1
|
Liu T, Zhang Y, Zhao H, Wu Q, Xin J, Pan Q. Mycoplasma hyopneumoniae inhibits the unfolded protein response to prevent host macrophage apoptosis and M2 polarization. Infect Immun 2024; 92:e0005124. [PMID: 39133018 PMCID: PMC11475852 DOI: 10.1128/iai.00051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Enzootic pneumonia caused by Mycoplasma hyopneumoniae (M. hyopneumoniae) has inflicted substantial economic losses on the global pig industry. The progression of M. hyopneumoniae induced-pneumonia is associated with lung immune cell infiltration and extensive proinflammatory cytokine secretion. Our previous study established that M. hyopneumoniae disrupts the host unfolded protein response (UPR), a process vital for the survival and immune function of macrophages. In this study, we demonstrated that M. hyopneumoniae targets the UPR- and caspase-12-mediated endoplasmic reticulum (ER)-associated classical intrinsic apoptotic pathway to interfere with host cell apoptosis signaling, thereby preserving the survival of host tracheal epithelial cells (PTECs) and alveolar macrophages (PAMs) during the early stages of infection. Even in the presence of apoptosis inducers, host cells infected with M. hyopneumoniae exhibited an anti-apoptotic potential. Further analyses revealed that M. hyopneumoniae suppresses the three UPR branches and their induced apoptosis. Interestingly, while UPR activation typically drives host macrophages toward an M2 polarization phenotype, M. hyopneumoniae specifically obstructs this process to maintain a proinflammatory phenotype in the host macrophages. Overall, our findings propose that M. hyopneumoniae inhibits the host UPR to sustain macrophage survival and a proinflammatory phenotype, which may be implicated in its pathogenesis in inducing host pneumonia.
Collapse
Affiliation(s)
- Tong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yujuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Huanjun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qi Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiuqing Xin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiao Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Wang J, Wu Y, Li H, Kang W, Li W, Fu S. Antitumor effects of polydopamine coated hydroxyapatite nanoparticles and its mechanism: Mitochondria-targeted ROS and calcium channels. BIOMATERIALS ADVANCES 2024; 161:213858. [PMID: 38692179 DOI: 10.1016/j.bioadv.2024.213858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
Nano hydroxyapatite (nHA) has been acknowledged for its inhibition efficiency on tumor cells and its excellent biocompatibility for normal tissue and cells. However, the low inhibitory efficiency of tumor cells and the ambiguous inhibitory mechanism limited its further application. In this work, four kinds of nHA with different sizes was prepared, and the one with the highest inhibition efficiency on 4T1 cells was screened as a substrate for developing the nanoparticles coated with polydopamine (PDA) coating, which was named nHA-PDA. Both in vivo and in vitro experiments were employed, and the results showed significantly higher inhibitory activity against 4T1 cells and 4T1-bared tumors by nHA-PDA. Further investigation revealed that the oxidative stress induced by PDA results in a large Reactive Oxygen Species (ROS) accumulation, thus triggering the mitochondria-dependent apoptosis pathway ROS-JNK/MAPK and inducing the cascade reaction of inhibiting the anti-apoptosis protein-Bcl-2 expression and activating the expression of the critical genes in apoptosis signaling pathway (caspase 3 and caspase 9). Besides, the significant increase of intracellular [Ca2+] may also be an essential reason for the damage of mitochondria, eventually leading to apoptosis.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yue Wu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huishan Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenjue Kang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenhao Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shijia Fu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
3
|
Haq RIU, Parray OR, Nazir QUA, Bhat RA, Shah SA, Kawoosa MS, Rabaan AA, Aljeldah M, Al Shammari BR, Almogbel MS, Alharbi N, Alrashoudi R, Sabour AA, Alaeq RA, Alshiekheid MA, Alshamrani SA, Albutti A, Alwashmi AS, Dhama K, Yatoo MI. Immune and Oxidative Response against Sonicated Antigen of Mycoplasma capricolum subspecies capripneumonia-A Causative Agent of Contagious Caprine Pleuropneumonia. Microorganisms 2022; 10:microorganisms10081634. [PMID: 36014052 PMCID: PMC9414976 DOI: 10.3390/microorganisms10081634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccines are vital for prevention and control of mycoplasma diseases. The exploration of a vaccine candidate for the development of a vaccine is imperative. The present study envisages the evaluation of immune and oxidative response against an adjuvanted, sonicated antigen of Mycoplasma capricolum subsp. capripneumonia in male Angora rabbits (1 year old, 2 kg) divided in four groups, each having six animals. Group 1 was the healthy control and received 1 mL PBS via subcutaneous route. Group 2 was administered 1 mL of saponin-adjuvanted and -sonicated antigen, Group 3 was given 1 mL of montanide ISA 50-adjuvanted and-sonicated antigen, and Group 4 was given 1 mL of standard vaccine via subcutaneous route. Animals were evaluated for cellular and humoral immune response and oxidative parameters at 0, 7, 14, 21, and 28 days of the study. Total leukocytic, neutrophilic, and basophilic counts showed a significant (p < 0.05) increase in vaccinated groups compared to the healthy group on most of the intervals. TNF-α levels were significantly (p < 0.05) higher in the Group 2 than the Group 1 at all the time intervals and more comparable to Group 4 than Group 3. IL-10 levels were significantly (p < 0.05) higher in vaccinated groups compared to the healthy group on days 14, 21, and 28, but were lower in Group 3 than in Group 2 and Group 4. More hypersensitivity as inflammation and histopathological cellular infiltration in the ear was produced in Group 2 and Group 4 than in Group 3. IgG levels were significantly (p < 0.05) higher in Group 2 and Group 4 than in Group 3 on days 14 and 21. Antibody titers were comparatively higher in Group 4, followed by Group 2 and 3, than Group 1. Significantly (p < 0.05) higher oxidant and lower antioxidant values were noted in Group 2 and 4 compared to Group 3 and Group 1 on most of the intervals. The TLC and antibody titer showed increasing trend throughout the trial, whereas TNF-α, IgG, L, M and E started decreasing from day 14, and IL-10, N and B started decreasing from day 21. This study concludes that the saponin-adjuvanted and-sonicated antigen induces comparatively higher immune response than montanide but is associated with oxidative and inflammatory reactions.
