1
|
Zhang X, Li Y, Liu W, Zhang H, Han Y, Liu Y, Wang X. Preliminary investigation on the effect of Vibrio splendidus stimulation on the intestinal flora of Strongylocentrotus intermedius. Biochem Biophys Res Commun 2024; 730:150389. [PMID: 39003864 DOI: 10.1016/j.bbrc.2024.150389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
To better understand the effect of Vibrio splendidus infection on Strongylocentrotus intermedius, 16S rRNA sequencing was carried out to investigate the intestinal flora of S. intermedius stimulated by 0 CFU/mL (Con), 1.5 × 107 CFU/mL (Vib1) and 1.5 × 108 CFU/mL (Vib2) concentrations of V. splendidus. The results showed that there was significant difference in intestinal flora diversity between Con group and Vib1 group, but no significant difference between Con group and Vib2 group. However, there were significant differences in the composition of intestinal flora among all groups. Bacteroidota, Proteobacteria and Firmicutes were the dominant phylum in the Con group. The abundance of Bacteroidota and Firmicutes decreased and Proteobacteria increased in Vib1 and Vib2 groups. The relative abundance of the potential probiotic bacteria Muribaculaceae and Alloprevotella was significantly lower in the Vib1 and Vib2 groups. In addition, the opportunistic pathogen Desulfovibrio was found in Vib1 and Vib2 groups. It is evident that V. splendidus infection not only alters the composition of the microbial community in the intestinal tract of S. intermedius, but may also lead to the production of opportunistic pathogens, which could be potentially harmful to the health of S. intermedius. The results of this study provide a foundation for exploring the diseases caused by V. splendidus stimulation leading to an imbalance in the intestinal flora of S. intermedius, and contribute to our further understanding of the role of Vibrio on the health of S. intermedius.
Collapse
Affiliation(s)
- Xiaochen Zhang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yan Li
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Wan Liu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Haoyu Zhang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China.
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China.
| |
Collapse
|
2
|
Wang X, Guo T, Zhang Q, Zhao N, Hu L, Liu H, Xu S. Seasonal variations in composition and function of gut microbiota in grazing yaks: Implications for adaptation to dietary shift on the Qinghai-Tibet plateau. Ecol Evol 2024; 14:e70337. [PMID: 39440203 PMCID: PMC11495855 DOI: 10.1002/ece3.70337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
Gut microbiome of animals is affected by external environmental factors and can assist them in adapting to changing environments effectively. Consequently, elucidating the gut microbes of animals under different environmental conditions can provide a comprehensive understanding of the mechanisms of their adaptations to environmental change, with a particular focus on animals in extreme environments. In this study, we compared the structural and functional differences of the gut microbiome of grazing yaks between the summer and winter seasons through metagenomic sequencing and bioinformatics analysis. The results indicated that the composition and function of microbes changed significantly. The study demonstrated an increase in the relative abundance of Actinobacteria and a higher ratio of Firmicutes to Bacteroidetes (F/B) in winter, this process facilitated the adaptation of yaks to the consumption of low-nutrient forages in the winter. Furthermore, the network structure exhibited greater complexity in the winter. Forage nutrition exhibited a significant seasonal variation, with a notable impact on the gut microbiota. The metagenomic analysis revealed an increase in the abundance of enzymes related to amino acid metabolism, axillary activity, and mucin degradation in the winter. In conclusion, this study demonstrated that the gut microbiome of grazing yaks exhibits several adaptive characteristics that facilitate better nutrient accessibility and acid the host in acclimating to the harsh winter conditions. Furthermore, our study offers novel insights into the mechanisms of highland animal adaptation to external environments from the perspective of the gut microbiome.
