1
|
Ajayi AO, Odeyemi AT, Akinjogunla OJ, Adeyeye AB, Ayo-ajayi I. Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Infect Ecol Epidemiol 2024; 14:2312953. [PMID: 38371518 PMCID: PMC10868463 DOI: 10.1080/20008686.2024.2312953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Background: The interdisciplinary One Health (OH) approach recognizes that human, animal, and environmental health are all interconnected. Its ultimate goal is to promote optimal health for all through the exploration of these relationships. Antibiotic resistance (AR) is a public health challenge that has been primarily addressed within the context of human health and clinical settings. However, it has become increasingly evident that antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) that confer resistance are transmitted and circulated within humans, animals, and the environment. Therefore, to effectively address this issue, antibiotic resistance must also be considered an environmental and livestock/wildlife problem. Objective: This review was carried out to provide a broad overview of the existence of ARB and ARGs in One Health settings. Methods: Relevant studies that placed emphasis on ARB and ARGs were reviewed and key findings were accessed that illustrate the importance of One Health as a measure to tackle growing public and environmental threats. Results: In this review, we delve into the complex interplay of the three components of OH in relation to ARB and ARGs. Antibiotics used in animal husbandry and plants to promote growth, treat, and prevent infectious diseases lead to the development of antibiotic-resistant bacteria in animals. These bacteria are transmitted from animals to humans through food and environmental exposure. The environment plays a critical role in the circulation and persistence of antibiotic-resistant bacteria and genes, posing a significant threat to human and animal health. This article also highlights how ARGs are spread in the environment through the transfer of genetic material between bacteria. This transfer can occur naturally or through human activities such as the use of antibiotics in agriculture and waste management practices. Conclusion: It is important to integrate the One Health approach into the public health system to effectively tackle the emergence and spread of ARB and genes that code for resistance to different antibiotics.
Collapse
Affiliation(s)
| | - Adebowale Toba Odeyemi
- Department of Microbiology, Landmark University SDG Groups 2 and 3, Omu-Aran, Kwara State, Nigeria
| | | | | | - Ibiwumi Ayo-ajayi
- Department of Computer Science, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
| |
Collapse
|
2
|
Myataza A, Thomas J, Smith AM. Characterization of Salmonella enterica serovar Isangi from South Africa, 2020-2021. BMC Infect Dis 2023; 23:791. [PMID: 37957562 PMCID: PMC10644633 DOI: 10.1186/s12879-023-08786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND We describe the genotypic characteristics and antimicrobial resistance (AMR) determinants of Salmonella enterica serovar Isangi (Salmonella Isangi) clinical isolates in South Africa from 2020 through 2021. METHODS During the years 2020 to 2021, the Centre for Enteric Diseases of the National Institute for Communicable Diseases, a national reference centre in South Africa for human infections resulting from enteric bacterial pathogens, investigated a total of 3549 clinical isolates of Salmonella species. Whole genome sequencing (WGS) was performed using Illumina NextSeq Technology. WGS data was analyzed using Centre for Genomic Epidemiology-based tools and EnteroBase web-based platform. Genotypic relatedness and cluster analysis was investigated based on core-genome multilocus sequence typing. RESULTS Forty-nine isolates were confirmed to be Salmonella Isangi, with most submitted from Gauteng Province (24/49, 49%). The most prevalent sequence type was ST335 (48/49, 98%), and the remaining 1 isolate was ST216. All ST335 isolates were genotypically multidrug-resistant (MDR), with resistance to fluoroquinolones, chloramphenicol, trimethoprim-sulfamethoxazole and tetracycline; the ST216 isolate was resistant only to aminoglycosides. All ST335 isolates carried ESBL genes, the most common being blaCTX-M-15. Five clusters (consisting of isolates related within five allele differences) were detected, all being ST335. CONCLUSIONS Most Salmonella Isangi isolates in South Africa are MDR and ESBL-positive. Ongoing monitoring of the epidemiology and AMR profile of this serovar is important for public health and treatment guidelines.