Collapse
Affiliation(s)
- Rather Izhar Ul Haq
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India
| | - Oveas Rafiq Parray
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India
| | - Qurat Ul Ain Nazir
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India
| | - Riyaz Ahmed Bhat
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India
| | - Showkat Ahmad Shah
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India
| | - Majid Shafi Kawoosa
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Mohammed S. Almogbel
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail 4030, Saudi Arabia
| | - Nada Alharbi
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Reem Alrashoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11461, Saudi Arabia
| | - Amal A. Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rana A. Alaeq
- Department of Medical Laboratories Technology, Faculty of Applied Medical Science, Taibah University, Al Madinah Al Munawarh 42353, Saudi Arabia
| | - Maha A. Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S.S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Mohd. Iqbal Yatoo
- Mycoplasma Laboratory, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Alusteng, Srinagar 190006, Jammu and Kashmir, India
- Correspondence: ; Tel.: +91-9419598775
| |
Collapse
|
4
|
Santos-Junior MN, Neves WS, Santos RS, Almeida PP, Fernandes JM, Guimarães BCDB, Barbosa MS, da Silva LSC, Gomes CP, Sampaio BA, Rezende IDS, Correia TML, Neres NSDM, Campos GB, Bastos BL, Timenetsky J, Marques LM. Heterologous Expression, Purification, and Immunomodulatory Effects of Recombinant Lipoprotein GUDIV-103 Isolated from Ureaplasma diversum. Microorganisms 2022; 10:microorganisms10051032. [PMID: 35630474 PMCID: PMC9147684 DOI: 10.3390/microorganisms10051032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
Ureaplasma diversum is a bacterial pathogen that infects cattle and can cause severe inflammation of the genital and reproductive systems. Lipid-associated membrane proteins (LAMPs), including GUDIV-103, are the main virulence factors in this bacterium. In this study, we heterologously expressed recombinant GUDIV-103 (rGUDIV-103) in Escherichia coli, purified it, and evaluated its immunological reactivity and immunomodulatory effects in bovine peripheral blood mononuclear cells (PBMCs). Samples from rabbits inoculated with purified rGUDIV-103 were analysed using indirect enzyme-linked immunosorbent assay and dot blotting to confirm polyclonal antibody production and assess kinetics, respectively. The expression of this lipoprotein in field isolates was confirmed via Western blotting with anti-rGUDIV-103 serum and hydrophobic or hydrophilic proteins from 42 U. diversum strains. Moreover, the antibodies produced against the U. diversum ATCC 49783 strain recognised rGUDIV-103. The mitogenic potential of rGUDIV-103 was evaluated using a lymphoproliferation assay in 5(6)-carboxyfluorescein diacetate succinimidyl ester−labelled bovine PBMCs, where it induced lymphocyte proliferation. Quantitative polymerase chain reaction analysis revealed that the expression of interleukin-1β, toll-like receptor (TLR)-α, TLR2, TLR4, inducible nitric oxide synthase, and caspase-3−encoding genes increased more in rGUDIV-103−treated PBMCs than in untreated cells (p < 0.05). Treating PBMCs with rGUDIV-103 increased nitric oxide and hydrogen peroxide levels. The antigenic and immunogenic properties of rGUDIV-103 suggested its suitability for immunobiological application.
Collapse
Affiliation(s)
- Manoel Neres Santos-Junior
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Wanderson Souza Neves
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Ronaldo Silva Santos
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Palloma Porto Almeida
- Bioinformatics and Computational Biology Lab, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro 20231-050, Brazil;
| | - Janaina Marinho Fernandes
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Bruna Carolina de Brito Guimarães
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Maysa Santos Barbosa
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
| | - Lucas Santana Coelho da Silva
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Camila Pacheco Gomes
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Beatriz Almeida Sampaio
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Izadora de Souza Rezende
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
| | - Thiago Macedo Lopes Correia
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Nayara Silva de Macedo Neres
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
| | - Guilherme Barreto Campos
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Bruno Lopes Bastos
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
| | - Jorge Timenetsky
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
| | - Lucas Miranda Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista 40170-110, Brazil; (M.N.S.-J.); (W.S.N.); (R.S.S.); (J.M.F.); (T.M.L.C.); (N.S.d.M.N.)
- Department of Biology, and Biotechnology of Microorganisms, State University of Santa Cruz (UESC), Ilhéus 45662-900, Brazil; (B.C.d.B.G.); (L.S.C.d.S.); (C.P.G.); (B.A.S.); (G.B.C.); (B.L.B.)
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil; (M.S.B.); (I.d.S.R.); (J.T.)
- Correspondence:
| |
Collapse
|
5
|
Barbosa MS, Marques LM, Timenetsky J, Rosengarten R, Spergser J, Chopra-Dewasthaly R. Host cell interactions of novel antigenic membrane proteins of Mycoplasma agalactiae. BMC Microbiol 2022; 22:93. [PMID: 35395771 PMCID: PMC8991494 DOI: 10.1186/s12866-022-02512-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mycoplasma agalactiae is the main etiological agent of Contagious Agalactia syndrome of small ruminants notifiable to the World Organization for Animal Health. Despite serious economic losses, successful vaccines are unavailable, largely because its colonization and invasion factors are not well understood. This study evaluates the role of two recently identified antigenic proteins (MAG_1560, MAG_6130) and the cytadhesin P40 in pathogenicity related phenotypes. Results Adhesion to HeLa and sheep primary mammary stromal cells (MSC) was evaluated using ELISA, as well as in vitro adhesion assays on monolayer cell cultures. The results demonstrated MAG_6130 as a novel adhesin of M. agalactiae whose capacity to adhere to eukaryotic cells was significantly reduced by specific antiserum. Additionally, these proteins exhibited significant binding to plasminogen and extracellular matrix (ECM) proteins like lactoferrin, fibrinogen and fibronectin, a feature that could potentially support the pathogen in host colonization, tissue migration and immune evasion. Furthermore, these proteins played a detrimental role on the host cell proliferation and viability and were observed to activate pro-apoptotic genes indicating their involvement in cell death when eukaryotic cells were infected with M. agalactiae. Conclusions To summarize, the hypothetical protein corresponding to MAG_6130 has not only been assigned novel adhesion functions but together with P40 it is demonstrated for the first time to bind to lactoferrin and ECM proteins thereby playing important roles in host colonization and pathogenicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02512-2.