Collapse
Affiliation(s)
- Xungang Wang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Tongqing Guo
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Qian Zhang
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Na Zhao
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Linyong Hu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Hongjin Liu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| | - Shixiao Xu
- Key Laboratory of Adaptation and Evolution of Plateau BiotaNorthwest Institute of Plateau Biology, Chinese Academy of SciencesXiningChina
| |
Collapse
|
3
|
du Preez LL, van der Walt E, Valverde A, Rothmann C, Neser FWC, Cason ED. A metagenomic survey of the fecal microbiome of the African savanna elephant (Loxodonta africana). Anim Genet 2024; 55:621-643. [PMID: 38923598 DOI: 10.1111/age.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The African savanna elephant (Loxodonta africana) is the largest terrestrial animal on Earth and is found primarily in Southern and Eastern Africa. It is a hindgut, colonic fermenter and subsists on a diet of raw plant materials found in its grazing area. In this study the bacterial, archaeal and fungal populations of seven African savanna elephant fecal metagenomes were first characterized using amplicon sequencing. On the genus level it was observed that the p-1088-a5 gut group in the bacteriome, Methanocorpusulum and Methanobrevibacter in the archaeome and Alternaria, Aurobasidium, Didymella and Preussia in the mycome, predominated. Subsequently, metagenomic shotgun sequencing was employed to identify possible functional pathways and carbohydrate-active enzymes (CAZymes). Carbohydrate catabolic pathways represented the main degradation pathways, and the fecal metagenome was enriched in the glycohydroside (GH) class of CAZymes. Additionally, the top GH families identified - GH43, GH2, GH13 and GH3 - are known to be associated with cellulytic, hemicellulytic and pectolytic activities. Finally, the CAZymes families identified in the African savanna elephant were compared with those found in the Asian elephant and it was demonstrated that there is a unique repository of CAZymes that could be leveraged in the biotechnological context such as the degradation of lignocellulose for the production of second-generation biofuels and energy.
Collapse
Affiliation(s)
- Louis Lategan du Preez
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
| | - Elzette van der Walt
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
| | - Angel Valverde
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Christopher Rothmann
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
| | | | - Errol Duncan Cason
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
| |
Collapse
|
4
|
Miller S, Hendry M, King J, Sankaranarayanan K, Lawson PA. Bacteroides vicugnae sp. nov. isolated from the fecal material of an alpaca. Anaerobe 2024; 88:102862. [PMID: 38718919 DOI: 10.1016/j.anaerobe.2024.102862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/10/2024]
Abstract
Two strictly anaerobic, Gram-stain-negative rod-shaped bacterial isolates, A2-P53T and A1-P5, were isolated from an enrichment of fecal material from two alpacas (Vicugna pacos). Based on a comparative 16S rRNA gene sequence analysis, the isolates were assigned to the genus Bacteroides with the highest sequence similarities to Bacteroides koreensis YS-aM39T (A2- P53T 97.7 % and A1-P5 97.9 %). Additionally, the average nucleotide identity and digital DNA-DNA hybridization values between these isolates and their closest relatives within Bacteroides were less than 92.1 % and 49.1 %, respectively. The average nucleotide identity between isolates A2-P53T and A1-P5 was 99.9 %. The predominant cellular fatty acid for isolates A2-P53T and A1-P5 was C15:0 antesio. The G+C % content of the isolates was 41.7 %. Based on biochemical, phylogenetic, genotypic, and chemotaxonomic criteria, these isolates A2-P53T and A1-P5 represent two individual strains of a novel species within the genus Bacteroides for which the name Bacteroides vicugnae sp. nov. is proposed. The type strain of this species is strain A2-P53T (CCUG 77273T = CCM 9377T = NRRL B-65693T).
Collapse
Affiliation(s)
- Samuel Miller
- School of Biological Sciences, 730 and 770 Van Vleet Oval, Norman, OK, 73019, USA; Laboratories of Molecular Anthropology and Microbiome Research, Stephenson Research and Technology Center, 101 David L. Boren Blvd, Norman, OK, 73019, USA.
| | - Meredith Hendry
- School of Biological Sciences, 730 and 770 Van Vleet Oval, Norman, OK, 73019, USA.
| | - Jacobey King
- School of Biological Sciences, 730 and 770 Van Vleet Oval, Norman, OK, 73019, USA.
| | - Krithivasan Sankaranarayanan
- School of Biological Sciences, 730 and 770 Van Vleet Oval, Norman, OK, 73019, USA; Laboratories of Molecular Anthropology and Microbiome Research, Stephenson Research and Technology Center, 101 David L. Boren Blvd, Norman, OK, 73019, USA.
| | - Paul A Lawson
- School of Biological Sciences, 730 and 770 Van Vleet Oval, Norman, OK, 73019, USA.
