4+ T and B cells in the gastrointestinal C. muridarum-induced transmucosal immunity. However, the same protective immunity did not significantly affect C. muridarum colonization in the gastrointestinal tract. The long-lasting colonization with C. muridarum was restricted to the gastrointestinal tract and was nonpathogenic to either gastrointestinal or extragastrointestinal tissues. Furthermore, gastrointestinal C. muridarum did not alter the gut microbiota or the development of gut mucosal resident memory T cell responses to a nonchlamydial infection. Thus, Chlamydia may be developed into a safe and orally deliverable replicating vaccine for inducing transmucosal protection.
Collapse
|
20
|
Zhu Y, Yin B, Wu T, Ye L, Chen C, Zeng Y, Zhang Y. Comparative study in infertile couples with and without Chlamydia trachomatis genital infection. Reprod Health 2017; 14:5. [PMID: 28086915 PMCID: PMC5237126 DOI: 10.1186/s12978-016-0271-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chlamydia, caused by the bacterium Chlamydia trachomatis(C. trachomatis), is the most common sexually transmitted disease. The incidence is not clear due to the asymptomatic nature of early stage of infections. The incidence of Chlamydia has not been fully investigated in the Chinese Han population. Since chronic infection with can C. trachomatis can lead to infertility in males and females, it is important to determine the impact of infection on clinical outcomes. The aim of this study is to explore the epidemiology of C. trachomatis in subfertile couples and to determine whether infections will adversely affect clinical outcomes after assisted reproduction technique (ART) treatment. METHODS Subfertile patients (n = 30760) were screened in the research for C. trachomatis in our center from January 2010 to December 2014. C. trachomatis-specific DNA was detected by Taq-man PCR from semen or swabs from the urethral, endocervix or vaginal. The control group consisted of 1140 subfertile patients without C. trachomatis infection. The prevalence and characteristics of C. trachomatis were identified for subfertile couples and clinical outcomes were collected and analyzed. A retrospective study was performed. RESULTS Nine hundred and seventy patients were diagnosed with C. trachomatis infection, and the overall prevalence was 3.15% in the most recent five years, with a yearly increasing. The incidence was a higher in the second half of the year (3.40%) compared to the first half (2.69%). The age group with the highest-risk of infection with C. trachomatis was between 26 to 35 years old, and in about one third of the couples, both partners were infected. The basic parameters and clinical outcomes were not statistically significant between different the groups (P > 0.05), even though some minor data were different (P < 0.05). CONCLUSIONS C. trachomatis is a common infection in subfertile people and it is essential to test for this organism in ART couples' screening. This study identified no adverse on clinical outcomes after successful treatment of C. trachomatis infection, regardless of gender, age and number of C. trachomatis copies.
Collapse
Affiliation(s)
- Yuanchang Zhu
- School of Life Sciences, Tsinghua University, Beijing, 100000, China.,Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518000, China
| | - Biao Yin
- Central South University, the State Key Laboratory of Medical Genetics of China, Changsha, 410000, China
| | - Tonghua Wu
- Shenzhen Key Laboratory for Reproductive Immunology of Preimplantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518000, China
| | - Lijun Ye
- Shenzhen Key Laboratory for Reproductive Immunology of Preimplantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518000, China
| | - Chunmei Chen
- Shenzhen Key Laboratory for Reproductive Immunology of Preimplantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518000, China
| | - Yong Zeng
- Shenzhen Key Laboratory for Reproductive Immunology of Preimplantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, 518000, China
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518000, China.
| |
Collapse
|
21
|
Abstract
Etiology, transmission and protection: Chlamydia
trachomatis is the leading cause of bacterial sexually transmitted
infection (STI) globally. However, C. trachomatis also causes
trachoma in endemic areas, mostly Africa and the Middle East, and is a leading
cause of preventable blindness worldwide. Epidemiology, incidence and
prevalence: The World Health Organization estimates 131 million
new cases of C. trachomatis genital infection occur annually.
Globally, infection is most prevalent in young women and men (14-25 years),
likely driven by asymptomatic infection, inadequate partner treatment and
delayed development of protective immunity.
Pathology/Symptomatology: C.
trachomatis infects susceptible squamocolumnar or transitional
epithelial cells, leading to cervicitis in women and urethritis in men. Symptoms
are often mild or absent but ascending infection in some women may lead to
Pelvic Inflammatory Disease (PID), resulting in reproductive sequelae such as
ectopic pregnancy, infertility and chronic pelvic pain. Complications of
infection in men include epididymitis and reactive arthritis.
Molecular mechanisms of infection: Chlamydiae
manipulate an array of host processes to support their obligate intracellular
developmental cycle. This leads to activation of signaling pathways resulting in
disproportionate influx of innate cells and the release of tissue damaging
proteins and pro-inflammatory cytokines. Treatment and
curability: Uncomplicated urogenital infection is treated with
azithromycin (1 g, single dose) or doxycycline (100 mg twice daily x 7 days).
However, antimicrobial treatment does not ameliorate established disease. Drug
resistance is rare but treatment failures have been described. Development of an
effective vaccine that protects against upper tract disease or that limits
transmission remains an important goal.
Collapse
Affiliation(s)
- Catherine M O'Connell
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Morgan E Ferone
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
22
|
Yeow TC, Wong WF, Sabet NS, Sulaiman S, Shahhosseini F, Tan GMY, Movahed E, Looi CY, Shankar EM, Gupta R, Arulanandam BP, Hassan J, Abu Bakar S. Erratum: prevalence of plasmid-bearing and plasmid-free chlamydia trachomatis infection among women who visited obstetrics and gynecology clinics in Malaysia. BMC Microbiol 2016; 16:95. [PMID: 27215275 PMCID: PMC4877972 DOI: 10.1186/s12866-016-0701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Tee Cian Yeow
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Negar Shafiei Sabet
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
- Faculty of Medicine, SEGi University, Petaling Jaya, 47810, Malaysia.
| | - Sofiah Sulaiman
- Department of Obstetrics and Gynecology, Faculty of medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Fatemeh Shahhosseini
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Elaheh Movahed
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Esaki M Shankar
- Department of Medical Microbiology, Tropical Infectious Disease Research and Education Center, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Rishein Gupta
- Center of Excellence in Infection Genomics, South Texas Center For Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Bernard P Arulanandam
- Center of Excellence in Infection Genomics, South Texas Center For Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Jamiyah Hassan
- Department of Obstetrics and Gynecology, Faculty of medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Sazaly Abu Bakar
- Center of Excellence in Infection Genomics, South Texas Center For Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| |
Collapse
|