Collapse
Affiliation(s)
- Maysa Santos Barbosa
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria.,Present Address: Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lucas Miranda Marques
- Present Address: Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil. .,Multidisciplinary Institute of Health, Federal University of Bahia, Vitória da Conquista, Brazil.
| | - Jorge Timenetsky
- Present Address: Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Renate Rosengarten
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria
| | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria
| | - Rohini Chopra-Dewasthaly
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, A-1210, Austria.
| |
Collapse
|
6
|
Hao F, Xie X, Feng Z, Chen R, Wei Y, Liu J, Xiong Q, Shao G, Lin J. NADH oxidase of Mycoplasma hyopneumoniae functions as a potential mediator of virulence. BMC Vet Res 2022; 18:126. [PMID: 35366872 PMCID: PMC8976378 DOI: 10.1186/s12917-022-03230-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background Mycoplasma hyopneumoniae (M. hyopneumoniae) is the etiological agent of enzootic pneumonia, a highly infectious swine respiratory disease that distributed worldwide. The pathogenesis and virulence factors of M. hyopneumoniae are not fully clarified. As an important virulence factor of bacteria, nicotinamide adenine dinucleotide (NADH) oxidase (NOX) participates in host-pathogen interaction, however, the function of NOX involved in the pathogenesis of M. hyopneumoniae is not clear. Results In this study, significant differences in NOX transcription expression levels among different strains of M. hyopneumoniae differed in virulence were identified, suggesting that NOX may be correlated with M. hyopneumoniae virulence. The nox gene of M. hyopneumoniae was cloned and expressed in Escherichia coli, and polyclonal antibodies against recombinant NOX (rNOX) were prepared. We confirmed the enzymatic activity of rNOX based on its capacity to oxidize NADH to NAD+. Flow cytometry analysis demonstrated the surface localization of NOX, and subcellular localization analysis further demonstrated that NOX exists in both the cytoplasm and cell membrane. rNOX was depicted to mediate adhesion to immortalized porcine bronchial epithelial cells (hTERT-PBECs). Pre-neutralizing M. hyopneumoniae with anti-rNOX antibody resulted in a more than 55% reduction in the adhesion rate of high- and low-virulence M. hyopneumoniae strains to hTERT-PBECs. Moreover, a significant difference appeared in the decline in CCU50 titer between virulent (168) and virulence-attenuated (168L) strains. NOX not only recognized and interacted with host fibronectin but also induced cellular oxidative stress and apoptosis in hTERT-PBECs. The release of lactate dehydrogenase by NOX in hTERT-PBECs was positively correlated with the virulence of M. hyopneumoniae strains. Conclusions NOX is considered to be a potential virulence factor of M. hyopneumoniae and may play a significant role in mediating its pathogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03230-7.
Collapse
|
7
|
Chen J, Zhou Y, Zhu E, Yang P, Li M, Zhang S, Yue J, Wen M, Wang K, Cheng Z. Mycoplasma ovipneumoniae induces caspase-8-dependent extrinsic apoptosis and p53- and ROS-dependent intrinsic apoptosis in murine alveolar macrophages. Virulence 2021; 12:2703-2720. [PMID: 34678131 PMCID: PMC8923071 DOI: 10.1080/21505594.2021.1984714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mycoplasma ovipneumoniae (MO) is a principle causative agent of chronic respiratory disease in ruminants, including sheep, goats, and deer, posing a great threat to the ruminant industry worldwide. However, the pathogenesis of MO infection still remains not well understood and needs further clarification. Here we report a time-dependent apoptosis in cultured murine alveolar macrophage (MH-S) cell lines in response to MO infection in vitro. Mechanistically, MO infection activated apoptosis in MH-S cells through caspase-8-dependent extrinsic pathway and through tumor protein 53 (p53)- and reactive oxygen species (ROS)-dependent intrinsic mitochondrial pathways. Moreover, MO infection promoted both transcription and translation of proinflammatory cytokine genes including interleukin-1β (IL-1β), IL-18, and tumor necrosis factor-α (TNF-α), in a caspase-8-, p53-, and ROS-dependent manner, implying a potential link between MO-induced inflammation and apoptotic cell death. Collectively, our results suggest that MO infection induces the activation of extrinsic and intrinsic apoptotic pathways in cultured MH-S cells, which is related to upregulated expression of proinflammatory cytokines. Our findings will contribute to the elucidation of pathogenesis in MO infection and provide valuable reference for the development of new strategies for controlling MO infection.
Collapse
Affiliation(s)
- Jing Chen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Yi Zhou
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Erpeng Zhu
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Peng Yang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Mei Li
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Shuangxiang Zhang
- The Laboratory of Veterinary Medicine, Animal Disease Prevention and Control Center of Guizhou Province, Guiyang, China
| | - Jun Yue
- The Laboratory of Veterinary Medicine, Animal Disease Prevention and Control Center of Guizhou Province, Guiyang, China
| | - Ming Wen
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Kaigong Wang
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| | - Zhentao Cheng
- Department of Veterinary Medicine, College of Animal Science, Guizhou University, Guiyang, China.,Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Xie X, Hao F, Chen R, Wang J, Wei Y, Liu J, Wang H, Zhang Z, Bai Y, Shao G, Xiong Q, Feng Z. Nicotinamide Adenine Dinucleotide-Dependent Flavin Oxidoreductase of Mycoplasma hyopneumoniae Functions as a Potential Novel Virulence Factor and Not Only as a Metabolic Enzyme. Front Microbiol 2021; 12:747421. [PMID: 34671334 PMCID: PMC8521518 DOI: 10.3389/fmicb.2021.747421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Mycoplasma hyopneumoniae (Mhp) is the main pathogen that causes enzootic pneumonia, a disease that has a significant impact on the pig industry worldwide. The pathogenesis of enzootic pneumonia, especially possible virulence factors of Mhp, has still not been fully elucidated. The transcriptomic and proteomic analyses of different Mhp strains reported in the literature have revealed differences in virulence, and differences in RNA transcription levels between high- and low-virulence strains initially indicated that nicotinamide adenine dinucleotide (NADH)-dependent flavin oxidoreductase (NFOR) was related to Mhp pathogenicity. Prokaryotic expression and purification of the NFOR protein from Mhp were performed, a rabbit-derived polyclonal antibody against NFOR was prepared, and multiple sequence alignment and evolutionary analyses of Mhp NFOR were performed. For the first time, it was found that the NFOR protein was conserved among all Mhp strains, and NFOR was localized to the cell surface and could adhere to immortalized porcine bronchial epithelial cells (hTERT-PBECs). Adhesion to hTERT-PBECs could be specifically inhibited by an anti-NFOR polyclonal antibody, and the rates of adhesion to both high- and low-virulence strains, 168 and 168L, significantly decreased by more than 40%. Moreover, Mhp NFOR not only recognized and interacted with host fibronectin and plasminogen but also induced cellular oxidative stress and apoptosis in hTERT-PBECs. The release of lactate dehydrogenase by hTERT-PBECs incubated with Mhp NFOR was significantly positively correlated with the virulence of Mhp. Overall, in addition to being a metabolic enzyme related to oxidative stress, NFOR may also function as a potential novel virulence factor of Mhp, thus contributing to the pathogenesis of Mhp; these findings provide new ideas and theoretical support for studying the pathogenic mechanisms of other mycoplasmas.