| |
Collapse
|
5
|
Gong Z, Ye G, Xu S, He X. The characteristics of intestinal flora of Tibetan sheep in different regions at high altitude were revealed based on metagenomic technique. Heliyon 2024; 10:e34380. [PMID: 39816362 PMCID: PMC11734073 DOI: 10.1016/j.heliyon.2024.e34380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
Tibetan sheep play a vital role in the livelihoods of herders and are an important part of the ecosystem of the Tibetan Plateau. In order to study the characteristics of the gut microorganisms of Tibetan sheep at high altitude, this study employed macrogenomic techniques to analyse the diversity and differences in the gut flora of Tibetan sheep in different regions of high altitude and high cold. The results demonstrated that at the phylum level, the dominant phylum in the ileo-cecum segment of Tibetan sheep in Qilian, Henan and Gonghe counties was identical, namely Euryarchaeota, Firmicutes and Ascomycota. At the level of the archaebacterial genus, the dominant bacteria of the ileocecal segment of Tibetan sheep in Qilian County, Henan County and Gonghe County were Methanobrevibacter. At the level of bacterial genus, the dominant bacteria of Tibetan sheep ileocecal in Qilian County and Henan County were Bacteroides, while in Gonghe County, the dominant bacteria were Bifidobacterium. At the level of fungal genus, there were notable differences in the abundance of Tibetan sheep ileocecal genus across different regions. However, the abundance of cecum genus exhibited a more consistent trend across regions. From the perspective of functional prediction, the metabolic pathways enriched in the intestinal segments of Tibetan sheep in different regions were found to be identical, with the relative abundance of each functional gene also being essentially uniform. This result will provide a foundation for further research on the mechanism of action of gut microbes in ruminants at high altitude and alpine regions.
Collapse
Affiliation(s)
- Zifeng Gong
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, Qinghai, 810016, China
| | - Guisheng Ye
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, Qinghai, 810016, China
| | - Shuqin Xu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, Qinghai, 810016, China
| | - Xi He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai, 810016, China
- Qinghai Provincial Key Laboratory of Pathogen Diagnosis for Animal Diseases and Green Technical Research for Prevention and Control, Qinghai University, Xining, Qinghai, 810016, China
| |
Collapse
|
6
|
Hu P, Xiao M, Wang N, Zhang S, Shi J, Shi J, Tang T, Liu L. Metagenome reveals the possible mechanism that microbial strains promote methanogenesis during anaerobic digestion of food waste. ENVIRONMENTAL RESEARCH 2024; 251:118723. [PMID: 38490625 DOI: 10.1016/j.envres.2024.118723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
For better understanding the mechanism of microbial strains promoting methane production, four strains Hungatella xylanolytica A5, Bacillus licheniformis B1, Paraclostridium benzoelyticum C2 and Advenella faeciporci E1 were inoculated into anaerobic digestion systems. After bioaugmentation, the cumulative methane production of A5, B1, C2 and E1 groups elevated by 11.68%, 8.20%, 18.21% and 15.67% compared to CK group, respectively. The metagenomic analysis revealed that the species diversity and uniformity of the experimental groups was improved, and hydrolytic acidifying bacteria, represented by Clostridiaceae, Anaerolineaceae and Oscillospiraceae, and methanogens, such as Methanotrichaceae and Methanobacteriaceae, were enriched. Meanwhile, the abundance of key genes in carbohydrate, pyruvate and methane metabolism was increased in the inoculated groups, providing reasonable reasons for more methane production. The strengthening mechanism of microbial strains in this study offered a theoretical foundation for selecting a suitable bioaugmentation strategy to solve the problems of slow start-up and low methane production in anaerobic digestion.
Collapse
Affiliation(s)
- Panpan Hu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyao Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siying Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjing Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Tao Tang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China.