Collapse
Affiliation(s)
- Asive Myataza
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa.
| | - Juno Thomas
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable Diseases, Division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Zhang R, Yang T, Zhang Q, Liu D, Elhadidy M, Ding T. Whole-genome sequencing: a perspective on sensing bacterial risk for food safety. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
WGS-Based Lineage and Antimicrobial Resistance Pattern of Salmonella Typhimurium Isolated during 2000-2017 in Peru. Antibiotics (Basel) 2022; 11:antibiotics11091170. [PMID: 36139949 PMCID: PMC9495214 DOI: 10.3390/antibiotics11091170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Salmonella Typhimurium is associated with foodborne diseases worldwide, including in Peru, and its emerging antibiotic resistance (AMR) is now a global public health problem. Therefore, country-specific monitoring of the AMR emergence is vital to control this pathogen, and in these aspects, whole genome sequence (WGS)—based approaches are better than gene-based analyses. Here, we performed the antimicrobial susceptibility test for ten widely used antibiotics and WGS-based various analyses of 90 S. Typhimurium isolates (human, animal, and environment) from 14 cities of Peru isolated from 2000 to 2017 to understand the lineage and antimicrobial resistance pattern of this pathogen in Peru. Our results suggest that the Peruvian isolates are of Typhimurium serovar and predominantly belong to sequence type ST19. Genomic diversity analyses indicate an open pan-genome, and at least ten lineages are circulating in Peru. A total of 48.8% and 31.0% of isolates are phenotypically and genotypically resistant to at least one antibiotic, while 12.0% are multi-drug resistant (MDR). Genotype−phenotype correlations for ten tested drugs show >80% accuracy, and >90% specificity. Sensitivity above 90% was only achieved for ciprofloxacin and ceftazidime. Two lineages exhibit the majority of the MDR isolates. A total of 63 different AMR genes are detected, of which 30 are found in 17 different plasmids. Transmissible plasmids such as lncI-gamma/k, IncI1-I(Alpha), Col(pHAD28), IncFIB, IncHI2, and lncI2 that carry AMR genes associated with third-generation antibiotics are also identified. Finally, three new non-synonymous single nucleotide variations (SNVs) for nalidixic acid and eight new SNVs for nitrofurantoin resistance are predicted using genome-wide association studies, comparative genomics, and functional annotation. Our analysis provides for the first time the WGS-based details of the circulating S. Typhimurium lineages and their antimicrobial resistance pattern in Peru.
Collapse
|
5
|
Bloomfield S, Duong VT, Tuyen HT, Campbell JI, Thomson NR, Parkhill J, Le Phuc H, Chau TTH, Maskell DJ, Perron GG, Ngoc NM, Vi LL, Adriaenssens EM, Baker S, Mather AE. Mobility of antimicrobial resistance across serovars and disease presentations in non-typhoidal Salmonella from animals and humans in Vietnam. Microb Genom 2022; 8. [PMID: 35511231 PMCID: PMC9465066 DOI: 10.1099/mgen.0.000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) is a major cause of bacterial enterocolitis globally but also causes invasive bloodstream infections. Antimicrobial resistance (AMR) hampers the treatment of these infections and understanding how AMR spreads between NTS may help in developing effective strategies. We investigated NTS isolates associated with invasive disease, diarrhoeal disease and asymptomatic carriage in animals and humans from Vietnam. Isolates included multiple serovars and both common and rare phenotypic AMR profiles; long- and short-read sequencing was used to investigate the genetic mechanisms and genomic backgrounds associated with phenotypic AMR profiles. We demonstrate concordance between most AMR genotypes and phenotypes but identified large genotypic diversity in clinically relevant phenotypes and the high mobility potential of AMR genes (ARGs) in this setting. We found that 84 % of ARGs identified were located on plasmids, most commonly those containing IncHI1A_1 and IncHI1B(R27)_1_R27 replicons (33%), and those containing IncHI2_1 and IncHI2A_1 replicons (31%). The vast majority (95%) of ARGS were found within 10 kbp of IS6/IS26 elements, which provide plasmids with a mechanism to exchange ARGs between plasmids and other parts of the genome. Whole genome sequencing with targeted long-read sequencing applied in a One Health context identified a comparatively limited number of insertion sequences and plasmid replicons associated with AMR. Therefore, in the context of NTS from Vietnam and likely for other settings as well, the mechanisms by which ARGs move contribute to a more successful AMR profile than the specific ARGs, facilitating the adaptation of bacteria to different environments or selection pressures.