Collapse
Affiliation(s)
- Xing Xie
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fei Hao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingjing Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanna Wei
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jin Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Haiyan Wang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhenzhen Zhang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yun Bai
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
9
|
Mousel MR, White SN, Herndon MK, Herndon DR, Taylor JB, Becker GM, Murdoch BM. Genes involved in immune, gene translation and chromatin organization pathways associated with Mycoplasma ovipneumoniae presence in nasal secretions of domestic sheep. PLoS One 2021; 16:e0247209. [PMID: 34252097 PMCID: PMC8274911 DOI: 10.1371/journal.pone.0247209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/26/2021] [Indexed: 12/20/2022] Open
Abstract
Mycoplasma ovipneumoniae contributes to polymicrobial pneumonia in domestic sheep. Elucidation of host genetic influences of M. ovipneumoniae nasal detection has the potential to reduce the incidence of polymicrobial pneumonia in sheep through implementation of selective breeding strategies. Nasal mucosal secretions were collected from 647 sheep from a large US sheep flock. Ewes of three breeds (Polypay n = 222, Rambouillet n = 321, and Suffolk n = 104) ranging in age from one to seven years, were sampled at three different times in the production cycle (February, April, and September/October) over four years (2015 to 2018). The presence and DNA copy number of M. ovipneumoniae was determined using a newly developed species-specific qPCR. Breed (P<0.001), age (P<0.024), sampling time (P<0.001), and year (P<0.001) of collection affected log10 transformed M. ovipneumoniae DNA copy number, where Rambouillet had the lowest (P<0.0001) compared with both Polypay and Suffolk demonstrating a possible genetic component to detection. Samples from yearlings, April, and 2018 had the highest (P<0.046) detected DNA copy number mean. Sheep genomic DNA was genotyped with the Illumina OvineHD BeadChip. Principal component analysis identified most of the variation in the dataset was associated with breed. Therefore, genome wide association analysis was conducted with a mixed model (EMMAX), with principal components 1 to 6 as fixed and a kinship matrix as random effects. Genome-wide significant (P<9x10-8) SNPs were identified on chromosomes 6 and 7 in the all-breed analysis. Individual breed analysis had genome-wide significant (P<9x10-8) SNPs on chromosomes 3, 4, 7, 9, 10, 15, 17, and 22. Annotated genes near these SNPs are part of immune (ANAPC7, CUL5, TMEM229B, PTPN13), gene translation (PIWIL4), and chromatin organization (KDM2B) pathways. Immune genes are expected to have increased expression when leukocytes encounter M. ovipneumoniae which would lead to chromatin reorganization. Work is underway to narrow the range of these associated regions to identify the underlying causal mutations.
Collapse
Affiliation(s)
- Michelle R. Mousel
- U.S. Department of Agriculture, Animal Disease Research Unit, Agricultural Research Service, Pullman, WA, United States of America
- Paul G. Allen School of Global Animal Health, Washington State University, Pullman, WA, United States of America
| | - Stephen N. White
- U.S. Department of Agriculture, Animal Disease Research Unit, Agricultural Research Service, Pullman, WA, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - Maria K. Herndon
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States of America
| | - David R. Herndon
- U.S. Department of Agriculture, Animal Disease Research Unit, Agricultural Research Service, Pullman, WA, United States of America
| | - J. Bret Taylor
- U.S. Department of Agriculture, Range Sheep Production Efficiency Research, Agricultural Research Service, Dubois, ID, United States of America
| | - Gabrielle M. Becker
- Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States of America
| | - Brenda M. Murdoch
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
- Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, United States of America
| |
Collapse
|
10
|
Grossman PC, Schneider DA, Herndon DR, Knowles DP, Highland MA. Differential pulmonary immunopathology of domestic sheep (Ovis aries) and bighorn sheep (Ovis canadensis) with Mycoplasma ovipneumoniae infection: A retrospective study. Comp Immunol Microbiol Infect Dis 2021; 76:101641. [PMID: 33689940 DOI: 10.1016/j.cimid.2021.101641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Mycoplasma ovipneumoniae is a respiratory pathogen that impacts domestic sheep (Ovis aries; DS) and bighorn sheep (Ovis canadensis; BHS). BHS are reported to be more susceptible than DS to developing polymicrobial pneumonia associated with M. ovipneumoniae infection. Using formalin-fixed paraffin-embedded tissues, we performed a retrospective study investigating the pulmonary immune response of DS and BHS to M. ovipneumoniae infection. M. ovipneumoniae infected DS exhibited a more robust and well-organized BALT formation as compared to BHS. Digital analysis of immunohistochemical chromogen deposition in lung tissue was used to quantitate T cell marker CD3, B cell markers CD20 and CD79a, macrophage markers CD163 and Iba1, and cytokine IL-17. A significant interaction of species and infection status was identified for CD3, CD163, and IL-17. BHS had a greater increase in bronchiolar CD3 and bronchiolar and alveolar CD163 with infection, as compared to DS. BHS had an increase in bronchiolar associated lymph tissue (BALT) and alveolar IL-17 with infection, while these remained similar in DS regardless of infection status. IL-17 in respiratory epithelium of bronchi and bronchioles comparatively decreased in DS and increased in BHS with infection. These data begin to define the interspecies differential immune response to pulmonary M. ovipneumoniae infection in DS and BHS and provide the first investigations of respiratory epithelium-associated IL-17 in ovine.
Collapse
Affiliation(s)
- Paige C Grossman
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - David A Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, WA, 99164, USA
| | - David R Herndon
- United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, WA, 99164, USA
| | - Donald P Knowles
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, WA, 99164, USA
| | - Margaret A Highland
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA; United States Department of Agriculture, Agricultural Research Service, Animal Disease Research Unit, Pullman, WA, 99164, USA.
| |
Collapse
|
11
|
Santos Junior MN, de Macêdo Neres NS, Campos GB, Bastos BL, Timenetsky J, Marques LM. A Review of Ureaplasma diversum: A Representative of the Mollicute Class Associated With Reproductive and Respiratory Disorders in Cattle. Front Vet Sci 2021; 8:572171. [PMID: 33681318 PMCID: PMC7930009 DOI: 10.3389/fvets.2021.572171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/22/2022] Open
Abstract
The Mollicutes class encompasses wall-less microbes with a reduced genome. They may infect plants, insects, humans, and animals including those on farms and in livestock. Ureaplasma diversum is a mollicute associated with decreased reproduction mainly in the conception rate in cattle, as well as weight loss and decreased quality in milk production. Therefore, U. diversum infection contributes to important economic losses, mainly in large cattle-producing countries such as the United States, China, Brazil, and India. The characteristics of Mollicutes, virulence, and pathogenic variations make it difficult to control their infections. Genomic analysis, prevalence studies, and immunomodulation assays help better understand the pathogenesis of bovine ureaplasma. Here we present the main features of transmission, virulence, immune response, and pathogenesis of U. diversum in bovines.
