1
|
Zumkhawala-Cook A, Gallagher P, Raymann K. Diet affects reproductive development and microbiota composition in honey bees. Anim Microbiome 2024; 6:64. [PMID: 39501371 PMCID: PMC11539837 DOI: 10.1186/s42523-024-00350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Gut microbes are important to the health and fitness of many animals. Many factors have been shown to affect gut microbial communities including diet, lifestyle, and age. Most animals have very complex physiologies, lifestyles, and microbiomes, making it virtually impossible to disentangle what factors have the largest impact on microbiota composition. Honeybees are an excellent model to study host-microbe interactions due to their relatively simple gut microbiota, experimental tractability, and eusociality. Worker honey bees have distinct gut microbiota from their queen mothers despite being close genetic relatives and living in the same environment. Queens and workers differ in numerous ways including development, physiology, pheromone production, diet, and behavior. In the prolonged absence of a queen or Queen Mandibular Pheromones (QMP), some but not all workers will develop ovaries and become "queen-like". Using this inducible developmental change, we aimed to determine if diet and/or reproductive development impacts the gut microbiota of honey bee workers. RESULTS Microbiota-depleted newly emerged workers were inoculated with a mixture of queen and worker gut homogenates and reared under four conditions varying in diet and pheromone exposure. Three weeks post-emergence, workers were evaluated for ovary development and their gut microbiota communities were characterized. The proportion of workers with developed ovaries was increased in the absence of QMP but also when fed a queen diet (royal jelly). Overall, we found that diet, rather than reproductive development or pheromone exposure, led to more "queen-like" microbiota in workers. However, we revealed that diet alone cannot explain the microbiota composition of workers. CONCLUSION The hypothesis that reproductive development explains microbiota differences between queens and workers was rejected. We found evidence that diet is one of the main drivers of differences between the gut microbial community compositions of queens and workers but cannot fully explain the distinct microbiota of queens. Thus, we predict that behavioral and other physiological differences dictate microbiota composition in workers and queens. Our findings not only contribute to our understanding of the factors affecting the honey bee microbiota, which is important for bee health, but also illustrate the versatility and benefits of utilizing honeybees as a model system to study host-microbe interactions.
Collapse
Affiliation(s)
- Anjali Zumkhawala-Cook
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Biochemistry and Molecular Biology, Kenyon College, Gambier, Ohio, USA
| | - Patrick Gallagher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Kasie Raymann
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
2
|
Luo S, Zhang X, Zhou X. Temporospatial dynamics and host specificity of honeybee gut bacteria. Cell Rep 2024; 43:114408. [PMID: 38935504 DOI: 10.1016/j.celrep.2024.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024] Open
Abstract
Honeybees are important pollinators worldwide, with their gut microbiota playing a crucial role in maintaining their health. The gut bacteria of honeybees consist of primarily five core lineages that are spread through social interactions. Previous studies have provided a basic understanding of the composition and function of the honeybee gut microbiota, with recent advancements focusing on analyzing diversity at the strain level and changes in bacterial functional genes. Research on honeybee gut microbiota across different regions globally has provided insights into microbial ecology. Additionally, recent findings have shed light on the mechanisms of host specificity of honeybee gut bacteria. This review explores the temporospatial dynamics in honeybee gut microbiota, discussing the reasons and mechanisms behind these fluctuations. This synopsis provides insights into host-microbe interactions and is invaluable for honeybee health.
Collapse
Affiliation(s)
- Shiqi Luo
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin Zhou
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Todorov SD, Alves MV, Bueno GCA, Alves VF, Ivanova IV. Bee-Associated Beneficial Microbes-Importance for Bees and for Humans. INSECTS 2024; 15:430. [PMID: 38921144 PMCID: PMC11204305 DOI: 10.3390/insects15060430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/27/2024]
Abstract
Bees are one of the best-known and, at the same time, perhaps the most enigmatic insects on our planet, known for their organization and social structure, being essential for the pollination of agricultural crops and several other plants, playing an essential role in food production and the balance of ecosystems, being associated with the production of high-value-added inputs, and a unique universe in relation to bees' microbiota. In this review, we summarize information regarding on different varieties of bees, with emphasis on their specificity related to microbial variations. Noteworthy are fructophilic bacteria, a lesser-known bacterial group, which use fructose fermentation as their main source of energy, with some strains being closely related to bees' health status. The beneficial properties of fructophilic bacteria may be extendable to humans and other animals as probiotics. In addition, their biotechnological potential may ease the development of new-generation antimicrobials with applications in biopreservation. The concept of "One Health" brings together fundamental and applied research with the aim of clarifying that the connections between the different components of ecosystems must be considered part of a mega-structure, with bees being an iconic example in that the healthy functionality of their microbiota is directly and indirectly related to agricultural production, bee health, quality of bee products, and the functional prosperity for humans and other animals. In fact, good health of bees is clearly related to the stable functionality of ecosystems and indirectly relates to humans' wellbeing, a concept of the "One Health".
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal
| | - Marcos Vinício Alves
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
| | | | - Virgínia Farias Alves
- Faculdade de Farmácia, Universidade Federal de Goiás (UFG), Goiânia 74605-170, GO, Brazil (V.F.A.)
| | - Iskra Vitanova Ivanova
- Department of General and Industrial Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8, Bul. Dragan Tzankov, 1164 Sofia, Bulgaria;
| |
Collapse
|
4
|
Liu J, Liao C, Li Z, Shi X, Wu X. Synergistic resistance of honeybee (Apis mellifera) and their gut microorganisms to fluvalinate stress. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105865. [PMID: 38685241 DOI: 10.1016/j.pestbp.2024.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 05/02/2024]
Abstract
Fluvalinate is widely used in the control of Varroa destructor, but its residues in colonies threaten honeybees. The effect of fluvalinate-induced dysbiosis on honeybee-related gene expression and the gut microenvironment of honeybees has not yet been fully elucidated. In this study, two-day-old larvae to seven-day-old adult worker bees were continuously fed different amounts of fluvalinate-sucrose solutions (0, 0.5, 5, and 50 mg/kg), after which the expression levels of two immune-related genes (Hymenoptaecin and Defensin1) and three detoxication-related genes (GSTS3, CAT, and CYP450) in worker bees (1, 7, and 20 days old) were measured. The effect of fluvalinate on the gut microbes of worker bees at seven days old also was explored using 16S rRNA Illumina deep sequencing. The results showed that exposure of honeybees to the insecticide fluvalinate affected their gene expression and gut microbial composition. As the age of honeybees increased, the effect of fluvalinate on the expression of Hymenoptaecin, CYP450, and CAT decreased, and the abundance of honeybee gut bacteria was affected by increasing the fluvalinate concentration. These findings provide insights into the synergistic defense of honeybee hosts against exogenous stresses in conjunction with honeybee gut microbes.