Collapse
Affiliation(s)
| | | | - Ha Thanh Tuyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - James I Campbell
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | | | - Tran Thi Hong Chau
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Gabriel G Perron
- Department of Biology, Bard College, Annandale-on-Hudson, New York, USA
| | | | - Lu Lan Vi
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | - Stephen Baker
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.,University of East Anglia, Norwich, UK
| |
Collapse
|
6
|
Genomic analysis of Salmonella Typhimurium from humans and food sources accurately predicts phenotypic multi-drug resistance. Food Microbiol 2022; 103:103957. [DOI: 10.1016/j.fm.2021.103957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 02/01/2023]
|
7
|
Tjandra KC, Ram-Mohan N, Abe R, Hashemi MM, Lee JH, Chin SM, Roshardt MA, Liao JC, Wong PK, Yang S. Diagnosis of Bloodstream Infections: An Evolution of Technologies towards Accurate and Rapid Identification and Antibiotic Susceptibility Testing. Antibiotics (Basel) 2022; 11:511. [PMID: 35453262 PMCID: PMC9029869 DOI: 10.3390/antibiotics11040511] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Bloodstream infections (BSI) are a leading cause of death worldwide. The lack of timely and reliable diagnostic practices is an ongoing issue for managing BSI. The current gold standard blood culture practice for pathogen identification and antibiotic susceptibility testing is time-consuming. Delayed diagnosis warrants the use of empirical antibiotics, which could lead to poor patient outcomes, and risks the development of antibiotic resistance. Hence, novel techniques that could offer accurate and timely diagnosis and susceptibility testing are urgently needed. This review focuses on BSI and highlights both the progress and shortcomings of its current diagnosis. We surveyed clinical workflows that employ recently approved technologies and showed that, while offering improved sensitivity and selectivity, these techniques are still unable to deliver a timely result. We then discuss a number of emerging technologies that have the potential to shorten the overall turnaround time of BSI diagnosis through direct testing from whole blood-while maintaining, if not improving-the current assay's sensitivity and pathogen coverage. We concluded by providing our assessment of potential future directions for accelerating BSI pathogen identification and the antibiotic susceptibility test. While engineering solutions have enabled faster assay turnaround, further progress is still needed to supplant blood culture practice and guide appropriate antibiotic administration for BSI patients.
Collapse
Affiliation(s)
- Kristel C. Tjandra
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Nikhil Ram-Mohan
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Ryuichiro Abe
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Marjan M. Hashemi
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| | - Jyong-Huei Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Siew Mei Chin
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Manuel A. Roshardt
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
| | - Joseph C. Liao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Pak Kin Wong
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; (J.-H.L.); (S.M.C.); (M.A.R.); (P.K.W.)
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Surgery, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA; (K.C.T.); (N.R.-M.); (R.A.); (M.M.H.)
| |
Collapse
|
8
|
Petrillo M, Fabbri M, Kagkli DM, Querci M, Van den Eede G, Alm E, Aytan-Aktug D, Capella-Gutierrez S, Carrillo C, Cestaro A, Chan KG, Coque T, Endrullat C, Gut I, Hammer P, Kay GL, Madec JY, Mather AE, McHardy AC, Naas T, Paracchini V, Peter S, Pightling A, Raffael B, Rossen J, Ruppé E, Schlaberg R, Vanneste K, Weber LM, Westh H, Angers-Loustau A. A roadmap for the generation of benchmarking resources for antimicrobial resistance detection using next generation sequencing. F1000Res 2022; 10:80. [PMID: 35847383 PMCID: PMC9243550 DOI: 10.12688/f1000research.39214.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Next Generation Sequencing technologies significantly impact the field of Antimicrobial Resistance (AMR) detection and monitoring, with immediate uses in diagnosis and risk assessment. For this application and in general, considerable challenges remain in demonstrating sufficient trust to act upon the meaningful information produced from raw data, partly because of the reliance on bioinformatics pipelines, which can produce different results and therefore lead to different interpretations. With the constant evolution of the field, it is difficult to identify, harmonise and recommend specific methods for large-scale implementations over time. In this article, we propose to address this challenge through establishing a transparent, performance-based, evaluation approach to provide flexibility in the bioinformatics tools of choice, while demonstrating proficiency in meeting common performance standards. The approach is two-fold: first, a community-driven effort to establish and maintain “live” (dynamic) benchmarking platforms to provide relevant performance metrics, based on different use-cases, that would evolve together with the AMR field; second, agreed and defined datasets to allow the pipelines’ implementation, validation, and quality-control over time. Following previous discussions on the main challenges linked to this approach, we provide concrete recommendations and future steps, related to different aspects of the design of benchmarks, such as the selection and the characteristics of the datasets (quality, choice of pathogens and resistances, etc.), the evaluation criteria of the pipelines, and the way these resources should be deployed in the community.