Collapse
Affiliation(s)
- Manoel Neres Santos Junior
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil
| | - Nayara Silva de Macêdo Neres
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Guilherme Barreto Campos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Bruno Lopes Bastos
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Jorge Timenetsky
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Lucas Miranda Marques
- Department of Biointeraction, Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Department of Microbiology, State University of Santa Cruz (UESC), Ilhéus, Brazil
- Department of Microbiology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Wufuer R, Bai J, Liu Z, Zhou K, Taoerdahong H. Biological activity of Brassica rapa L. polysaccharides on RAW264.7 macrophages and on tumor cells. Bioorg Med Chem 2020; 28:115330. [DOI: 10.1016/j.bmc.2020.115330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
|
13
|
Ji Y, Bolhuis A, Watson ML. Staphylococcus aureus products subvert the Burkholderia cenocepacia-induced inflammatory response in airway epithelial cells. J Med Microbiol 2019; 68:1813-1822. [PMID: 31674896 DOI: 10.1099/jmm.0.001100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Introduction. Chronic pulmonary infection is associated with colonization with multiple micro-organisms but host-microbe and microbe-microbe interactions are poorly understood.Aim. This study aims to investigate the differences in host responses to mono- and co-infection with S. aureus and B. cenocepacia in human airway epithelial cells.Methodology. We assessed the effect of co-infection with B. cenocepacia and S. aureus on host signalling and inflammatory responses in the human airway epithelial cell line 16HBE, using ELISA and western blot analysis.Results. The results show that B. cenocepacia activates MAPK and NF-κB signalling pathways, subsequently eliciting robust interleukin (IL)-8 production. However, when airway epithelial cells were co-treated with live B. cenocepacia bacteria and S. aureus supernatants (conditioned medium), the pro-inflammatory response was attenuated. This anti-inflammatory effect was widely exhibited in the S. aureus isolates tested and was mediated via reduced MAPK and NF-κB signalling, but not via IL-1 receptor or tumour necrosis factor receptor modulation. The staphylococcal effectors were characterized as small, heat-stable, non-proteinaceous and not cell wall-related factors.Conclusion. This study demonstrates for the first time the host response in a S. aureus/B. cenocepacia co-infection model and provides insight into a staphylococcal immune evasion mechanism, as well as a therapeutic intervention for excessive inflammation.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Pharmacy and Pharmacology, University of Bath, BA2 7AY, UK
| | - Albert Bolhuis
- Department of Pharmacy and Pharmacology, University of Bath, BA2 7AY, UK
| | - Malcolm L Watson
- Department of Pharmacy and Pharmacology, University of Bath, BA2 7AY, UK
| |
Collapse
|
14
|
Comparison of three methods of enumeration for Mycoplasma ovipneumoniae. J Microbiol Methods 2019; 165:105700. [PMID: 31446035 DOI: 10.1016/j.mimet.2019.105700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 11/22/2022]
|
15
|
Yatoo MI, Parray OR, Mir M, Bhat RA, Malik HU, Fazili MUR, Qureshi S, Mir MS, Yousuf RW, Tufani NA, Dhama K, Bashir ST. Comparative evaluation of different therapeutic protocols for contagious caprine pleuropneumonia in Himalayan Pashmina goats. Trop Anim Health Prod 2019; 51:2127-2137. [PMID: 31076996 DOI: 10.1007/s11250-019-01913-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/29/2019] [Indexed: 01/02/2023]
Abstract
Therapeutic management of contagious caprine pleuroneumonia (CCPP) involves mostly the use of oxytetracycline followed by enrofloxacin and rarely tylosin. In many parts of the world including India, the former antibiotics are commonly available than the latter. Therefore, prolonged use of the same leads to the development of antibiotic resistance and decreased efficacy of drug. Besides, inflammatory and allergic pathogenesis of CCPP envisages combination therapy. In this study, we evaluated the effectiveness of the combination therapy using different antibiotics (oxytetracycyline @ 10: group I, enrofloxacin @ 5 group II, and tylosin: group III, @ 10 mg/kg body weight), along with anti-inflammatory (meloxicam @ 0.5 mg/kg) and anti-allergic (pheneramine maleate @ 1.0 mg/kg) drugs. These drugs were given intramuscularly at the interval of 48 h for four times in three test groups (n = 10) of Pashmina goats, viz. groups I, II, and III, respectively, affected with CCPP. Group IV (n = 10) was kept as healthy control when group V (n = 10) treated with oxytetracycline @ 10 mg/kg alone was used as positive control. Clinical signs, clinical parameters, pro-inflammatory cytokine (tumor necrosis factor alpha (TNF-α)), and oxidative stress indices (total oxidant status (TOS), total antioxidant status (TAS)) were evaluated at hours 0, 48, 96, and 144 of experimental trial. Tylosin-based combination therapy resulted in a rapid and favorable recovery resulting in restoration of normal body temperature (102.46 ± 0.31 °F), respiration rate (16.30 ± 0.79 per minute), and heart rate (89.50 ± 2.63 per minute) compared to the oxytetracycline (102.95 ± 0.13, 21.30 ± 1.12, 86.00 ± 2.33, respectively) and enrofloxacin (102.97 ± 0.19, 21.00 ± 1.25, 90.00 ± 2.58, respectively) treated groups. By hour 144, all the groups showed restoration of clinical parameters of normal health and diminishing signs of CCPP, viz. fever, dyspnea, coughing, nasal discharge, weakness, and pleurodynia. Significant (P ≤ 0.05) decrease in levels of TNF-α and non-significant (P > 0.05) decrease in levels of TOS and an increase in levels of TAS were noted from hour 0 to 144 in all the test groups. Within the groups, no significant (P > 0.05) change was noted in TNF-α, TOS, and TAS levels; however, TNF-α levels were comparatively lower in group III. Hematological parameters did not differ significantly (P > 0.05). From these findings, it can be inferred that tylosin-based combination therapy is relatively better for early, rapid, and safe recovery besides minimizing inflammatory and oxidative cascade in CCPP affected Pashmina goats compared to oxytetracycline- and enrofloxacin-based therapies.