Collapse
Affiliation(s)
- Jianhui Liu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Chunhua Liao
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhen Li
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xinxin Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
5
|
Wang H, Chen W, Lei L, Zhang W, Liu Z, Wang Y, Xu B. Queen bee gut microbiota extends honeybee lifespan by inhibiting insulin signaling. Appl Environ Microbiol 2024; 90:e0179923. [PMID: 38470148 PMCID: PMC11022582 DOI: 10.1128/aem.01799-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/22/2023] [Indexed: 03/13/2024] Open
Abstract
Queen and worker bees are natural models for aging research, as their lifespans vary considerably independent of genetic variation. Investigating the reasons why queens live longer than workers is of great significance for research on the universal processes of aging in animals. The gut microbiome has received attention as a vital regulator of host health, while its precise role in honeybee aging needs further investigation. The effects and mechanisms behind the relationship between gut microbiota and worker lifespan were measured by transplanting queen bee gut bacteria (QG) and worker bee gut bacteria (WG) into microbiota-free (MF) workers. The transplantation of QG to MF bees significantly extended the workers' lifespans compared with MF and WG bees. Untargeted metabolomics identified 49 lifespan-related differential metabolites, and Kyoto Encyclopedia of Genes and Genomes analysis of these revealed three lifespan-related metabolic pathways: insulin/insulin-like growth factor signaling, immune, and ketone body metabolism pathways. Further verification showed that QG inhibited the expression of insulin-like peptides (ILPs), and the expression of ILPs was lower in natural queens than in natural workers. QG transplantation also stimulated the expression of antioxidant genes and lowered oxidative damage products in natural queen bees. However, gut microbiota transplantation failed to mimic the immune properties and ketone body metabolism profiles of natural queens and workers. Concisely, QG could increase the antioxidant capacity to extend lifespan by inhibiting insulin signaling. These findings may help determine the mechanisms behind queen longevity and provide further insights into the role of gut symbionts. IMPORTANCE Queen and worker bees share the same genetic background but have vastly different lifespans. The gut microbiome regulates host health, suggesting that differences in lifespan between queen and worker bees could be related to gut bacteria. Herein, we used an innovative method to transplant gut microbiota from adult queen or worker bees to microbiota-free bees. The transplantation of queen gut microbiota to microbiota-free bees extended their lifespan. Insulin/insulin-like growth factor signaling, a highly conserved metabolic pathway related to lifespan, displayed identical expression profiles in natural queen bees and microbiota-free bees transplanted with queen microbiota. This finding significantly expands our understanding of the relationships between intestinal bacteria, host health, and the biology of aging.
Collapse
Affiliation(s)
- Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Wenfeng Chen
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Li Lei
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Wei Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
6
|
Ye H, Jiang J, Lei Y, Fang N, Luo Y, Cheng Y, Li Y, Wang X, He H, Yu J, Xu Z, Zhang C. A systemic study of cyenopyrafen in strawberry cultivation system: Efficacy, residue behavior, and impact on honeybees (Apis mellifera L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123601. [PMID: 38373624 DOI: 10.1016/j.envpol.2024.123601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The pesticide application method is one of the important factors affecting its effectiveness and residues, and the risk of pesticides to non-target organisms. To elucidate the effect of application methods on the efficacy and residue of cyenopyrafen, and the toxic effects on pollinators honeybees in strawberry cultivation, the efficacy and residual behavior of cyenopyrafen were investigated using foliar spray and backward leaf spray in field trials. The results showed that the initial deposition of cyenopyrafen using backward leaf spray on target leaves reached 5.06-9.81 mg/kg at the dose of 67.5-101.25 g a.i./ha, which was higher than that using foliar spray (2.62-3.71 mg/kg). The half-lives of cyenopyrafen in leaves for foliar and backward leaf spray was 2.3-3.3 and 5.3-5.9 d, respectively. The residues (10 d) of cyenopyrafen in leaves after backward leaf spray was 1.41-3.02 mg/kg, which was higher than that after foliar spraying (0.25-0.37 mg/kg). It is the main reason for the better efficacy after backward leaf spray. However, the residues (10 d) in strawberry after backward leaf spray and foliar spray was 0.04-0.10 and < 0.01 mg/kg, which were well below the established maximum residue levels of cyenopyrafen in Japan and South Korea for food safety. To further investigate the effects of cyenopyrafen residues after backward leaf spray application on pollinator honeybees, sublethal effects of cyenopyrafen on honeybees were studied. The results indicated a significant inhibition in the detoxification metabolic enzymes of honeybees under continuous exposure of cyenopyrafen (0.54 and 5.4 mg/L) over 8 d. The cyenopyrafen exposure also alters the composition of honeybee gut microbiota, such as increasing the relative abundance of Rhizobiales and decreasing the relative abundance of Acetobacterales. The comprehensive data on cyenopyrafen provide basic theoretical for environmental and ecological risk assessment, while backward leaf spray proved to be effective and safe for strawberry cultivation.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Yuan Lei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Nan Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Yuqin Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Youpu Cheng
- Tianjin Agricultural University, Tianjin, 300392, PR China
| | - Yanjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Xianghu Laboratory, Hangzhou, 311231, PR China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Hongmei He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Jianzhong Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| |
Collapse
|
7
|
Gouda MNR, Subramanian S, Kumar A, Ramakrishnan B. Microbial ensemble in the hives: deciphering the intricate gut ecosystem of hive and forager bees of Apis mellifera. Mol Biol Rep 2024; 51:262. [PMID: 38302671 DOI: 10.1007/s11033-024-09239-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/10/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND The gut microbiome of honey bees significantly influences vital traits and metabolic processes, including digestion, detoxification, nutrient provision, development, and immunity. However, there is a limited information is available on the gut bacterial diversity of western honey bee populations in India. This study addresses the critical knowledge gap and outcome of which would benefit the beekeepers in India. METHODS AND RESULTS This study investigates the gut bacterial diversity in forager and hive bees of Indian Apis mellifera, employing both culture-based and culture-independent methods. In the culturable study, a distinct difference in gut bacterial alpha and beta diversity between forager and hive bees emerges. Firmicutes, Proteobacteria, and Actinobacteria dominate, with hive bees exhibiting a Firmicutes-rich gut (65%), while foragers showcase a higher proportion of Proteobacteria (37%). Lactobacillus in the hive bee foregut aligns with the findings by other researchers. Bacterial amplicon sequencing analysisreveals a more intricate bacterial composition with 18 identified phyla, expanding our understanding compared to culturable methods. Hive bees exhibit higher community richness and diversity, likely due to diverse diets and increased social interactions. The core microbiota includes Snodgrassella alvi, Gilliamella apicola, and Bombilactobacillus mellis and Lactobacillus helsingborgensis, crucial for digestion, metabolism, and pathogen resistance. The study emphasises bacteria's role in pollen and nectar digestion, with specific groups like Lactobacillus and Bifidobobacterium spp. associated with carbohydrate metabolism and polysaccharide breakdown. These microbes aid in starch and sucrose digestion, releasing beneficial short-chain fatty acids. CONCLUSION This research highlights the intricate relationship between honey bees and their gut microbiota, showcasing how the diverse and complex microbiome helps bees overcome dietary challenges and enhances overall host health. Understanding these interactions contributes to bee ecology knowledge and has implications for honey bee health management, emphasising the need for further exploration and conservation efforts.