Collapse
Affiliation(s)
| | - Marco Fabbri
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Guy Van den Eede
- European Commission Joint Research Centre, Ispra, Italy
- European Commission Joint Research Centre, Geel, Belgium
| | - Erik Alm
- The European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Derya Aytan-Aktug
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | - Catherine Carrillo
- Ottawa Laboratory – Carling, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | | | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Teresa Coque
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Madrid, Spain
| | | | - Ivo Gut
- Centro Nacional de Análisis Genómico, Centre for Genomic Regulation (CNAG-CRG), Barcelona Institute of Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Paul Hammer
- BIOMES. NGS GmbH c/o Technische Hochschule Wildau, Wildau, Germany
| | - Gemma L. Kay
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Site de Lyon, Lyon, France
| | - Alison E. Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | | | - Thierry Naas
- French-NRC for CPEs, Service de Bactériologie-Hygiène, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Arthur Pightling
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | | | - John Rossen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Robert Schlaberg
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Lukas M. Weber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
- Present address: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | |
Collapse
|
9
|
Cubas-Atienzar AI, Williams CT, Karkey A, Dongol S, Sulochana M, Rajendra S, Hobbs G, Evans K, Musicha P, Feasey N, Cuevas LE, Adams ER, Edwards T. A novel air-dried multiplex high-resolution melt assay for the detection of extended-spectrum β-lactamase and carbapenemase genes. J Glob Antimicrob Resist 2021; 27:123-131. [PMID: 34482019 PMCID: PMC8692233 DOI: 10.1016/j.jgar.2021.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES This study aimed to develop and evaluate a novel air-dried high-resolution melt (HRM) assay to detect eight major extended-spectrum β-lactamase (ESBL) (blaSHV and blaCTX-M groups 1 and 9) and carbapenemase (blaNDM, blaIMP, blaKPC, blaVIM and blaOXA-48-like) genes that confer resistance to cephalosporins and carbapenems. METHODS The assay was evaluated using 439 DNA samples extracted from bacterial isolates from Nepal, Malawi and the UK and 390 clinical isolates from Nepal with known antimicrobial susceptibility. Assay reproducibility was evaluated across five different real-time quantitative PCR (qPCR) instruments [Rotor-Gene® Q, QuantStudioTM 5, CFX96, LightCycler® 480 and Magnetic Induction Cycler (Mic)]. Assay stability was also assessed under different storage temperatures (6.2 ± 0.9°C, 20.4 ± 0.7°C and 29.7 ± 1.4°C) at six time points over 8 months. RESULTS The sensitivity and specificity (with 95% confidence intervals) for detecting ESBL and carbapenemase genes was 94.7% (92.5-96.5%) and 99.2% (98.8-99.5%) compared with the reference gel-based PCR and sequencing and 98.3% (97.0-99.3%) and 98.5% (98.0-98.9%) compared with the original HRM wet PCR mix format. Overall agreement was 91.1% (90.0-92.9%) when predicting phenotypic resistance to cefotaxime and meropenem among Enterobacteriaceae isolates. We observed almost perfect inter-machine reproducibility of the air-dried HRM assay, and no loss of sensitivity occurred under all storage conditions and time points. CONCLUSION We present a ready-to-use air-dried HRM PCR assay that offers an easy, thermostable, fast and accurate tool for the detection of ESBL and carbapenemase genes in DNA samples to improve antimicrobial resistance detection.