Collapse
Affiliation(s)
- Mohd Iqbal Yatoo
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India.
| | - Oveas Raffiq Parray
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Muheet Mir
- Division of Clinical Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, SKUAST-Kashmir, 190006, India
| | - Riyaz Ahmed Bhat
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Hamid Ullah Malik
- Division of Clinical Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, SKUAST-Kashmir, 190006, India
| | - Mujeeb Ur Rehman Fazili
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Sabia Qureshi
- Division of Veterinary Microbiology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, SKUAST-Kashmir, 190006, India
| | - Masood Salim Mir
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, SKUAST-Kashmir, 190006, India
| | - Raja Wasim Yousuf
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Noor Alam Tufani
- Mycoplasma Laboratory, Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, Srinagar, Jammu and Kashmir, 190006, India
| | - Kuldeep Dhama
- Division of Veterinary Pathology, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly, Uttar Pradesh, 243422, India
| | - Shah Tauseef Bashir
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Champaign, IL, 61801, USA
| |
Collapse
|
16
|
Hepatic and Renal Toxicity Induced by TiO 2 Nanoparticles in Rats: A Morphological and Metabonomic Study. J Toxicol 2019; 2019:5767012. [PMID: 30941172 PMCID: PMC6421043 DOI: 10.1155/2019/5767012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022] Open
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are produced abundantly and are frequently used as a white pigment in the manufacture of paints, foods, paper, and toothpaste. Despite the wide ranges of uses, there is a lack of information on the impact of NPs on animal and human health. In the present study, rats were exposed to different doses of TiO2 nanoparticles and sacrificed, respectively, 4 days, 1 month, and 2 months after treatment. Dosage of TiO2 in tissues was performed by ICP-AES and revealed an important accumulation of TiO2 in the liver. The nanoparticles induced morphological and physiological alterations in liver and kidney. In the liver, these alterations mainly affect the hepatocytes located around the centrilobular veins. These cells were the site of an oxidative stress evidenced by immunocytochemical detection of 4-hydroxynonenal (4-HNE). Kupffer cells are also the site of an important oxidative stress following the massive internalization of TiO2 nanoparticles. Enzymatic markers of liver and kidney functions (such as AST and uric acid) are also disrupted only in animals exposed to highest doses. The metabonomic approach allowed us to detect modifications in urine samples already detectable after 4 days in animals treated at the lowest dose. This metabonomic pattern testifies an oxidative stress as well as renal and hepatic alterations.
Collapse
|
17
|
Loop-mediated isothermal amplification-lateral-flow dipstick (LAMP-LFD) to detect Mycoplasma ovipneumoniae. World J Microbiol Biotechnol 2019; 35:31. [PMID: 30701329 PMCID: PMC6353813 DOI: 10.1007/s11274-019-2601-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/18/2019] [Indexed: 11/17/2022]
Abstract
In order to establish a rapid detection method for Mycoplasma ovipneumoniae, this study used the loop-mediated isothermal amplification (LAMP) technique to carry out nucleic acid amplification and chromatographic visualization via a lateral flow dipstick (LFD) assay. The M. ovipneumoniae elongation factor TU gene (EF-TU) was detected using a set of specific primers designed for the EF-TU gene, and the EF-TU FIP was detected by biotin labeling, which was used in the LAMP amplification reaction. The digoxin-labeled probe specifically hybridized with LAMP products, which were visually detected by LFD. Here, we established the M. ovipneumoniae LAMP-LFD rapid detection method and tested the specificity, sensitivity, and clinical application of this method. Results showed that the optimized LAMP performed at 60 °C for 60 min, and LFD can specifically and visually detect M. ovipneumoniae with a minimum detectable concentration at 1.0 × 102 CFU/mL. The sensitivity of LAMP-LFD was 1000 times that of the conventional PCR detection methods, and the clinical lung tissue detection rate was 86% of 50 suspected sheep infected with M. ovipneumoniae. In conclusion, LAMP-LFD was established in this study to detect M. ovipneumoniae, a method that was highly specific, sensitive, and easy to operate, and provides a new method for the prevention and diagnosis of M. ovipneumoniae infection.
Collapse
|
18
|
Zhang L, Zhang SN, Li L, Zhang XB, Wu RC, Liu JH, Huang ZY, Li W, Ran JH. Prolonged warm ischemia aggravates hepatic mitochondria damage and apoptosis in DCD liver by regulating Ca 2+/CaM/CaMKII signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:217-228. [PMID: 31933737 PMCID: PMC6944004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/14/2018] [Indexed: 06/10/2023]
Abstract
This study was conducted to investigate the effect of warm ischemia duration on hepatocyte mitochondrial damage after liver transplantation, and confirm the role of CaMKIIγ in this process. Rat donation after cardiac death (DCD) liver transplantation model was established by exposing donor liver to 0 (W0 group), 15 (W15 group), and 30 (W30 group) min warm ischemia. Some rats in W15 group were transfected with CaMKIIγ and CaMKIIγ-shRNA lentivirus. On day 1, 3, and 7 post-transplantation, a series of experiments, including HE staining, TEM observation, ALT and AST measurement, flow cytometry analysis, qRT-PCR, and Western blotting were performed to evaluate the extent of hepatic and mitochondria damage. Within 7 days post-transplantation, prolonged ischemia led to an obvious deterioration of hepatic and mitochondria damage, presenting with a marked increase of apoptotic hepatocytes, ALT and AST levels, cells with low MMP, and AIF and Cyt C expression. CaMKIIγ overexpression caused the significant ultrastructural damage of hepatic cells, increase of cells with low MMP, enhancement of AIF and Cyt C expression, and augmented Ca2+/CaM/CaMKIIγ, while blocking CaMKIIγ showed an opposite result. In conclusion, ischemia duration is proportional to the extent of hepatic mitochondria damage, and CaMKIIγ plays a negative regulatory role in this process by regulating the Ca2+/CaM/CaMKII signaling pathway.