Collapse
Affiliation(s)
- M N Rudra Gouda
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sabtharishi Subramanian
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | |
Collapse
|
8
|
Wang Y, Ma L, Xu B. Bee wisdom: exploring bee control strategies for food microflora by comparing the physicochemical characteristics and microbial composition of beebread. Microbiol Spectr 2023; 11:e0181823. [PMID: 37800944 PMCID: PMC10871783 DOI: 10.1128/spectrum.01818-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/05/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Bees are a valuable model for investigating the relationship between environmental factors, gut microbiota, and organismal health. Beebread, produced from collected pollen, is a natural food source and a primary reservoir of gut microorganisms. Although pollen typically has diverse bacterial species, beebread has low species richness and bacterial abundance. Consequently, considerable attention has been paid to the adaptive strategies employed by honey bees to cope with the microorganisms within their food environment during co-evolution with plants. This study identified the distribution patterns of beebread's physicochemical characteristics, showing how bees use fermentation to enrich specific microbes. These findings help understand the relationship between environmental and food-associated microbes and bee intestinal microbiota. They also bridge gaps in the literature and provide a valuable reference for studying the complex interplay between these factors.
Collapse
Affiliation(s)
- Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
9
|
Kim M, Kim WJ, Park SJ. Analyzing Gut Microbial Community in Varroa destructor-Infested Western Honeybee ( Apis mellifera). J Microbiol Biotechnol 2023; 33:1495-1505. [PMID: 37482801 DOI: 10.4014/jmb.2306.06040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The western honeybee Apis mellifera L., a vital crop pollinator and producer of honey and royal jelly, faces numerous threats including diseases, chemicals, and mite infestations, causing widespread concern. While extensive research has explored the link between gut microbiota and their hosts. However, the impact of Varroa destructor infestation remains understudied. In this study, we employed massive parallel amplicon sequencing assays to examine the diversity and structure of gut microbial communities in adult bee groups, comparing healthy (NG) and Varroa-infested (VG) samples. Additionally, we analyzed Varroa-infested hives to assess the whole body of larvae. Our results indicated a notable prevalence of the genus Bombella in larvae and the genera Gillamella, unidentified Lactobacillaceae, and Snodgrassella in adult bees. However, no statistically significant difference was observed between NG and VG. Furthermore, our PICRUSt analysis demonstrated distinct KEGG classification patterns between larval and adult bee groups, with larvae displaying a higher abundance of genes involved in cofactor and vitamin production. Notably, despite the complex nature of the honeybee bacterial community, methanogens were found to be present in low abundance in the honeybee microbiota.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| | - Woo Jae Kim
- Center for Life Science (HCLS), Harbin Institute of Technology, No.92 West Dazhi Street, Nangang District, Harbin City, Hei Longjiang Province, P.R. China
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
10
|
Roxo I, Amaral A, Portugal A, Trovão J. A preliminary metabarcoding analysis of Portuguese raw honeys. Arch Microbiol 2023; 205:386. [PMID: 37982894 DOI: 10.1007/s00203-023-03725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
The microbial diversity in Portuguese raw honeys remains largely uncharacterized, constituting a serious knowledge gap in one of the country's most important resources. This work provides an initial investigation with amplicon metabarcoding analysis of two Lavandula spp. from different geographical regions of Portugal and one Eucalyptus spp. honey. The results obtained allowed to identify that each honey harbors diverse microbiomes with taxa that can potentially affect bee and human health, cause spoilage, and highlight bad bee-hive management practices. We verified that prokaryotes had a tendency towards a more marked core bacterial and a relative homogenous taxa distribution, and that the botanical origin of honey is likely to have a stronger impact on the fungal community. Thus, the results obtained in this work provide important information that can be helpful to improve this critical Portuguese product and industry.
Collapse
Affiliation(s)
- Ivo Roxo
- FitoLab-Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
| | - António Amaral
- Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga/Guimarães, Portugal
- Instituto de Investigação Aplicada, Laboratório SiSus, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
| | - António Portugal
- FitoLab-Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal
- Centre for Functional Ecology-Science for People & the Planet, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - João Trovão
- FitoLab-Laboratory for Phytopathology, Instituto Pedro Nunes, Rua Pedro Nunes, Quinta da Nora, 3030-199, Coimbra, Portugal.
- Centre for Functional Ecology-Science for People & the Planet, TERRA Associate Laboratory, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
11
|
Li WL, Huang Q, Li JL, Wu P, Wei B, Li XJ, Tang QH, Dong ZX, Xiong J, Tang H, Zhang J, Zhao CH, Cao Z, Chen Y, Zhao WZ, Wang K, Guo J. Gut microbiota-driven regulation of queen bee ovarian metabolism. Microbiol Spectr 2023; 11:e0214523. [PMID: 37750696 PMCID: PMC10581225 DOI: 10.1128/spectrum.02145-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/27/2023] Open
Abstract
With the global prevalence of Varroa mites, more and more beekeepers resort to confining the queen bee in a queen cage to control mite infestation or to breed superior and robust queen bees. However, the impact of such practices on the queen bee remains largely unknown. Therefore, we subjected the queen bees to a 21-day egg-laying restriction treatment (from the egg stage to the emergence of adult worker bees) and analyzed the queen bees' ovarian metabolites and gut microbiota after 21 days, aiming to assess the queen bees' quality and assist beekeepers in better hive management. Our findings revealed a significant reduction in the relative expression levels of Vg and Hex110 genes in the ovaries of egg laying-restricted queen bees compared to unrestricted egg-laying queens. The diversity of gut microbiota in the queen bee exhibited a notable decrease, accompanied by corresponding changes in the core bacteria of the microbial community, the relative abundance of Lactobacillus and Bifidobacterium increased from 22.34% to 53.14% (P = 0.01) and from 0.053% to 0.580% (P = 0.04), respectively. The relative abundance of Bombella decreased from 25.85% to 1.720% (P = 0.002). Following egg-laying restriction, the activity of the queen bee's ovaries decreased, while the metabolism of glycerophospholipids remained or stored more lipid molecules, awaiting environmental changes for the queen bee to resume egg laying promptly. Furthermore, we observed that Bombella in the queen bee's gut may regulate the queen's ovarian metabolism through tryptophan metabolism. These findings provide novel insights into the interplay among queen egg laying, gut microbiota, and ovarian metabolism. IMPORTANCE With Varroa mite infestation, beekeepers often confine the queen bee in cages for control or breeding. However, the impact on the queen bee is largely unknown. We evaluated queen bee quality by restricting egg laying and analyzing ovarian metabolites and gut microbiota. In this study, we provided a comprehensive explanation of the expression of ovarian genes, the diversity of gut microbiota, and changes in ovarian metabolism in the queen bee. Through integrated analysis of the queen bee's gut microbiota and ovarian metabolism, we discovered that the gut microbiota can regulate the queen bee's ovarian metabolism. These findings provide valuable insights into the interplay among egg laying, gut microbiota, and the reproductive health of the queen bee. Understanding these relationships can contribute to the development of better strategies for Varroa mite control and queen bee breeding.
