1
|
Delumeau A, Quétel I, Harnais F, Sellin A, Gros O, Talarmin A, Marcelino I. Bacterial microbiota management in free-living amoebae (Heterolobosea lineage) isolated from water: The impact of amoebae identity, grazing conditions, and passage number. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165816. [PMID: 37506913 DOI: 10.1016/j.scitotenv.2023.165816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Free-living amoebae (FLA) are ubiquitous protozoa mainly found in aquatic environments. They are well-known reservoirs and vectors for the transmission of amoeba-resistant bacteria (ARB), most of which are pathogenic to humans. Yet, the natural bacterial microbiota associated with FLA remains largely unknown. Herein, we characterized the natural bacterial microbiota of different FLA species isolated from recreational waters in Guadeloupe. Monoxenic cultures of Naegleria australiensis, Naegleria sp. WTP3, Paravahlkampfia ustiana and Vahlkampfia sp. AK-2007 (Heterolobosea lineage) were cultivated under different grazing conditions, during successive passages. The whole bacterial microbiota of the waters and the amoebal cysts was characterized using 16S rRNA gene metabarcoding. The culturable subset of ARB was analyzed by mass spectrometry (MALDI-TOF MS), conventional 16S PCR, and disk diffusion method (to assess bacterial antibiotic resistance). Transmission electron microscopy was used to locate the ARB inside the amoebae. According to alpha and beta-diversity analyses, FLA bacterial microbiota were significantly different from the ones of their habitat. While Vogesella and Aquabacterium genera were detected in water, the most common ARB belonged to Pseudomonas, Bosea, and Escherichia/Shigella genera. The different FLA species showed both temporary and permanent associations with differentially bacterial taxa, suggesting host specificity. These associations depend on the number of passages and grazing conditions. Additionally, Naegleria, Vahlkampfia and Paravahlkampfia cysts were shown to naturally harbor viable bacteria of the Acinetobacter, Escherichia, Enterobacter, Pseudomonas and Microbacterium genera, all being pathogenic to humans. To our knowledge, this is the first time Paravahlkampfia and Vahlkampfia have been demonstrated as hosts of pathogenic ARB in water. Globally, the persistence of these ARB inside resistant cysts represents a potential health risk. To ensure the continued safety of recreational waters, it is crucial to (i) regularly control both the amoebae and their ARB and (ii) improve knowledge on amoebae-bacteria interactions to establish better water management protocols.
Collapse
Affiliation(s)
- Aurélie Delumeau
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isaure Quétel
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Florian Harnais
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Arantxa Sellin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Olivier Gros
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Pointe-à-Pitre, Guadeloupe, France
| | - Antoine Talarmin
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France
| | - Isabel Marcelino
- Institut Pasteur de la Guadeloupe, Unité TReD-Path, Les Abymes, Guadeloupe, France.
| |
Collapse
|
2
|
Chaúque BJM, Corção G, Benetti AD, Rott MB. A challenge in washing water with the sun: 24h of SODIS fails to inactivate Acanthamoeba castellanii cysts and internalized Pseudomonas aeruginosa under strong real sun conditions. Photochem Photobiol Sci 2023; 22:2179-2188. [PMID: 37296325 DOI: 10.1007/s43630-023-00440-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Despite access to drinking water being a basic human right, the availability of safe drinking water remains a privilege that many do not have and as a result, many lives are lost each year due to waterborne diseases associated with the consumption of biologically unsafe water. To face this situation, different low-cost household drinking water treatment technologies (HDWT) have been developed, and among them is solar disinfection (SODIS). Despite the effectiveness of SODIS and the epidemiological gains being consistently documented in the literature, there is a lack of evidence of the effectiveness of the batch-SODIS process against protozoan cysts as well as their internalized bacteria under real sun conditions. This work evaluated the effectiveness of the batch-SODIS process on the viability of Acanthamoeba castellanii cysts, and internalized Pseudomonas aeruginosa. Dechlorinated tap water contaminated with 5.6 × 103 cysts/L, contained in PET (polyethylene terephthalate) bottles, was exposed for 8 h a day to strong sunlight (531-1083 W/m2 of maximum insolation) for 3 consecutive days. The maximum water temperature inside the reactors ranged from 37 to 50 °C. Cyst viability was assessed by inducing excystment on non-nutrient agar, or in water with heat-inactivated Escherichia coli. After sun exposure for 0, 8, 16 and 24 h, the cysts remained viable and without any perceptible impairment in their ability to excyst. 3 and 5.5 log CFU/mL of P. aeruginosa were detected in water containing untreated and treated cysts, respectively, after 3 days of incubation at 30 °C. The batch-SODIS process is unable to inactivate A. castellanii cysts as well as its internalized bacteria. Although the use of batch SODIS by communities should continue to be encouraged, SODIS-disinfected water should be consumed within 3 days.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Laboratory of Protozoology and Microbiological Analyses, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos Street, 2600, Porto Alegre/RS, Brazil
- Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa Branch, Lichinga, Mozambique
| | - Gertrudes Corção
- Laboratory of Protozoology and Microbiological Analyses, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos Street, 2600, Porto Alegre/RS, Brazil
| | | | - Marilise Brittes Rott
- Laboratory of Protozoology and Microbiological Analyses, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos Street, 2600, Porto Alegre/RS, Brazil.