Collapse
Affiliation(s)
- Li Zhang
- Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette HospitalKunming, Yunnan Province, China
- Department of Hepatopancreatobiliary, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunming, Yunnan Province, China
| | - Sheng-Ning Zhang
- Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette HospitalKunming, Yunnan Province, China
| | - Li Li
- Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette HospitalKunming, Yunnan Province, China
| | - Xi-Bing Zhang
- Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette HospitalKunming, Yunnan Province, China
| | - Rui-Chao Wu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette HospitalKunming, Yunnan Province, China
| | - Jun-Han Liu
- Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette HospitalKunming, Yunnan Province, China
| | - Zhao-Yu Huang
- Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette HospitalKunming, Yunnan Province, China
| | - Wang Li
- Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette HospitalKunming, Yunnan Province, China
| | - Jiang-Hua Ran
- Department of Hepatopancreatobiliary Surgery, The Affiliated Calmette Hospital of Kunming Medical University, The First People’s Hospital of Kunming, Calmette HospitalKunming, Yunnan Province, China
| |
Collapse
|
19
|
Poly-L-Arginine Induces Apoptosis of NCI-H292 Cells via ERK1/2 Signaling Pathway. J Immunol Res 2018; 2018:3651743. [PMID: 30013990 PMCID: PMC6022307 DOI: 10.1155/2018/3651743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/22/2018] [Accepted: 05/06/2018] [Indexed: 12/31/2022] Open
Abstract
Cationic protein is a cytotoxic protein secreted by eosinophils and takes part in the damage of airway epithelium in asthma. Poly-L-arginine (PLA), a synthetic cationic protein, is widely used to mimic the biological function of the natural cationic protein in vitro. Previous studies demonstrated the damage of the airway epithelial cells by cationic protein, but the molecular mechanism is unclear. The purpose of this study aimed at exploring whether PLA could induce apoptosis of human airway epithelial cells (NCI-H292) and the underlying mechanism. Methods. The morphology of apoptotic cells was observed by transmission electron microscopy. The rate of apoptosis was analyzed by flow cytometry (FCM). The expressions of the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Bcl-2/Bax, and cleaved caspase-3 were assessed by western blot. Results. PLA can induce apoptosis in NCI-H292 cells in a concentration-dependent manner. Moreover, the phosphorylation of the ERK1/2 and the unbalance of Bcl2/Bax, as well as the activation of caspase-3, were involved in the PLA-induced apoptosis. Conclusions. PLA can induce the apoptosis in NCI-H292 cells, and this process at least involved the ERK1/2 and mitochondrial pathway. The results could have some indications in revealing the apoptotic damage of the airway epithelial cells. Besides, inhibition of cationic protein-induced apoptotic death in airway epithelial cells could be considered as a potential target of anti-injury or antiremodeling in asthmatics.
Collapse
|
20
|
Lan YL, Wang X, Lou JC, Xing JS, Zou S, Yu ZL, Ma XC, Wang H, Zhang B. Marinobufagenin inhibits glioma growth through sodium pump α1 subunit and ERK signaling-mediated mitochondrial apoptotic pathway. Cancer Med 2018; 7:2034-2047. [PMID: 29582577 PMCID: PMC5943480 DOI: 10.1002/cam4.1469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/02/2018] [Accepted: 03/01/2018] [Indexed: 11/28/2022] Open
Abstract
Malignant glioma is one of the most challenging central nervous system diseases to treat and has high rates of recurrence and mortality. Current therapies often fail to control tumor progression or improve patient survival. Marinobufagenin (MBG) is an endogenous mammalian cardiotonic steroid involved in sodium pump inhibition. Currently, various studies have indicated the potential of MBG in cancer treatments; however, the precise mechanisms are poorly understood. The functions of MBG were examined using colony formation, migration, cell cycle, and apoptosis assays in glioma cells. A mitochondrial membrane potential assay was performed to determine the mitochondrial transmembrane potential change, and cytochrome c release from mitochondria was assayed by fluorescence microscopy. An immunofluorescence assay was performed, and the nuclear translocation of NF‐κB in glioma cells was confirmed by confocal microscopy. Western blotting and RT‐qPCR were used to detect the protein and gene expression levels, respectively. In addition, transfection experiment of ATP1A1‐siRNA was further carried out to confirm the role of sodium pump α1 subunit in the anticancer effect of MBG in human glioma. The apoptosis‐promoting and anti‐inflammatory effects of MBG were further investigated, and the sodium pump α1 subunit and the ERK signaling pathway were found to be involved in the anticancer effect of MBG. The in vivo anticancer efficacy of MBG was also tested in xenografts in nude mice. Thus, therapies targeting the ERK signaling‐mediated mitochondrial apoptotic pathways regulated by MBG might represent potential treatments for human glioma, and this study could accelerate the finding of newer therapeutic approaches for malignant glioma treatment.
Collapse
Affiliation(s)
- Yu-Long Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.,Department of Pharmacy, Dalian Medical University, Dalian, 116044, China.,Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Xun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jia-Cheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jin-Shan Xing
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Shuang Zou
- Department of Physiology, Dalian Medical University, Dalian, 116044, China
| | - Zhen-Long Yu
- Department of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xiao-Chi Ma
- Department of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Hongjin Wang
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
21
|
O’Boyle N, Sutherland E, Berry CC, Davies RL. Optimisation of growth conditions for ovine airway epithelial cell differentiation at an air-liquid interface. PLoS One 2018; 13:e0193998. [PMID: 29518140 PMCID: PMC5843276 DOI: 10.1371/journal.pone.0193998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 11/18/2022] Open
Abstract
Respiratory tract infections are of significant concern in the agriculture industry. There is a requirement for the development of well-characterised in vitro epithelial cell culture models in order to dissect the diverse molecular interactions occurring at the host-pathogen interface in airway epithelia. We have analysed key factors that influence growth and differentiation of ovine tracheal epithelial cells in an air-liquid interface (ALI) culture system. Cellular differentiation was assessed at 21 days post-ALI, a time-point which we have previously shown to be sufficient for differentiation in standard growth conditions. We identified a dose-dependent response to epidermal growth factor (EGF) in terms of both epithelial thickening and ciliation levels. Maximal ciliation levels were observed with 25 ng ml-1 EGF. We identified a strict requirement for retinoic acid (RA) in epithelial differentiation as RA exclusion resulted in the formation of a stratified squamous epithelium, devoid of cilia. The pore-density of the growth substrate also had an influence on differentiation as high pore-density inserts yielded higher levels of ciliation and more uniform cell layers than low pore-density inserts. Differentiation was also improved by culturing the cells in an atmosphere of sub-ambient oxygen concentration. We compared two submerged growth media and observed differences in the rate of proliferation/expansion, barrier formation and also in terminal differentiation. Taken together, these results indicate important differences between the response of ovine tracheal epithelial cells and other previously described airway epithelial models, to a variety of environmental conditions. These data also indicate that the phenotype of ovine tracheal epithelial cells can be tailored in vitro by precise modulation of growth conditions, thereby yielding a customisable, potential infection model.