Collapse
Affiliation(s)
- Wan-Li Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Qi Huang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Jia-Li Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Ping Wu
- Nanchuan District Livestock, Veterinary and Fisheries Center, Chongqing, China
| | - Bangrong Wei
- Chongqing Nanchuan District Livestock, Veterinary and Fishery Center, Chongqing, China
| | - Xi-Jie Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Qi-He Tang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Zhi-Xiang Dong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Jian Xiong
- Yunnan Zhongfeng Technology Development Co. Ltd., Kunming, Yunnan, China
| | - Hong Tang
- Chongqing Nanchuan Bee Breeding Center, Chongqing, China
| | - Jun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Chong-Hui Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Zhe Cao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
| | - Yuan Chen
- Pujia Life Technology (Fuzhou) Co., LTD, Fuzhou, China
| | - Wen-zheng Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, North Suburb, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan province, China
- Yunnan Zhongfeng Technology Development Co. Ltd., Kunming, Yunnan, China
| |
Collapse
|
12
|
Kim DY, Maeng S, Cho SJ, Park HJ, Kim K, Lee JK, Srinivasan S. The Ascosphaera apis Infection (Chalkbrood Disease) Alters the Gut Bacteriome Composition of the Honeybee. Pathogens 2023; 12:pathogens12050734. [PMID: 37242403 DOI: 10.3390/pathogens12050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The declining honeybee populations are a significant risk to the productivity and security of agriculture worldwide. Although there are many causes of these declines, parasites are a significant one. Disease glitches in honeybees have been identified in recent years and increasing attention has been paid to addressing the issue. Between 30% and 40% of all managed honeybee colonies in the USA have perished annually over the past few years. American foulbrood (AFB) and European foulbrood (EFB) have been reported as bacterial diseases, Nosema as a protozoan disease, and Chalkbrood and Stonebrood as fungal diseases. The study aims to compare the bacterial community related to the Nosema ceranae and Ascosphaera apis infection on the gut of the honeybee and compare it with the weakly active honeybees. The Nosema-infected honeybees contain the phyla Proteobacteria as the significantly dominant bacterial phyla, similar to the weakly active honeybees. In contrast, the Ascosphaera (Chalkbrood) infected honeybee contains large amounts of Firmicutes rather than Proteobacteria.
Collapse
Affiliation(s)
- Dae Yoon Kim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Republic of Korea
| | - Soohyun Maeng
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 01797, Republic of Korea
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hui Jin Park
- Department of Biology Education, College of Education, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyungsu Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jae Kwon Lee
- Department of Biology Education, College of Education, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sathiyaraj Srinivasan
- Department of Bio and Environmental Technology, College of Natural Science, Seoul Women's University, Seoul 01797, Republic of Korea
| |
Collapse
|
13
|
Carvajal RI, Silva-Mieres F, Ilabaca A, Rocha J, Arellano-Arriagada L, Zuniga Arbalti FA, García-Cancino A. Isolation and characterization of Lactobacillus casei A14.2, a strain with immunomodulating activity on Apis mellifera. Saudi J Biol Sci 2023; 30:103612. [PMID: 36936701 PMCID: PMC10020679 DOI: 10.1016/j.sjbs.2023.103612] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/07/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Considering the economic and environmental role played by bees and their present threats it is necessary to develop food supplements favoring their health. The aim of this work was to isolate and characterize an immunomodulating probiotic capable to improve the health of honeybee colonies. For this purpose, bacterial strains were isolated from Apis mellifera bees (N = 180) obtained at three apiaries. A total of 44 strains were isolated and 9 of them were identified as Lactobacillus having the capacity to grow under saccharose osmotic stress, at pH 4.0 and possessing a wide susceptibility to antibiotics. Results allowed to select two strains but finally only one of them, strain A14.2 showed a very significant immunomodulating activity. This strain increased the expression of mRNA codifying the antimicrobial peptides 24 h post-administration. We evaluated its growth kinetics under aerobic and microaerobic conditions and its survival in the presence of high concentrations of saccharose. Results demonstrated that Lactobacillus casei A14.2 strain was highly tolerant to oxygen and that it was able to adapt to saccharose enriched environments (50% and 100% w/v). Finally, L. casei A14.2 strain was administered monthly during summer and early fall to 4 honeybee colonies (2 controls and 2 treatments). The results showed a gradual sustained decrease of infestation (p < 0.05) by the pathogenic Nosema spp. but no reduction in the infestation by the mite Varroa destructor. These results suggest that the administration of this potential probiotic, may increase the resistance of honeybee colonies to infectious diseases caused by Nosema spp.
Collapse
Affiliation(s)
- Romina I. Carvajal
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
- Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Sede Concepción, Lientur 1457, Concepción 4030000, Chile
| | - Fabiola Silva-Mieres
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
- Millennium Institute on Immunology and Immunotherapy. Laboratory of Integrative Biology (LIBi), Center for Excellence in Translational Medicine (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - Alejandra Ilabaca
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Jorge Rocha
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Luciano Arellano-Arriagada
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Felipe A. Zuniga Arbalti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| | - Apolinaria García-Cancino
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, Víctor Lamas 1290, Concepción 4030000, Chile
| |
Collapse
|
14
|
Zhang M, Wang X, Wang Z, Mao S, Zhang J, Li M, Pan H. Metatranscriptomic Analyses Reveal Important Roles of the Gut Microbiome in Primate Dietary Adaptation. Genes (Basel) 2023; 14:228. [PMID: 36672969 PMCID: PMC9858838 DOI: 10.3390/genes14010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The gut microbiome plays a vital role in host ecological adaptation, especially dietary adaptations. Primates have evolved a variety of dietary and gut physiological structures that are useful to explore the role of the gut microbiome in host dietary adaptations. Here, we characterize gut microbiome transcriptional activity in ten fecal samples from primates with three different diets and compare the results to their previously reported metagenomic profile. Bacteria related to cellulose degradation, like Bacteroidaceae and Alcaligenaceae, were enriched and actively expressed in the gut microbiome of folivorous primates, and functional analysis revealed that the glycan biosynthesis and metabolic pathways were significantly active. In omnivorous primates, Helicobacteraceae, which promote lipid metabolism, were significantly enriched in expression, and activity and xenobiotic biodegradation and metabolism as well as lipid metabolism pathways were significantly active. In frugivorous primates, the abundance and activity of Elusimicrobiaceae, Neisseriaceae, and Succinivibrionaceae, which are associated with digestion of pectin and fructose, were significantly elevated, and the functional pathways involved in the endocrine system were significantly enriched. In conclusion, the gut microbiome contributes to host dietary adaptation by helping hosts digest the inaccessible nutrients in their specific diets.