Collapse
Affiliation(s)
- Ana I Cubas-Atienzar
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Abhilasha Karkey
- Oxford Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Sabina Dongol
- Oxford Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Manandhar Sulochana
- Oxford Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Shrestha Rajendra
- Oxford Clinical Research Unit, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Glyn Hobbs
- Liverpool John Moores University, Liverpool, UK
| | - Katie Evans
- Liverpool John Moores University, Liverpool, UK
| | | | - Nicholas Feasey
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Luis E Cuevas
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Emily R Adams
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Thomas Edwards
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
10
|
Sia CM, Baines SL, Valcanis M, Lee DYJ, Gonçalves da Silva A, Ballard SA, Easton M, Seemann T, Howden BP, Ingle DJ, Williamson DA. Genomic diversity of antimicrobial resistance in non-typhoidal Salmonella in Victoria, Australia. Microb Genom 2021; 7:000725. [PMID: 34907895 PMCID: PMC8767345 DOI: 10.1099/mgen.0.000725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) is the second most common cause of foodborne bacterial gastroenteritis in Australia with antimicrobial resistance (AMR) increasing in recent years. Whole-genome sequencing (WGS) provides opportunities for in silico detection of AMR determinants. The objectives of this study were two-fold: (1) establish the utility of WGS analyses for inferring phenotypic resistance in NTS, and (2) explore clinically relevant genotypic AMR profiles to third generation cephalosporins (3GC) in NTS lineages. The concordance of 2490 NTS isolates with matched WGS and phenotypic susceptibility data against 13 clinically relevant antimicrobials was explored. In silico serovar prediction and typing was performed on assembled reads and interrogated for known AMR determinants. The surrounding genomic context, plasmid determinants and co-occurring AMR patterns were further investigated for multidrug resistant serovars harbouring bla CMY-2, bla CTX-M-55 or bla CTX-M-65. Our data demonstrated a high correlation between WGS and phenotypic susceptibility testing. Phenotypic-genotypic concordance was observed between 2440/2490 (98.0 %) isolates, with overall sensitivity and specificity rates >98 % and positive and negative predictive values >97 %. The most common AMR determinants were bla TEM-1, sul2 , tet (A), strA-strB and floR . Phenotypic resistance to cefotaxime and azithromycin was low and observed in 6.2 % (151/2486) and 0.9 % (16/1834) of the isolates, respectively. Several multi-drug resistant NTS lineages were resistant to 3GC due to different genetic mechanisms including bla CMY-2, bla CTX-M-55 or bla CTX-M-65. This study shows WGS can enhance existing AMR surveillance in NTS datasets routinely produced in public health laboratories to identify emerging AMR in NTS. These approaches will be critical for developing capacity to detect emerging public health threats such as resistance to 3GC.
Collapse
Affiliation(s)
- Cheryll M. Sia
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sarah L. Baines
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Darren Y. J. Lee
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Anders Gonçalves da Silva
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Susan A. Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | - Torsten Seemann
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Danielle J. Ingle
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
| | - Deborah A. Williamson
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology & Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Microbiology, Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
11
|
Rincón-Gamboa SM, Poutou-Piñales RA, Carrascal-Camacho AK. Analysis of the assessment of antimicrobial susceptibility. Non-typhoid Salmonella in meat and meat products as model (systematic review). BMC Microbiol 2021; 21:223. [PMID: 34340654 PMCID: PMC8328484 DOI: 10.1186/s12866-021-02268-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The scientific publications of antimicrobial susceptibilities and resistance must be precise, with interpretations adjusted to the standard. In this frame, knowledge of antimicrobial resistance is fundamental in pathogenic microorganisms such as Salmonella spp., known for many annual deaths worldwide. The objective of this work was to compare the interpretation of standards, the concentrations, and the breakpoints, to study antimicrobial resistance in Non-Typhoidal Salmonella (NTS) isolated from beef, pork, and chicken meat, meat products, and propose additional considerations that improve the use and usefulness of published results. RESULTS After refining the search based on meeting the inclusion and exclusion criteria, 48 papers were selected. In 33 (68.8%) of them, the disc diffusion method was used, in 11 (22.9%) the MIC determination method, and in 4 (8.33%) were used both. In 24 (50%) of the articles, the selection of a different (correct) standard could have had an impact on the interpretation of antimicrobial susceptibility, which observed when considering three scenarios, i) comparison between the year of the isolation versus the implemented standard, ii) comparison between the year of submission versus implemented standard and iii) comparison between the year of publication versus implemented standard. CONCLUSIONS The most frequent scenario was the inadequate selection of standards, indicating that some studies had not ensured that applied standards kept in line with the date of isolation, date of publication and interpretation of susceptibilities. We proposed 2 years for standards use for resistance and multi-resistance interpretations. On the other hand, we invite researchers to publish their results in the shortest possible time, and editors and reviewers of scientific journals to prioritise these types of studies and verify the correspondence between the standard cited and the one used and the one to be taken into account.