Collapse
Affiliation(s)
- Nicky O’Boyle
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Erin Sutherland
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Catherine C. Berry
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Robert L. Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
22
|
O'Boyle N, Sutherland E, Berry CC, Davies RL. Temporal dynamics of ovine airway epithelial cell differentiation at an air-liquid interface. PLoS One 2017; 12:e0181583. [PMID: 28746416 PMCID: PMC5529025 DOI: 10.1371/journal.pone.0181583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/03/2017] [Indexed: 12/17/2022] Open
Abstract
The respiratory tract and lungs are subject to diverse pathologies with wide-ranging implications for both human and animal welfare. The development and detailed characterization of cell culture models for studying such forms of disease is of critical importance. In recent years the use of air-liquid interface (ALI)-cultured airway epithelial cells has increased markedly, as this method of culture results in the formation of a highly representative, organotypic in vitro model system. In this study we have expanded on previous knowledge of differentiated ovine tracheal epithelial cells by analysing the progression of differentiation over an extensive time course at an ALI. We observed a pseudo-stratified epithelium with ciliation and a concurrent increase in cell layer thickness from 9 days post-ALI with ciliation approaching a maximum level at day 24. A similar pattern was observed with respect to mucus production with intensely stained PAS-positive cells appearing at day 12. Ultrastructural analysis by SEM confirmed the presence of both ciliated cells and mucus globules on the epithelial surface within this time-frame. Trans-epithelial electrical resistance (TEER) peaked at 1049 Ω × cm2 as the cell layer became confluent, followed by a subsequent reduction as differentiation proceeded and stabilization at ~200 Ω × cm2. Importantly, little deterioration or de-differentiation was observed over the 45 day time-course indicating that the model is suitable for long-term experiments.
Collapse
Affiliation(s)
- Nicky O'Boyle
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Erin Sutherland
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Catherine C Berry
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Robert L Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
23
|
Capsular Polysaccharide is a Main Component of Mycoplasma ovipneumoniae in the Pathogen-Induced Toll-Like Receptor-Mediated Inflammatory Responses in Sheep Airway Epithelial Cells. Mediators Inflamm 2017; 2017:9891673. [PMID: 28553017 PMCID: PMC5434471 DOI: 10.1155/2017/9891673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
Mycoplasma ovipneumoniae (M. ovipneumoniae) is characterized as an etiological agent of primary atypical pneumonia that specifically infects sheep and goat. In an attempt to better understand the pathogen-host interaction between the invading M. ovipneumoniae and airway epithelial cells, we investigated the host inflammatory responses against capsular polysaccharide (designated as CPS) of M. ovipneumoniae using sheep bronchial epithelial cells cultured in an air-liquid interface (ALI) model. Results showed that CPS derived from M. ovipneumoniae could activate toll-like receptor- (TLR-) mediated inflammatory responses, along with an elevated expression of nuclear factor kappa B (NF-κB), activator protein-1 (AP-1), and interferon regulatory factor 3 (IRF3) as well as various inflammatory-associated mediators, representatively including proinflammatory cytokines, such as IL1β, TNFα, and IL8, and anti-inflammatory cytokines such as IL10 and TGFβ of TLR signaling cascade. Mechanistically, the CPS-induced inflammation was TLR initiated and was mediated by activations of both MyD88-dependent and MyD88-independent signaling pathways. Of importance, a blockage of CPS with specific antibody led a significant reduction of M. ovipneumoniae-induced inflammatory responses in sheep bronchial epithelial cells. These results suggested that CPS is a key virulent component of M. ovipneumoniae, which may play a crucial role in the inflammatory response induced by M. ovipneumoniae infections.
Collapse
|
24
|
Xue D, Li Y, Jiang Z, Deng G, Li M, Liu X, Wang Y. A ROS-dependent and Caspase-3-mediated apoptosis in sheep bronchial epithelial cells in response to Mycoplasma Ovipneumoniae infections. Vet Immunol Immunopathol 2017; 187:55-63. [PMID: 28494930 DOI: 10.1016/j.vetimm.2017.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/18/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
Mycoplasma Ovipneumoniae (M. ovipneumoniae) is a primary etiological agent of enzootic pneumonia in sheep and goats. It can enter and colonize ovine respiratory epithelial cells to establish an infection, which leads a serious cell death of epithelial cells. However, the nature of the interaction between pathogen of M. ovipneumoniae and host cells in the cell injury is currently not well understood. In this study, we investigated the epithelial cell apoptosis caused by an infection of M. ovipneumoniae in sheep primary air-liquid interface (ALI) epithelial cultures. The results showed that M. ovipneumoniae could specifically bind to ciliated cells at early stage of infection. Flow cytometric analysis demonstrated that an infection of M. ovipneumoniae induced a time-dependent cell apoptotic cell death, accompanied with an increased production of extracellular nitric oxide (NO), intracellular reactive oxygen species (ROS) production and activation of caspase-3 signaling in sheep bronchial epithelial cells. The induced cell apoptosis was further confirmed by a transferase-mediated deoxyuridine triphosphate-biotin nick end-labeling (TUNEL) assay. Interestingly, the M. ovipneumoniae-induced apoptosis and activation of caspase-3 were correlated with the production of ROS but not NO. Mechanistically, M. ovipneumoniae-induced cell apoptosis was mediated by a mechanism by increasing the expression of phosphorylation of p38 and pro-apoptotic proteins, and activating caspase-3, caspase-8 and poly ADP-ribose polymerase (PARP) cleavage. These results suggest a ROS-dependent and caspase-3-mediated cell apoptosis in sheep bronchial epithelial cells in response to M. ovipneumoniae infections.
Collapse
Affiliation(s)
- Di Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Yanan Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Zhongjia Jiang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China; Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, the General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, China; College of Life Science, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
25
|
Capsular Polysaccharide of Mycoplasma ovipneumoniae Induces Sheep Airway Epithelial Cell Apoptosis via ROS-Dependent JNK/P38 MAPK Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6175841. [PMID: 28367270 PMCID: PMC5359454 DOI: 10.1155/2017/6175841] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
Abstract
In an attempt to better understand the pathogen-host interaction between invading Mycoplasma ovipneumoniae (M. ovipneumoniae) and sheep airway epithelial cells, biological effects and possible molecular mechanism of capsular polysaccharide of M. ovipneumoniae (CPS) in the induction of cell apoptosis were explored using sheep bronchial epithelial cells cultured in air-liquid interface (ALI). The CPS of M. ovipneumoniae was first isolated and purified. Results showed that CPS had a cytotoxic effect by disrupting the integrity of mitochondrial membrane, accompanied with an increase of reactive oxygen species and decrease of mitochondrial membrane potential (ΔΨm). Of importance, the CPS exhibited an ability to induce caspase-dependent cell apoptosis via both intrinsic and extrinsic apoptotic pathways. Mechanistically, the CPS induced extrinsic cell apoptosis by upregulating FAS/FASL signaling proteins and cleaved-caspase-8 and promoted a ROS-dependent intrinsic cell apoptosis by activating a JNK and p38 signaling but not ERK1/2 signaling of mitogen-activated protein kinases (MAPK) pathways. These findings provide the first evidence that CPS of M. ovipneumoniae induces a caspase-dependent apoptosis via both intrinsic and extrinsic apoptotic pathways in sheep bronchial epithelial cells, which may be mainly attributed by a ROS-dependent JNK and p38 MAPK signaling pathways.
Collapse
|