Collapse
Affiliation(s)
- Mingyi Zhang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Xiaochen Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Ziming Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shuxin Mao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Zhang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing 100101, China
| | - Huijuan Pan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
15
|
Gaggìa F, Jakobsen RR, Alberoni D, Baffoni L, Cutajar S, Mifsud D, Nielsen DS, Di Gioia D. Environment or genetic isolation? An atypical intestinal microbiota in the Maltese honey bee Apis mellifera spp. ruttneri. Front Microbiol 2023; 14:1127717. [PMID: 36910174 PMCID: PMC9995969 DOI: 10.3389/fmicb.2023.1127717] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Apis mellifera evolved mainly in African, Asian, and European continents over thousands of years, leading to the selection of a considerable number of honey bees subspecies that have adapted to various environments such as hot semi-desert zones and cold temperate zones. With the evolution of honey bee subspecies, it is possible that environmental conditions, food sources, and microbial communities typical of the colonized areas have shaped the honey bee gut microbiota. Methods In this study the microbiota of two distinct lineages (mitochondrial haplotypes) of bees Apis mellifera ruttneri (lineage A) and Apis mellifera ligustica and carnica (both lineage C) were compared. Honey bee guts were collected in a dry period in the respective breeding areas (the island of Malta and the regions of Emilia-Romagna and South Tyrol in Italy). Microbial DNA from the honey bee gut was extracted and amplified for the V3-V4 regions of the 16S rRNA gene for bacteria and for ITS2 for fungi. Results The analyses carried out show that the Maltese lineage A honey bees have a distinctive microbiota when compared to Italian lineage C honey bees, with the most abundant genera being Bartonellaceae and Lactobacillaceae, respectively. Lactobacillaceae in Maltese Lineage A honey bees consist mainly of Apilactobacillus instead of Lactobacillus and Bombilactobacillus in the lineage C. Lineage A honey bee gut microbiota also harbors higher proportions of Arsenophonus, Bombella, Commensalibacter, and Pseudomonas when compared to lineage C. Discussion The environment seems to be the main driver in the acquisition of these marked differences in the gut microbiota. However, the influence of other factors such as host genetics, seasonality or geography may still play a significant role in the microbiome shaping, in synergy with the environmental aspects.
Collapse
Affiliation(s)
- Francesca Gaggìa
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Rasmus Riemer Jakobsen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Daniele Alberoni
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Loredana Baffoni
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Simone Cutajar
- Institute of Earth Systems, L-Università tà Malta, Msida, Malta
| | - David Mifsud
- Institute of Earth Systems, L-Università tà Malta, Msida, Malta
| | - Dennis Sandris Nielsen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Diana Di Gioia
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
16
|
Lugli GA, Fontana F, Tarracchini C, Mancabelli L, Milani C, Turroni F, Ventura M. Exploring the biodiversity of Bifidobacterium asteroides among honey bee microbiomes. Environ Microbiol 2022; 24:5666-5679. [PMID: 36161453 PMCID: PMC10092428 DOI: 10.1111/1462-2920.16223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
Bifidobacterium asteroides is considered the ancestor of the genus Bifidobacterium, which has evolved in close touch with the hindgut of social insects. However, recent studies revealed high intraspecies biodiversity within this taxon, uncovering the putative existence of multiple bifidobacterial species, thus, suggesting its reclassification. Here, a genomic investigation of 98 B. asteroides-related genomes retrieved from public repositories and reconstructed from metagenomes of the hindgut of Apis mellifera and Apis cerana was performed to shed light on the genetic variability of this taxon. Phylogenetic and genomic analyses revealed the existence of eight clusters, of which five have been recently characterized with a representative type strain of the genus and three were represented by putative novel bifidobacterial species inhabiting the honeybee gut. Then, the dissection of 366 shotgun metagenomes of honeybee guts revealed a pattern of seven B. asteroides-related taxa within A. mellifera that co-exist with the host, while A. cerana microbiome was characterized by the predominance of one of the novel species erroneously classified as B. asteroides. A further glycobiome analysis unveiled a conserved repertoire of glycosyl hydrolases (GHs) reflecting degradative abilities towards a broad range of simple carbohydrates together with genes encoding specific GHs of each B. asteroides-related taxa.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
17
|
Tsan L, Sun S, Hayes AMR, Bridi L, Chirala LS, Noble EE, Fodor AA, Kanoski SE. Early life Western diet-induced memory impairments and gut microbiome changes in female rats are long-lasting despite healthy dietary intervention. Nutr Neurosci 2022; 25:2490-2506. [PMID: 34565305 PMCID: PMC8957635 DOI: 10.1080/1028415x.2021.1980697] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Western diet consumption during adolescence results in hippocampus (HPC)-dependent memory impairments and gut microbiome dysbiosis. Whether these adverse outcomes persist in adulthood following healthy dietary intervention is unknown. Here we assessed the short- and long-term effects of adolescent consumption of a Western diet enriched with either sugar or both sugar and fat on metabolic outcomes, HPC function, and gut microbiota. METHODS Adolescent female rats (PN 26) were fed a standard chow diet (CHOW), chow with access to 11% sugar solution (SUG), or a junk food cafeteria-style diet (CAF) containing various foods high in fat and/or sugar. During adulthood (PN 65+), metabolic outcomes, HPC-dependent memory, and gut microbial populations were evaluated. In a subsequent experiment, these outcomes were evaluated following a 5-week dietary intervention where CAF and SUG groups were maintained on standard chow alone. RESULTS Both CAF and SUG groups demonstrated impaired HPC-dependent memory, increased adiposity, and altered gut microbial populations relative to the CHOW group. However, impaired peripheral glucose regulation was only observed in the SUG group. When examined following a healthy dietary intervention in a separate experiment, metabolic dysfunction was not observed in either the CAF or SUG group, whereas HPC-dependent memory impairments were observed in the CAF but not the SUG group. In both groups the composition of the gut microbiota remained distinct from CHOW rats after the dietary intervention. CONCLUSIONS While the metabolic impairments associated with adolescent junk food diet consumption are not present in adulthood following dietary intervention, the HPC-dependent memory impairments and the gut microbiome dysbiosis persist.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Shan Sun
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anna M. R. Hayes
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lana Bridi
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Lekha S. Chirala
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Emily E. Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics at the University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Scott E. Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
18
|
Wang H, Lei L, Chen W, Chi X, Han K, Wang Y, Ma L, Liu Z, Xu B. The Comparison of Antioxidant Performance, Immune Performance, IIS Activity and Gut Microbiota Composition between Queen and Worker Bees Revealed the Mechanism of Different Lifespan of Female Casts in the Honeybee. INSECTS 2022; 13:772. [PMID: 36135473 PMCID: PMC9506344 DOI: 10.3390/insects13090772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
Queen bees and worker bees both develop from fertilized eggs, whereas queens live longer than workers. The mechanism of this phenomenon is worth exploring. Antioxidant capacity, immune and IIS are the conserved mechanisms of aging. The importance of gut bacteria for health prompted us to connect with bee aging. Therefore, the differences of antioxidant, immune, IIS and gut microflora between queen and worker bees were compared to find potential mechanisms of queens' longevity. The results showed queens had stronger antioxidant capacity and lower immune pathway and IIS activity than workers. The higher expression level of catalase and SOD1/2 in queens resulted in the stronger ROS scavenging ability, which leads to the lower ROS level and the reduced accumulation of oxidative damage products in queens. The lower IMD expression and higher antimicrobial peptides (AMPs) expressions in queens suggested that queens maintain lower immune pathway activity and stronger immune capacity than workers. Gut bacteria composition analysis indicated that queens had supernal Acetobacteraceae (notably Commensalibacter and Bombella), Lactobacillus and Bifidobacterium over workers. In conclusion, antioxidant, immune, IIS, and gut symbiotic bacteria all contribute to the longevity of queens. This study provides more insights into revealing the mechanisms of queens' longevity.