| |
Collapse
|
3
|
Use of a Novel DNA-Loaded Alginate-Calcium Carbonate Biopolymer Surrogate to Study the Engulfment of Legionella pneumophila by Acanthamoeba polyphaga in Water Systems. Microbiol Spectr 2022; 10:e0221022. [PMID: 35950853 PMCID: PMC9430812 DOI: 10.1128/spectrum.02210-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The engulfment of Legionella pneumophila by free-living amoebae (FLA) in engineered water systems (EWS) enhances L. pneumophila persistence and provides a vehicle for rapid replication and increased public health risk. Despite numerous legionellosis outbreaks worldwide, effective tools for studying interactions between L. pneumophila and FLA in EWS are lacking. To address this, we have developed a biopolymer surrogate with a similar size, shape, surface charge, and hydrophobicity to those of stationary-phase L. pneumophila. Parallel experiments were conducted to observe the engulfment of L. pneumophila and the surrogate by Acanthamoeba polyphaga in dechlorinated, filter-sterilised tap water at 30°C for 72 h. Trophozoites engulfed both the surrogate and L. pneumophila, reaching maximum uptake after 2 and 6 h, respectively, but the peak surrogate uptake was ~2-log lower. Expulsion of the engulfed surrogate from A. polyphaga was also faster compared to that of L. pneumophila. Confocal laser scanning microscopy confirmed that the surrogate was actively engulfed and maintained within vacuoles for several hours before being expelled. L. pneumophila and surrogate phagocytosis appear to follow similar pathways, suggesting that the surrogate can be developed as a useful tool for studying interactions between L. pneumophila and FLA in EWS. IMPORTANCE The internalization of L. pneumophila within amoebae is a critical component of their life cycle in EWS, as it protects the bacteria from commonly used water disinfectants and provides a niche for their replication. Intracellularly replicated forms of L. pneumophila are also more virulent and resistant to sanitizers. Most importantly, the bacteria’s adaptation to the intracellular environments of amoebae primes them for the infection of human macrophages, posing a significant public health risk in EWS. The significance of our study is that a newly developed L. pneumophila biopolymer surrogate can mimic the L. pneumophila engulfment process in A. polyphaga, a free-living amoeba. With further development, the surrogate has the potential to improve the understanding of amoeba-mediated L. pneumophila persistence in EWS and the associated public health risk management.
Collapse
|
4
|
Schwaminger S, Rottmueller ME, Fischl R, Kalali B, Berensmeier S. Detection of targeted bacteria species on filtration membranes. Analyst 2021; 146:3549-3556. [PMID: 33899848 DOI: 10.1039/d1an00117e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The detection of pathogens in aquatic environments issues a time-consuming challenge, but it is an essential task to prevent the spread of diseases. We have developed a new point-of-care (POC) method for the fast and efficient detection of Legionella pneumophila in water. The method consists first of the generation of immunocomplexes of bacteria species with its corresponding targeted fluorescence-labelled serogroup-specific antibodies, and second a concentration step of pathogens with a membrane filter. Third, on the filtration membrane, our method can detect the fluorescence intensity corresponding to the pathogen concentration. Thus selective and efficient evidence for the presence of bacteria can be evaluated. We tested our system on fluorescent Escherichia coli bacteria and were able to reach an accurate determination of 1000 cells. The technique was furthermore tested on Legionella pneumophila cells, which were labelled with fluorescence-labelled antibodies as a proof of principle. Furthermore, we were able to verify this method in the presence of other bacteria species. We were able to detect bacteria cells within half an hour, a substantial advancement compared to the prevailling state of the art detection method based on the cultivation of Legionella pneumophila. Hence, this system represents the basis for future developments in analysis of pathogens.