Collapse
Affiliation(s)
- Sandra M Rincón-Gamboa
- Laboratorio de Microbiología de Alimentos. Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Laboratorio Biotecnología Molecular. Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Raúl A Poutou-Piñales
- Laboratorio Biotecnología Molecular. Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.
| | - Ana K Carrascal-Camacho
- Laboratorio de Microbiología de Alimentos. Grupo de Biotecnología Ambiental e Industrial (GBAI), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| |
Collapse
|
12
|
Wu S, Hulme JP. Recent Advances in the Detection of Antibiotic and Multi-Drug Resistant Salmonella: An Update. Int J Mol Sci 2021; 22:3499. [PMID: 33800682 PMCID: PMC8037659 DOI: 10.3390/ijms22073499] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/26/2022] Open
Abstract
Antibiotic and multi-drug resistant (MDR) Salmonella poses a significant threat to public health due to its ability to colonize animals (cold and warm-blooded) and contaminate freshwater supplies. Monitoring antibiotic resistant Salmonella is traditionally costly, involving the application of phenotypic and genotypic tests over several days. However, with the introduction of cheaper semi-automated devices in the last decade, strain detection and identification times have significantly fallen. This, in turn, has led to efficiently regulated food production systems and further reductions in food safety hazards. This review highlights current and emerging technologies used in the detection of antibiotic resistant and MDR Salmonella.
Collapse
Affiliation(s)
- Siying Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong;
| | - John P. Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do 461-701, Korea
| |
Collapse
|
13
|
Laure NN, Ahn J. Development of phage-based assay to differentiate ciprofloxacin resistant and sensitive Salmonella Typhimurium. Food Sci Biotechnol 2021; 30:315-320. [PMID: 33732522 DOI: 10.1007/s10068-020-00858-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022] Open
Abstract
This study was designed to evaluate the possibility of using phage-amplification assay for discriminating between antibiotic-sensitive and antibiotic-resistant Salmonella Typhimurium. The characteristics of Salmonella phage PBST32 were determined by adsorption rate, one-step growth curve, and lytic activity. The ability of phage-based method to detect S. Typhimurium ATCC 19585 (STCIP) was determined in single culture and bacterial mixtures of S. Typhimurium ATCC 19585 (STWT), Klebsiella pneumoniae, and Staphylococcus aureus. The adsorption rates of PBST32 were 95% and 93% against STWT and STCIP after 20 min, respectively. The PBST32 showed latent period of 20 min and average burst size of 90 against STWT and STCIP. The STCIP was selectively detected in mixtures of S. aureus, K. pneumoniae, and STWT by phage amplification assay. These results provide useful information for designing phage amplification method that can differentially detect antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Nana Nguefang Laure
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| | - Juhee Ahn
- Department of Biomedical Science and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Gangwon 24341 Republic of Korea
| |
Collapse
|
14
|
Petrillo M, Fabbri M, Kagkli DM, Querci M, Van den Eede G, Alm E, Aytan-Aktug D, Capella-Gutierrez S, Carrillo C, Cestaro A, Chan KG, Coque T, Endrullat C, Gut I, Hammer P, Kay GL, Madec JY, Mather AE, McHardy AC, Naas T, Paracchini V, Peter S, Pightling A, Raffael B, Rossen J, Ruppé E, Schlaberg R, Vanneste K, Weber LM, Westh H, Angers-Loustau A. A roadmap for the generation of benchmarking resources for antimicrobial resistance detection using next generation sequencing. F1000Res 2021; 10:80. [PMID: 35847383 PMCID: PMC9243550 DOI: 10.12688/f1000research.39214.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 10/31/2024] Open
Abstract
Next Generation Sequencing technologies significantly impact the field of Antimicrobial Resistance (AMR) detection and monitoring, with immediate uses in diagnosis and risk assessment. For this application and in general, considerable challenges remain in demonstrating sufficient trust to act upon the meaningful information produced from raw data, partly because of the reliance on bioinformatics pipelines, which can produce different results and therefore lead to different interpretations. With the constant evolution of the field, it is difficult to identify, harmonise and recommend specific methods for large-scale implementations over time. In this article, we propose to address this challenge through establishing a transparent, performance-based, evaluation approach to provide flexibility in the bioinformatics tools of choice, while demonstrating proficiency in meeting common performance standards. The approach is two-fold: first, a community-driven effort to establish and maintain "live" (dynamic) benchmarking platforms to provide relevant performance metrics, based on different use-cases, that would evolve together with the AMR field; second, agreed and defined datasets to allow the pipelines' implementation, validation, and quality-control over time. Following previous discussions on the main challenges linked to this approach, we provide concrete recommendations and future steps, related to different aspects of the design of benchmarks, such as the selection and the characteristics of the datasets (quality, choice of pathogens and resistances, etc.), the evaluation criteria of the pipelines, and the way these resources should be deployed in the community.