Collapse
|
19
|
Dietary Utilization Drives the Differentiation of Gut Bacterial Communities between Specialist and Generalist Drosophilid Flies. Microbiol Spectr 2022; 10:e0141822. [PMID: 35863034 PMCID: PMC9431182 DOI: 10.1128/spectrum.01418-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Gut bacteria play vital roles in the dietary detoxification, digestion, and nutrient supplementation of hosts during dietary specialization. The roles of gut bacteria in the host can be unveiled by comparing communities of specialist and generalist bacterial species. However, these species usually have a long evolutionary history, making it difficult to determine whether bacterial community differentiation is due to host dietary adaptation or phylogenetic divergence. In this regard, we investigated the bacterial communities from two Araceae-feeding Colocasiomyia species and further performed a meta-analysis by incorporating the published data from Drosophila bacterial community studies. The compositional and functional differentiation of bacterial communities was uncovered by comparing three (Araceae-feeding, mycophagous, and cactophilic) specialists with generalist flies. The compositional differentiation showed that Bacteroidetes and Firmicutes inhabited specialists, while more Proteobacteria lived in generalists. The functional prediction based on the bacterial community compositions suggested that amino acid metabolism and energy metabolism are overrepresented pathways in specialists and generalists, respectively. The differences were mainly associated with the higher utilization of structural complex carbohydrates, protein utilization, vitamin B12 acquisition, and demand for detoxification in specialists than in generalists. The complementary roles of bacteria reveal a connection between gut bacterial communities and fly dietary specialization. IMPORTANCE Gut bacteria may play roles in the dietary utilization of hosts, especially in specialist animals, during long-term host-microbe interaction. By comparing the gut bacterial communities between specialist and generalist drosophilid flies, we found that specialists harbor more bacteria linked to complex carbohydrate degradation, amino acid metabolism, vitamin B12 formation, and detoxification than do generalists. This study reveals the roles of gut bacteria in drosophilid species in dietary utilization.
Collapse
|
20
|
Martin VN, Schaeffer RN, Fukami T. Potential effects of nectar microbes on pollinator health. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210155. [PMID: 35491594 DOI: 10.1098/rstb.2021.0155] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Floral nectar is prone to colonization by nectar-adapted yeasts and bacteria via air-, rain-, and animal-mediated dispersal. Upon colonization, microbes can modify nectar chemical constituents that are plant-provisioned or impart their own through secretion of metabolic by-products or antibiotics into the nectar environment. Such modifications can have consequences for pollinator perception of nectar quality, as microbial metabolism can leave a distinct imprint on olfactory and gustatory cues that inform foraging decisions. Furthermore, direct interactions between pollinators and nectar microbes, as well as consumption of modified nectar, have the potential to affect pollinator health both positively and negatively. Here, we discuss and integrate recent findings from research on plant-microbe-pollinator interactions and their consequences for pollinator health. We then explore future avenues of research that could shed light on the myriad ways in which nectar microbes can affect pollinator health, including the taxonomic diversity of vertebrate and invertebrate pollinators that rely on this reward. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
| | | | - Tadashi Fukami
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Cotter SC, Al Shareefi E. Nutritional ecology, infection and immune defence - exploring the mechanisms. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100862. [PMID: 34952240 DOI: 10.1016/j.cois.2021.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Diet can impact the outcome of parasitic infection in three, non-mutually exclusive ways: 1) by changing the physiological environment of the host, such as the availability of key nutritional resources, the presence of toxic dietary chemicals, the pH or osmolality of the blood or gut, 2) by enhancing the immune response and 3) by altering the presence of host microbiota, which help to digest nutrients and are a potential source of antibiotics. We show that there are no clear patterns in the effects of diet across taxa and that good evidence for the mechanisms by which diet exerts its effects are often lacking. More studies are required to understand the mechanisms of action if we are to discern patterns that can be generalised across host and parasite taxa.
Collapse
Affiliation(s)
- Sheena C Cotter
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK.
| | - Ekhlas Al Shareefi
- Dept of Biology, College of Science for Women, University of Babylon, Hillah-Babil, Iraq
| |
Collapse
|
22
|
Gruneck L, Gentekaki E, Khongphinitbunjong K, Popluechai S. Distinct gut microbiota profiles of Asian honey bee (Apis cerana) foragers. Arch Microbiol 2022; 204:187. [PMID: 35192066 DOI: 10.1007/s00203-022-02800-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 01/05/2023]
Abstract
Bee gut microbial communities have been studied extensively and linked to honey bee biology in terms of stages of bee development and behavior. Associations of bee gut microbiota in health and disease have also been explored. A large number of studies have centered on the gut microbiome of Apis mellifera, with similar investigations lagging far behind in Asian honey bee foragers. In this study, we characterized and compared the gut bacterial profiles of foragers and nurse bees of A. cerana and A. mellifera. Analysis of 16S rRNA partial gene sequences revealed significant differences in gut bacterial communities between the two honey bee species. Despite sharing dominant taxa, Bacteroides was more abundant in A. cerana, while Proteobacteria was higher in A. mellifera. Specific gut members are distinctly associated with hosts performing different tasks (i.e. nurse bees versus foragers). An exclusive abundance of Apibacter detected in Asian honey bee seemed to be a microbial signature of A. cerana foragers. Overall, our study highlights that variations in gut microbiota could be linked to task-specific (nurse bees and foragers) bacterial species associated with honey bees. Future investigations on the symbiotic relationship between host and the resident microbiota would be beneficial for improving honey bee health.