Collapse
Affiliation(s)
- Sebastian Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | - Marina E Rottmueller
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | - Ramona Fischl
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| | - Behnam Kalali
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich, 85748 Garching, Germany.
| |
Collapse
|
5
|
Head BM, Graham CI, MacMartin T, Keynan Y, Brassinga AKC. Development of a Fluorescent Tool for Studying Legionella bozemanae Intracellular Infection. Microorganisms 2021; 9:379. [PMID: 33668592 PMCID: PMC7917989 DOI: 10.3390/microorganisms9020379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 01/14/2023] Open
Abstract
Legionnaires' disease incidence is on the rise, with the majority of cases attributed to the intracellular pathogen, Legionella pneumophila. Nominally a parasite of protozoa, L. pneumophila can also infect alveolar macrophages when bacteria-laden aerosols enter the lungs of immunocompromised individuals. L. pneumophila pathogenesis has been well characterized; however, little is known about the >25 different Legionella spp. that can cause disease in humans. Here, we report for the first time a study demonstrating the intracellular infection of an L. bozemanae clinical isolate using approaches previously established for L. pneumophila investigations. Specifically, we report on the modification and use of a green fluorescent protein (GFP)-expressing plasmid as a tool to monitor the L. bozemanae presence in the Acanthamoeba castellanii protozoan infection model. As comparative controls, L. pneumophila strains were also transformed with the GFP-expressing plasmid. In vitro and in vivo growth kinetics of the Legionella parental and GFP-expressing strains were conducted followed by confocal microscopy. Results suggest that the metabolic burden imposed by GFP expression did not impact cell viability, as growth kinetics were similar between the GFP-expressing Legionella spp. and their parental strains. This study demonstrates that the use of a GFP-expressing plasmid can serve as a viable approach for investigating Legionella non-pneumophila spp. in real time.
Collapse
Affiliation(s)
- Breanne M. Head
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Christopher I. Graham
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.I.G.); (T.M.); (A.K.C.B.)
| | - Teassa MacMartin
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.I.G.); (T.M.); (A.K.C.B.)
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Ann Karen C. Brassinga
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (C.I.G.); (T.M.); (A.K.C.B.)
| |
Collapse
|
6
|
de Faria LV, do Carmo PHF, da Costa MC, Peres NTA, Rodrigues Chagas IA, Furst C, Ferreira GF, Costa AO, Santos DA. Acanthamoeba castellanii as an alternative interaction model for the dermatophyte Trichophyton rubrum. Mycoses 2020; 63:1331-1340. [PMID: 32869415 DOI: 10.1111/myc.13173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Trichophyton rubrum (Tr) is the main aetiological agent of human dermatophytosis, being isolated from the environment and keratinised tissues. In the environment, Tr can interact with other organisms, such as free-living amoebas (FLA), which can act as an alternative host system to study the interaction between microbes and phagocytic cells. OBJECTIVES To characterise the Acanthamoeba castellanii (ALX)-Tr interaction. METHODS Interaction was characterised in three conditions: trophozoites (PYG), late (PYG/NES) and early (NES) encystation stimulus, evaluating encystation kinetics, phagocytosis, exocytosis and fungicidal activity dynamics. RESULTS Tr was able to induce ALX encystation and be internalised by ALX. The number of internalised conidia was high at 1 hour, and ALX presented fungicidal activity with increased intracellular ROS production and exocytosis. In PYG/NES, phagocytosis and ROS production were reduced, with decreased ALX's fungicidal activity. However, in NES there was an increased fungal engulfment, and a reduced ROS production and higher fungal burden. Furthermore, exogenous mannose decreased phagocytosis of Tr conidia, and divalent cations induced ROS production and increased ALX's fungicidal activity. Interestingly, phagocytosis was reduced in the presence of cytoskeleton inhibitor, but exocytosis was increased, suggesting that Tr conidia may have alternative pathways to escape ALX's cells. CONCLUSION A castellanii is a proper model for studying Tr-FLA interaction, since ALX can engulf, produce ROS and kill Tr, and all these parameters are influenced by an encystation stimulus and divalent cations. Moreover, this interaction is likely to occur in the environment implicating in the adaptation to environmental stressful conditions in both organisms.