Collapse
Affiliation(s)
| | - Marco Fabbri
- European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Guy Van den Eede
- European Commission Joint Research Centre, Ispra, Italy
- European Commission Joint Research Centre, Geel, Belgium
| | - Erik Alm
- The European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Derya Aytan-Aktug
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | | | - Catherine Carrillo
- Ottawa Laboratory – Carling, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | | | - Kok-Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Teresa Coque
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Madrid, Spain
| | | | - Ivo Gut
- Centro Nacional de Análisis Genómico, Centre for Genomic Regulation (CNAG-CRG), Barcelona Institute of Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Paul Hammer
- BIOMES. NGS GmbH c/o Technische Hochschule Wildau, Wildau, Germany
| | - Gemma L. Kay
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, ANSES Site de Lyon, Lyon, France
| | - Alison E. Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | | | - Thierry Naas
- French-NRC for CPEs, Service de Bactériologie-Hygiène, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Arthur Pightling
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, MD, USA
| | | | - John Rossen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Robert Schlaberg
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Lukas M. Weber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
- Present address: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | | |
Collapse
|
15
|
Feng Q, Frana T, Logue CM, McKean JD, Hurd SH, O'Connor AM, Dickson JS, Zhu S, Li G. Comparison of Antimicrobial Resistance Profiles in Salmonella spp. from Swine Upon Arrival and Postslaughter at the Abattoir. Microb Drug Resist 2021; 27:1144-1154. [PMID: 33539269 DOI: 10.1089/mdr.2020.0282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Antimicrobial resistance (AMR) developed by Salmonella within animals used for food products is a major global issue. Monitoring AMR in animals destined for slaughter is, therefore, critical. Abattoirs may serve as potential candidate checkpoints for monitoring resistance patterns on farms. A complicating factor, however, is the impact of lairage on Salmonella detected in pigs at slaughter. This study sought to compare AMR patterns in Salmonella spp. in swine collected upon arrival (fecal samples) at the abattoir with those at postslaughter (cecal samples) and evaluate the feasibility of using slaughterhouse samples for surveillance of prevailing AMR Salmonella on farms. Eighty-four Salmonella isolates were recovered from a large, midwestern U.S. abattoir between September and November 2013. Isolates were tested for phenotypic AMR to 12 antimicrobials using the broth microdilution assay. Whole-genome sequencing identified the AMR genes harbored by the strains. Significant differences were observed in the isolate phenotypes and genotypes; however, no significant difference was observed in genotypic resistance patterns. Hence, the AMR profiles of Salmonella spp. postslaughter cannot be predicted from preslaughter samples. Further research considering the genetic diversity of isolates and statistical power of the genotypic analysis is warranted to improve the performance of WGS-inferred antimicrobial susceptibility.