Collapse
Affiliation(s)
- Lucsame Gruneck
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Eleni Gentekaki
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand.,School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Kitiphong Khongphinitbunjong
- School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand.,Microbial Products and Innovation Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Siam Popluechai
- Gut Microbiome Research Group, Mae Fah Luang University, Muang, Chiang Rai, Thailand. .,School of Science, Mae Fah Luang University, Muang, Chiang Rai, Thailand.
| |
Collapse
|
23
|
Yu L, Yang H, Cheng F, Wu Z, Huang Q, He X, Yan W, Zhang L, Wu X. Honey bee Apis mellifera larvae gut microbial and immune, detoxication responses towards flumethrin stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118107. [PMID: 34500395 DOI: 10.1016/j.envpol.2021.118107] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/07/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Mites are considered the worst enemy of honey bees, resulting in economic losses in agricultural production. In apiculture, flumethrin is frequently used to control mites. It causes residues of flumethrin in colonies which may threaten honey bees, especially for larvae. Still, the impact of flumethrin-induced dysbiosis on honey bees larval health has not been fully elucidated, and any impact of microbiota for decomposing flumethrin in honey bees is also poorly understood. In this study, 2-day-old larvae were fed with different flumethrin-sucrose solutions (0, 0.5, 5, 50 mg/kg) and the dose increased daily (1.5, 2, 2.5 and 3 μL) until capped, thereafter the expression level of two immune genes (hymenoptaecin, defensin1) and two detoxication-related genes (GST, catalase) were measured. Meanwhile, the effect of flumethrin on honey bee larvae (Apis mellifera) gut microbes was also explored via 16S rRNA Illumina deep sequencing. We found that flumethrin at 5 mg/kg triggered the over expression of immune-related genes in larvae, while the larval detoxification-related genes were up-regulated when the concentrations reached 50 mg/kg. Moreover, the abundance and diversity of microbes in flumethrin-treated groups (over 0.5 mg/kg) were significantly lower than control group, but it increased with flumethrin concentrations among the flumethrin-treated groups. Our results revealed that microbes served as a barrier in the honey bee gut and were able to protect honey bee larvae to a certain extent, and reduce the stress of flumethrin on honey bee larvae. In addition, as the concentration of flumethrin increases, honey bee larvae activate their immune system then detoxification system to defend against the potential threat of flumethrin. This is the first report on the impact of flumethrin on gut microbiota in honey bees larvae. The findings revealed new fundamental insights regarding immune and detoxification of host-associated microbiota.
Collapse
Affiliation(s)
- Longtao Yu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Heyan Yang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Fuping Cheng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Zhihao Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Qiang Huang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Xujiang He
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Weiyu Yan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Lizhen Zhang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China
| | - Xiaobo Wu
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, 330045, PR China; Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang, 330045, PR China.
| |
Collapse
|
24
|
Liu P, Zhu Y, Ye L, Shi T, Li L, Cao H, Yu L. Overwintering honeybees maintained dynamic and stable intestinal bacteria. Sci Rep 2021; 11:22233. [PMID: 34782655 PMCID: PMC8593070 DOI: 10.1038/s41598-021-01204-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/25/2021] [Indexed: 12/23/2022] Open
Abstract
Honeybee is an important pollinator for maintaining ecological balance. However, scientist found the bizarre mass death of bees in winter. Meanwhile, some reported that the differences composed of intestinal bacteria between healthy honeybees and CCD honeybees. It is essential that explored dynamic changes to the intestinal bacteria in overwintering honeybees. We collected bee samples before overwintering, during prophase of overwintering, metaphase of overwintering, anaphase of overwintering, telophase of overwintering, and after overwintering. By using high-throughput sequencing targeting the V3-V4 regions of the 16S rDNA, the abundance of the intestinal bacteria were analyzed in overwintering honeybees. A total of 1,373,886 high-quality sequences were acquired and Proteobacteria (85.69%), Firmicutes (10.40%), Actinobacteria (3.66%), and Cyanobacteria (1.87%) were identified as major components of the intestinal bacteria. All core honeybee intestinal bacteria genera, such as Gilliamella, Bartonella, Snodgrassella, Lactobacillus, Frischella, Commensalibacter, and Bifidobacterium were detected. The abundance of Actinobacteria, Bartonella, and Bifidobacterium increased initially and then decreased in winter honeybees. There were no significant differences in the richness and evenness of the microbiota in overwintering honeybees; however, there was a statistically significant difference in the beta diversity of the intestinal bacteria after overwintering compared with that in other groups. Our results suggested that honeybees maintained their intestinal ecosystem balance, and increased the abundance of gut probiotics in response to environmental and nutrition pressures in winter.
Collapse
Affiliation(s)
- Peng Liu
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, China
| | - Yujie Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, China
| | - Liang Ye
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, China
| | - Tengfei Shi
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, China
| | - Lai Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui Province, China
| | - Haiqun Cao
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, China
| | - Linsheng Yu
- College of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province, China.
| |
Collapse
|
25
|
Wang Y, Li Z, Ma L, Li G, Han K, Liu Z, Wang H, Xu B. The Native Dietary Habits of the Two Sympatric Bee Species and Their Effects on Shaping Midgut Microorganisms. Front Microbiol 2021; 12:738226. [PMID: 34690980 PMCID: PMC8529121 DOI: 10.3389/fmicb.2021.738226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
The intestinal microbial community composition of different bee species typically has host specificity, yet little is known about the underlying formation mechanism. There are signs that dietary habits vary in different bee species, suggesting that there may be close relationships between dietary habits and intestinal microorganisms. We explored this hypothesis by comparing the dietary habits and gut microbiota of two common bee species (Apis mellifera L. and Apis cerana cerana) in China. Bee bread and midgut samples from wild and laboratory-reared bees were collected, and the differences in intestinal microbial community composition and growth and development before and after the change in dietary habits of different bee species were compared. We found that the two sympatric species had different dietary specializations and similar metagenomic diversities. The microbiota composition differed between the two species. Moreover, we revealed that changes in native dietary habits destroyed the intestinal microbiota community composition, negatively affecting the growth and development of honeybees.
Collapse
Affiliation(s)
- Ying Wang
- Department of Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhenfang Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Jining, China
| | - Kai Han
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, China
| |
Collapse
|
26
|
Hsu CK, Wang DY, Wu MC. A Potential Fungal Probiotic Aureobasidium melanogenum CK-CsC for the Western Honey Bee, Apis mellifera. J Fungi (Basel) 2021; 7:508. [PMID: 34202244 PMCID: PMC8306588 DOI: 10.3390/jof7070508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022] Open
Abstract
Aureobasidium melanogenum has been used as an animal feed additive for improving thehealth of pets, however, it has not yet been applied in honey bees. Here, a fungal strain CK-CsC isolated from bee bread pollen, was identified as A. melanogenum. Following characterizing CK-CsC fermentation broth, the 4-days fermentation broth (SYM medium or bee pollen) of the CK-CsC was used to feed newly emerged adult honey bees in cages under laboratory-controlled conditions for analysis of survival, gene expression of nutrient and antibacterial peptide, and gut microbiota of honey bees. It was found that the CK-CsC fermentation broth (SYM medium or bee pollen) is nontoxic to honey bees, and can regularly increase nutrient gene expression of honey bees. However, significant mortality of bees was observed after bees were fed on the supernatant liquid of the fermentation broth. Notably, this mortality can be lowered by the simultaneous consumption of bee pollen. The honey bees that were fed bee pollen exhibited more γ-Proteobacteria, Bacteriodetes, and Actinobacteria in their gut flora than did the honey bees fed only crude supernatant liquid extract. These findings indicate that A. melanogenum CK-CsC has high potential as a bee probiotic when it was fermented with bee pollen.