Collapse
Affiliation(s)
- Lucas V de Faria
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo H F do Carmo
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marliete C da Costa
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nalu T A Peres
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela A Rodrigues Chagas
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cinthia Furst
- Departamento de Patologia, Centro Ciências da Saúde, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Gabriella F Ferreira
- Programa Multicêntrico de Pós Graduação em Bioquímica e Biologia Molecular, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Adriana O Costa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel A Santos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Moussa M, Marcelino I, Richard V, Guerlotté J, Talarmin A. An Optimized Most Probable Number (MPN) Method to Assess the Number of Thermophilic Free-Living Amoebae (FLA) in Water Samples. Pathogens 2020; 9:pathogens9050409. [PMID: 32456327 PMCID: PMC7281388 DOI: 10.3390/pathogens9050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 12/05/2022] Open
Abstract
Detection and quantification of pathogenic free-living amoebae (FLA) in water samples is critical for assessing water quality and for disease management issues. The most probable number (MPN) is commonly used to account for FLA in water. Nevertheless, this requires a high number of water replicates and working volumes, and a consequent number of non-nutrient agar (NNA)-plates seeded with Escherichia coli. Herein, we aimed at optimizing this difficult method, taking also into account key factors such as (i) the counting method, (ii) the delay between sample collection and sample processing, and (iii) the temperature during water sample transportation. To simplify the MPN method, we filtrated 1 × 1000 and 1 × 100 mL water samples, and cellulose acetate filters were cut in 10 parts and inverted on NNA-plates overlaid with E. coli. The comparison between the classical and our optimized MPN method showed that the final counts were similar, therefore validating the use of the optimized method. Our results also showed that for thermophilic FLA (such as Naegleria fowleri), water samples can be kept at around +30°C and processed within 24 h. This improved MPN method is now routinely used in our laboratory to control Naegleria sp. in the water samples in Guadeloupe.
Collapse
Affiliation(s)
- Mirna Moussa
- Unité TReD-Path (Transmission Réservoir & Diversité des Pathogènes), Institut Pasteur de la Guadeloupe, Les Abymes, 97183 Guadeloupe, France; (M.M.); (A.T.)
| | - Isabel Marcelino
- Unité TReD-Path (Transmission Réservoir & Diversité des Pathogènes), Institut Pasteur de la Guadeloupe, Les Abymes, 97183 Guadeloupe, France; (M.M.); (A.T.)
- Correspondence: ; Tel.: +590-590-897-664
| | | | - Jérôme Guerlotté
- Institut de Systématique, Evolution, Biodiversité (ISYEB) MNHN, CNRS, Sorbonne Université, EPHE Université des Antilles, Pointe-à-Pitre, 97110 Guadeloupe, France;
| | - Antoine Talarmin
- Unité TReD-Path (Transmission Réservoir & Diversité des Pathogènes), Institut Pasteur de la Guadeloupe, Les Abymes, 97183 Guadeloupe, France; (M.M.); (A.T.)