Collapse
Affiliation(s)
- Qi Feng
- Jiang Su Provincial Key Laboratory of Veterinary Bio-pharmaceutical High-tech Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China.,Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Timothy Frana
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - James D McKean
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Scott H Hurd
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Annette M O'Connor
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA.,College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - James S Dickson
- Department of Animal Science, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Shanyuan Zhu
- Jiang Su Provincial Key Laboratory of Veterinary Bio-pharmaceutical High-tech Research, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China.,Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Ganwu Li
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
16
|
Jibril AH, Okeke IN, Dalsgaard A, Menéndez VG, Olsen JE. Genomic Analysis of Antimicrobial Resistance and Resistance Plasmids in Salmonella Serovars from Poultry in Nigeria. Antibiotics (Basel) 2021; 10:99. [PMID: 33498344 PMCID: PMC7909428 DOI: 10.3390/antibiotics10020099] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial resistance is a global public health concern, and resistance genes in Salmonella, especially those located on mobile genetic elements, are part of the problem. This study used phenotypic and genomic methods to identify antimicrobial resistance and resistance genes, as well as the plasmids that bear them, in Salmonella isolates obtained from poultry in Nigeria. Seventy-four isolates were tested for susceptibility to eleven commonly used antimicrobials. Plasmid reconstruction and identification of resistance and virulence genes were performed with a draft genome using in silico approaches in parallel with plasmid extraction. Phenotypic resistance to ciprofloxacin (50.0%), gentamicin (48.6%), nalidixic acid (79.7%), sulphonamides (71.6%) and tetracycline (59.5%) was the most observed. Antibiotic resistance genes (ARGs) detected in genomes corresponded well with these observations. Commonly observed ARGs included sul1, sul2, sul3, tet (A), tet (M), qnrS1, qnrB19 and a variety of aminoglycoside-modifying genes, in addition to point mutations in the gyrA and parC genes. Multiple ARGs were predicted to be located on IncN and IncQ1 plasmids of S. Schwarzengrund and S. Muenster, and most qnrB19 genes were carried by Col (pHAD28) plasmids. Seventy-two percent (19/24) of S. Kentucky strains carried multidrug ARGs located in two distinct variants of Salmonella genomic island I. The majority of strains carried full SPI-1 and SPI-2 islands, suggesting full virulence potential.
Collapse
Affiliation(s)
- Abdurrahman Hassan Jibril
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.J.); (A.D.); (V.G.M.)
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Sokoto 234840, Nigeria
| | - Iruka N. Okeke
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan 234200, Nigeria;
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.J.); (A.D.); (V.G.M.)
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Vanesa García Menéndez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.J.); (A.D.); (V.G.M.)
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (A.H.J.); (A.D.); (V.G.M.)
| |
Collapse
|
17
|
McDermott PF, Davis JJ. Predicting antimicrobial susceptibility from the bacterial genome: A new paradigm for one health resistance monitoring. J Vet Pharmacol Ther 2020; 44:223-237. [PMID: 33010049 DOI: 10.1111/jvp.12913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/25/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
The laboratory identification of antibacterial resistance is a cornerstone of infectious disease medicine. In vitro antimicrobial susceptibility testing has long been based on the growth response of organisms in pure culture to a defined concentration of antimicrobial agents. By comparing individual isolates to wild-type susceptibility patterns, strains with acquired resistance can be identified. Acquired resistance can also be detected genetically. After many decades of research, the inventory of genes underlying antimicrobial resistance is well known for several pathogenic genera including zoonotic enteric organisms such as Salmonella and Campylobacter and continues to grow substantially for others. With the decline in costs for large scale DNA sequencing, it is now practicable to characterize bacteria using whole genome sequencing, including the carriage of resistance genes in individual microorganisms and those present in complex biological samples. With genomics, we can generate comprehensive, detailed information on the bacterium, the mechanisms of antibiotic resistance, clues to its source, and the nature of mobile DNA elements by which resistance spreads. These developments point to a new paradigm for antimicrobial resistance detection and tracking for both clinical and public health purposes.
Collapse
Affiliation(s)
- Patrick F McDermott
- Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - James J Davis
- Division of Data Science and Learning, Argonne National Laboratory, Argonne, IL, USA.,University of Chicago Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA
| |
Collapse
|
18
|
Greub G, Palagi PM, Dylus D, Egli A, Pillonel T, Rossen JWA, Seth-Smith HMB, Lebrand A. Clinical bioinformatics for microbial genomics and metagenomics: an ESCMID Postgraduate Technical Workshop. Microbes Infect 2020; 22:626-634. [PMID: 32841729 DOI: 10.1016/j.micinf.2020.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Gilbert Greub
- Institute of Microbiology, University of Lausanne, Lausanne, Switzerland.
| | - Patricia M Palagi
- Training, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David Dylus
- University of Lausanne, Lausanne, Switzerland; SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland; Applied Microbiology Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne, Lausanne, Switzerland
| | - John W A Rossen
- Department of Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Helena M B Seth-Smith
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland; Applied Microbiology Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Aitana Lebrand
- Clinical Bioinformatics, SIB Swiss Institute of Bioinformatics, Geneva, Switzerland.
| | | |
Collapse
|