Collapse
Affiliation(s)
| | | | - Ming-Cheng Wu
- Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan; (C.-K.H.); (D.-Y.W.)
| |
Collapse
|
27
|
Callegari M, Crotti E, Fusi M, Marasco R, Gonella E, De Noni I, Romano D, Borin S, Tsiamis G, Cherif A, Alma A, Daffonchio D. Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. NPJ Biofilms Microbiomes 2021; 7:42. [PMID: 33963194 PMCID: PMC8105395 DOI: 10.1038/s41522-021-00212-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The core gut microbiome of adult honeybee comprises a set of recurring bacterial phylotypes, accompanied by lineage-specific, variable, and less abundant environmental bacterial phylotypes. Several mutual interactions and functional services to the host, including the support provided for growth, hormonal signaling, and behavior, are attributed to the core and lineage-specific taxa. By contrast, the diversity and distribution of the minor environmental phylotypes and fungal members in the gut remain overlooked. In the present study, we hypothesized that the microbial components of forager honeybees (i.e., core bacteria, minor environmental phylotypes, and fungal members) are compartmentalized along the gut portions. The diversity and distribution of such three microbial components were investigated in the context of the physico-chemical conditions of different gut compartments. We observed that changes in the distribution and abundance of microbial components in the gut are consistently compartment-specific for all the three microbial components, indicating that the ecological and physiological interactions among the host and microbiome vary with changing physico-chemical and metabolic conditions of the gut.
Collapse
Affiliation(s)
- Matteo Callegari
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy.
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elena Gonella
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Ivano De Noni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Diego Romano
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milan, Italy
| | - George Tsiamis
- Department of Environmental Engineering, University of Patras, Agrinion, Greece
| | - Ameur Cherif
- Institut Supérieur de Biotechnologie Sidi Thabet (ISBST), BVBGR-LR11ES31, Biotechpole Sidi Thabet, University Manouba, Ariana, Tunisia
| | - Alberto Alma
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Grugliasco, Italy
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
28
|
Nowak A, Szczuka D, Górczyńska A, Motyl I, Kręgiel D. Characterization of Apis mellifera Gastrointestinal Microbiota and Lactic Acid Bacteria for Honeybee Protection-A Review. Cells 2021; 10:cells10030701. [PMID: 33809924 PMCID: PMC8004194 DOI: 10.3390/cells10030701] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
Numerous honeybee (Apis mellifera) products, such as honey, propolis, and bee venom, are used in traditional medicine to prevent illness and promote healing. Therefore, this insect has a huge impact on humans’ way of life and the environment. While the population of A. mellifera is large, there is concern that widespread commercialization of beekeeping, combined with environmental pollution and the action of bee pathogens, has caused significant problems for the health of honeybee populations. One of the strategies to preserve the welfare of honeybees is to better understand and protect their natural microbiota. This paper provides a unique overview of the latest research on the features and functioning of A. mellifera. Honeybee microbiome analysis focuses on both the function and numerous factors affecting it. In addition, we present the characteristics of lactic acid bacteria (LAB) as an important part of the gut community and their special beneficial activities for honeybee health. The idea of probiotics for honeybees as a promising tool to improve their health is widely discussed. Knowledge of the natural gut microbiota provides an opportunity to create a broad strategy for honeybee vitality, including the development of modern probiotic preparations to use instead of conventional antibiotics, environmentally friendly biocides, and biological control agents.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
- Correspondence:
| | - Daria Szczuka
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Anna Górczyńska
- Faculty of Law and Administration, University of Lodz, Kopcińskiego 8/12, 90-232 Łódź, Poland;
| | - Ilona Motyl
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| | - Dorota Kręgiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (D.S.); (I.M.); (D.K.)
| |
Collapse
|
29
|
Tola YH, Waweru JW, Hurst GDD, Slippers B, Paredes JC. Characterization of the Kenyan Honey Bee ( Apis mellifera) Gut Microbiota: A First Look at Tropical and Sub-Saharan African Bee Associated Microbiomes. Microorganisms 2020; 8:microorganisms8111721. [PMID: 33153032 PMCID: PMC7692941 DOI: 10.3390/microorganisms8111721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Gut microbiota plays important roles in many physiological processes of the host including digestion, protection, detoxification, and development of immune responses. The honey bee (Apis mellifera) has emerged as model for gut-microbiota host interaction studies due to its gut microbiota being highly conserved and having a simple composition. A key gap in this model is understanding how the microbiome differs regionally, including sampling from the tropics and in particular from Africa. The African region is important from the perspective of the native diversity of the bees, and differences in landscape and bee management. Here, we characterized the honey bee gut microbiota in sub-Saharan Africa using 16S rRNA amplicon sequencing. We confirm the presence of the core gut microbiota members and highlight different compositions of these communities across regions. We found that bees from the coastal regions harbor a higher relative abundance and diversity on core members. Additionally, we showed that Gilliamella, Snodgrassella, and Frischella dominate in all locations, and that altitude and humidity affect Gilliamella abundance. In contrast, we found that Lactobacillus was less common compared temperate regions of the world. This study is a first comprehensive characterization of the gut microbiota of honey bees from sub-Saharan Africa and underscores the need to study microbiome diversity in other indigenous bee species and regions.
Collapse
Affiliation(s)
- Yosef Hamba Tola
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa;
| | - Jacqueline Wahura Waweru
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Bernard Slippers
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa;
| | - Juan C. Paredes
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 30772-00100, Kenya; (Y.H.T.); (J.W.W.)
- Correspondence:
| |
Collapse
|
30
|
Antimicrobial Activity against Paenibacillus larvae and Functional Properties of Lactiplantibacillus plantarum Strains: Potential Benefits for Honeybee Health. Antibiotics (Basel) 2020; 9:antibiotics9080442. [PMID: 32722196 PMCID: PMC7460353 DOI: 10.3390/antibiotics9080442] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 01/09/2023] Open
Abstract
Paenibacillus larvae is the causative agent of American foulbrood (AFB), a severe bacterial disease that affects larvae of honeybees. The present study evaluated, in vitro, antimicrobial activity of sixty-one Lactiplantibacillus plantarum strains, against P. larvae ATCC 9545. Five strains (P8, P25, P86, P95 and P100) that showed the greatest antagonism against P. larvae ATCC 9545 were selected for further physiological and biochemical characterizations. In particular, the hydrophobicity, auto-aggregation, exopolysaccharides production, osmotic tolerance, enzymatic activity and carbohydrate assimilation patterns were evaluated. The five L. plantarum selected strains showed suitable physical and biochemical properties for their use as probiotics in the honeybee diet. The selection and availability of new selected bacteria with good functional characteristics and with antagonistic activity against P. larvae opens up interesting perspectives for new biocontrol strategies of diseases such as AFB.
Collapse
|