| |
Collapse
|
8
|
Nisar MA, Ross KE, Brown MH, Bentham R, Whiley H. Legionella pneumophila and Protozoan Hosts: Implications for the Control of Hospital and Potable Water Systems. Pathogens 2020; 9:pathogens9040286. [PMID: 32326561 PMCID: PMC7238060 DOI: 10.3390/pathogens9040286] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Legionella pneumophila is an opportunistic waterborne pathogen of public health concern. It is the causative agent of Legionnaires’ disease (LD) and Pontiac fever and is ubiquitous in manufactured water systems, where protozoan hosts and complex microbial communities provide protection from disinfection procedures. This review collates the literature describing interactions between L. pneumophila and protozoan hosts in hospital and municipal potable water distribution systems. The effectiveness of currently available water disinfection protocols to control L. pneumophila and its protozoan hosts is explored. The studies identified in this systematic literature review demonstrated the failure of common disinfection procedures to achieve long term elimination of L. pneumophila and protozoan hosts from potable water. It has been demonstrated that protozoan hosts facilitate the intracellular replication and packaging of viable L. pneumophila in infectious vesicles; whereas, cyst-forming protozoans provide protection from prolonged environmental stress. Disinfection procedures and protozoan hosts also facilitate biogenesis of viable but non-culturable (VBNC) L. pneumophila which have been shown to be highly resistant to many water disinfection protocols. In conclusion, a better understanding of L. pneumophila-protozoan interactions and the structure of complex microbial biofilms is required for the improved management of L. pneumophila and the prevention of LD.
Collapse
|
9
|
Spagnolo AM, Sartini M, Cave DD, Casini B, Tuvo B, Cristina ML. Evaluation of Microbiological and Free-Living Protozoa Contamination in Dental Unit Waterlines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16152648. [PMID: 31344972 PMCID: PMC6696308 DOI: 10.3390/ijerph16152648] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022]
Abstract
Studies conducted over the last 40 years have demonstrated that the water output from dental unit waterlines (DUWLs) is often contaminated with high densities of microorganisms. It has been monitored the microbiological quality of the water in 30 public dental facilities in northern Italy in order to assess the health risk for patients and dental staff. In each facility, samples of water both from taps and from DUWLs were analyzed in order to evaluate heterotrophic plate counts (HPCs) at 22 °C and 36 °C, and to detect coliform bacteria, Pseudomonas aeruginosa, Legionella pneumophila and amoebae. In 100% of the samples taken from the DUWLs, the concentration of HPCs was above the threshold as determined by the Ministère de la Santé et des Solidarités (2007). The concentration of P. aeruginosa was greater than the indicated threshold in 16.67% of the hand-pieces analyzed. A total of 78.33% of samples were contaminated by L. pneumophila, while in the samples taken from the DUWLs alone, this percentage rose to 86.67%. Amoebae were detected in 60% of the samples taken from hand-pieces; all belonging to the species V. vermiformis. This study documented the presence of various microorganisms, including Legionella spp., at considerably higher concentrations in water samples from DUWLs than in samples of tap water in the same facilities, confirming the role of the internal DUWLs in increasing microbial contamination, especially in the absence of proper management of waterborne health risks.
Collapse
Affiliation(s)
- Anna Maria Spagnolo
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genova, Italy
| | - Marina Sartini
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genova, Italy.
| | - David Di Cave
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Beatrice Casini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Benedetta Tuvo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Maria Luisa Cristina
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genova, Italy
| |
Collapse
|
10
|
Cervero-Aragó S, Schrammel B, Dietersdorfer E, Sommer R, Lück C, Walochnik J, Kirschner A. Viability and infectivity of viable but nonculturable Legionella pneumophila strains induced at high temperatures. WATER RESEARCH 2019; 158:268-279. [PMID: 31048196 PMCID: PMC6520252 DOI: 10.1016/j.watres.2019.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Thermal disinfection is commonly used to prevent the proliferation of culturable Legionella in engineered water systems (EWS). In response to such stress, culturable Legionella populations can switch into a viable but nonculturable (VBNC) state. The importance of such VBNC Legionella cells is currently hotly debated. Here, we investigated the stress response patterns and transitions of the bacteria to the VBNC state at 55 °C, 60 °C and 70 °C on two L. pneumophila strains for >80 days using a combination of cell-based viability indicators. Complete loss of culturability at 55 °C, 60 °C and 70 °C occurred after 3-8 h, 60 min and <2 min, respectively. In contrast, L. pneumophila strains required 9 days at 55 °C, 8 h at 60 °C and 20 min at 70 °C to achieve a 2 log reduction in cells with intact membranes and high esterase activity; a 4 log reduction was achieved only after 150, 8-15 and 1-4 days, respectively. In parallel, the presence of diagnostic outer-membrane epitopes (OMEs) and changes in the infectivity patterns of the two strains towards amoebae and THP-1 cells were assessed. OMEs were more persistent than viability indicators, showing their potential as targets for VBNC Legionella detection. L. pneumophila strains infected amoebae and THP-1 cells for at least 85 days at 55 °C and 60 °C and for up to 8 days at 70 °C. However, they did so with reduced efficiency, requiring prolonged co-incubation times with the hosts and higher Legionella cell numbers in comparison to culturable cells. Consequently, infection of amoebae by thermally induced VBNC L. pneumophila with lowered virulence can be expected in EWS. Although the gold standard method cannot detect VBNC Legionella, it provides important information about the most virulent bacterial subpopulations. Our results indicate that a prolonged thermal regime ≥60 °C at the central parts of warm water systems is not only effective against culturable L. pneumophila but in the long run even against VBNC cells.
Collapse
Affiliation(s)
- Sílvia Cervero-Aragó
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria.
| | - Barbara Schrammel
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Elisabeth Dietersdorfer
- Medical University of Vienna, Institute of Specific Prophylaxis and Tropical Medicine, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Regina Sommer
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria
| | - Christian Lück
- Technical University Dresden, Institute for Medical Microbiology and Hygiene, Medical Faculty "Carl Gustav Carus", Helmholtzstr. 10, D 01069, Dresden, Germany
| | - Julia Walochnik
- Medical University of Vienna, Institute of Specific Prophylaxis and Tropical Medicine, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Alexander Kirschner
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria; Karl Landsteiner University of Health Sciences, Division Water Quality and Health, Dr. Karl Dorrekstraße 30, A-3400, Krems, Austria
| |
Collapse
|
11
|
Dietersdorfer E, Kirschner A, Schrammel B, Ohradanova-Repic A, Stockinger H, Sommer R, Walochnik J, Cervero-Aragó S. Starved viable but non-culturable (VBNC) Legionella strains can infect and replicate in amoebae and human macrophages. WATER RESEARCH 2018; 141:428-438. [PMID: 29409685 DOI: 10.1016/j.watres.2018.01.058] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 05/22/2023]
Abstract
Legionella infections are among the most important waterborne infections with constantly increasing numbers of cases in industrialized countries, as a result of aging populations, rising numbers of immunocompromised individuals and increased need for conditioned water due to climate change. Surveillance of water systems is based on microbiological culture-based techniques; however, it has been shown that high percentages of the Legionella populations in water systems are not culturable. In the past two decades, the relevance of such viable but non-culturable (VBNC) legionellae has been controversially discussed, and whether VBNC legionellae can directly infect human macrophages, the primary targets of Legionella infections, remains unclear. In this study, it was demonstrated for the first time that several starved VBNC Legionella strains (four L. pneumophila serogroup 1 strains, a serogroup 6 strain and a L. micdadei strain) can directly infect different types of human macrophages and amoebae even after one year of starvation in ultrapure water. However, under these conditions, the strains caused infection with reduced efficacy, as represented by the lower percentages of infected cells, prolonged time in co-culture and higher multiplicities of infection required. Interestingly, the VBNC cells remained mostly non-culturable even after multiplication within the host cells. Amoebal infection by starved VBNC Legionella, which likely occurs in oligotrophic biofilms, would result in an increase in the bacterial concentration in drinking-water systems. If cells remain in the VBNC state, the real number of active legionellae will be underestimated by the use of culture-based standard techniques. Thus, further quantitative research is needed in order to determine, whether and how many starved VBNC Legionella cells are able to cause disease in humans.
Collapse
Affiliation(s)
- Elisabeth Dietersdorfer
- Medical University of Vienna, Institute of Specific Prophylaxis and Tropical Medicine, Department of Medical Parasitology, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Alexander Kirschner
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria.
| | - Barbara Schrammel
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria
| | - Anna Ohradanova-Repic
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Lazarettgasse 19, A-1090 Vienna, Austria
| | - Hannes Stockinger
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Lazarettgasse 19, A-1090 Vienna, Austria
| | - Regina Sommer
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria
| | - Julia Walochnik
- Medical University of Vienna, Institute of Specific Prophylaxis and Tropical Medicine, Department of Medical Parasitology, Kinderspitalgasse 15, A-1090, Vienna, Austria.
| | - Sílvia Cervero-Aragó
- Medical University of Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090, Vienna, Austria; Interuniversity Cooperation Centre for Water & Health, Vienna, Austria
| |
Collapse
|
12
|
Searching for Activity Markers that Approximate (VBNC) Legionella pneumophila Infectivity in Amoeba after Ultraviolet (UV) Irradiation. WATER 2018. [DOI: 10.3390/w10091219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Legionella pneumophila is an increasingly recognized threat to public health via aerosol exposures; with a variety of control measures including: water temperature/flow management and free chlorine used to reduce the risk of infection within healthcare centers. Despite these efforts, L. pneumophila often recolonizes plumbing systems after specific treatments, which prompted us to examine ultraviolet (UV) irradiation for a point-of-use, secondary control measure. Currently, there is no data on the efficacy of high (>254 nm) wavelength UV-C (100–280 nm) light inactivation of L. pneumophila with resuscitation of viable but non-culturable (VBNC) cells. We report for the first time L. pneumophila dose-responses for 268.6 nm and 288.6 nm UV-C, as compared to 256 nm, and demonstrate UV induced VBNC L. pneumophila remaining infectious to Acanthamoeba polyphaga during co-culture experiments. Findings were correlated to molecular-based activity assays to identify additional measures of L. pneumophila viability following UV disinfection compared to culture. A collection of viability markers may provide a more representative measure of risk compared to current culture-based detection, since UV-C irradiated L. pneumophila lose culturability, yet retain activity, increased ATP production, and the ability to be resuscitated by amoeba co-culture. This finding is significant as it identifies potential concern from VBNC cells following UV-C disinfection and the need for further research into the efficacy of UV inactivation as a point-of-use application for L. pneumophila control and management.
Collapse
|
13
|
Lizana X, López A, Benito S, Agustí G, Ríos M, Piqué N, Marqués A, Codony F. Viability qPCR, a new tool for Legionella risk management. Int J Hyg Environ Health 2017; 220:1318-1324. [DOI: 10.1016/j.ijheh.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
|
14
|
Mou Q, Leung PHM. Differential expression of virulence genes in Legionella pneumophila growing in Acanthamoeba and human monocytes. Virulence 2017; 9:185-196. [PMID: 28873330 PMCID: PMC5955191 DOI: 10.1080/21505594.2017.1373925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires’ disease, is widely distributed throughout natural and artificial water systems and can replicate in macrophages and amoebae. Amoebae are the natural hosts of L. pneumophila, whereas macrophages are incidentally infected. The life cycle of L. pneumophila comprises a replicative phase within the Legionella-containing vacuole (LCV) and a transmissive phase during which bacterial cells become motile and are released via killing of the host. Although the host death mechanisms induced by L. pneumophila have been studied, the expression patterns of related L. pneumophila genes have not been reported. The present study compared the expression patterns of host cell death-associated genes in L. pneumophila grown in the human monocytic cell line THP-1 and Acanthamoeba castellanii. Notably, when L. pneumophila was grown in THP-1, expression of the gene flaA, which is involved in the induction of pyroptosis, was downregulated during the course of infection. In contrast, sdhA associated indirectly with host death, was upregulated. Expression of the genes vipD and sidF, which are involved in the induction and suppression of apoptosis, changed by less than 2-fold. Notably, a lower percentage of pyroptotic cells was observed among infected THP-1 cells relative to uninfected cells, and the latter exhibited stronger expression of caspase-1. A different pattern was observed when L. pneumophila was grown in A. castellanii: flaA and vipD were activated, whereas sdhA and sidF were downregulated during the later stage of replication. The percentage of non-viable (annexin-V+ PI+ or annexin-V+PI−) A. castellanii organisms increased with Legionella infection, and the expression of metacaspase-1, which is involved in encystation was up-regulated at late infection time. In summary, L. pneumophila can multiply intracellularly in both amoebae and macrophages to induce cell death and secondary infection, and this characteristic is essential for its survival in water and the lungs. The gene expression profiles observed in this study indicated the increased cytotoxicity of L. pneumophila in A. castellanii, suggesting an increased adaptation of Legionella to this host.
Collapse
Affiliation(s)
- Qianqian Mou
- a Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Kowloon , Hong Kong , China
| | - Polly H M Leung
- a Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Kowloon , Hong Kong , China
| |
Collapse
|