| |
Collapse
|
7
|
Hu Q, Luo J, Cheng F, Wang P, Gong P, Lv X, Wang X, Yang M, Wei P. Spatial profiles of the bacterial microbiota throughout the gastrointestinal tract of dairy goats. Appl Microbiol Biotechnol 2024; 108:356. [PMID: 38822843 PMCID: PMC11144141 DOI: 10.1007/s00253-024-13200-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
The gastrointestinal tract (GIT) is stationed by a dynamic and complex microbial community with functions in digestion, metabolism, immunomodulation, and reproduction. However, there is relatively little research on the composition and function of microorganisms in different GIT segments in dairy goats. Herein, 80 chyme samples were taken from ten GIT sites of eight Xinong Saanen dairy goats and then analyzed and identified the microbial composition via 16S rRNA V1-V9 amplicon sequencing. A total of 6669 different operational taxonomic units (OTUs) were clustered, and 187 OTUs were shared by ten GIT segments. We observed 264 species belonging to 23 different phyla scattered across ten GITs, with Firmicutes (52.42%) and Bacteroidetes (22.88%) predominating. The results revealed obvious location differences in the composition, diversity, and function of the GIT microbiota. In LEfSe analysis, unidentified_Lachnospiraceae and unidentified_Succinniclassicum were significantly enriched in the four chambers of stomach, with functions in carbohydrate fermentation to compose short-chain fatty acids. Aeriscardovia, Candidatus_Saccharimonas, and Romboutsia were significantly higher in the foregut, playing an important role in synthesizing enzymes, amino acids, and vitamins and immunomodulation. Akkermansia, Bacteroides, and Alistipes were significantly abundant in the hindgut to degrade polysaccharides and oligosaccharides, etc. From rumen to rectum, α-diversity decreased first and then increased, while β-diversity showed the opposite trend. Metabolism was the major function of the GIT microbiome predicted by PICRUSt2, but with variation in target substrates along the regions. In summary, GIT segments play a decisive role in the composition and functions of microorganisms. KEY POINTS: • The jejunum and ileum were harsh for microorganisms to colonize due to the presence of bile acids, enzymes, faster chyme circulation, etc., exhibiting the lowest α-diversity and the highest β-diversity. • Variability in microbial profiles between the three foregut segments was greater than four chambers of stomach and hindgut, with a higher abundance of Firmicutes dominating than others. • Dairy goats dominated a higher abundance of Kiritimatiellaeota than cows, which was reported to be associated with fatty acid synthesis.
Collapse
Affiliation(s)
- Qingyong Hu
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Jun Luo
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China.
| | - Fei Cheng
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Ping Wang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Husbandry Science, Urumqi Xinjiang, 830000, People's Republic of China
| | - Xuefeng Lv
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Husbandry Science, Urumqi Xinjiang, 830000, People's Republic of China
| | - Xinpei Wang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Min Yang
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| | - Pengbo Wei
- Shaanxi Provincial Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, People's Republic of China
| |
Collapse
|
8
|
Wang R, Bai B, Huang Y, Degen A, Mi J, Xue Y, Hao L. Yaks Are Dependent on Gut Microbiota for Survival in the Environment of the Qinghai Tibet Plateau. Microorganisms 2024; 12:1122. [PMID: 38930503 PMCID: PMC11205922 DOI: 10.3390/microorganisms12061122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The yak (Poephagus grunniens) has evolved unique adaptations to survive the harsh environment of the Qinghai-Tibetan Plateau, while their gut microorganisms play a crucial role in maintaining the health of the animal. Gut microbes spread through the animal population not only by horizontal transmission but also vertically, which enhances microbial stability and inheritance between generations of the population. Homogenization of gut microbes in different animal species occurs in the same habitat, promoting interspecies coexistence. Using the yak as a model animal, this paper discusses the adaptive strategies under extreme environments, and how the gut microbes of the yak circulate throughout the Tibetan Plateau system, which not only affects other plateau animals such as plateau pikas, but can also have a profound impact on the health of people. By examining the relationships between yaks and their gut microbiota, this review offers new insights into the adaptation of yaks and their ecological niche on the Qinghai-Tibetan plateau.
Collapse
Affiliation(s)
- Runze Wang
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (R.W.); (B.B.)
| | - Binqiang Bai
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (R.W.); (B.B.)
| | - Yayu Huang
- PEGASE, INRAE, Institut Agro, 35590 Saint-Gilles, France;
| | - Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel;
| | - Jiandui Mi
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China;
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China; (R.W.); (B.B.)
| |
Collapse
|
9
|
Chettri D, Verma AK. Statistical optimization of cellulase production from Bacillus sp. YE16 isolated from yak dung of the Sikkim Himalayas for its application in bioethanol production using pretreated sugarcane bagasse. Microbiol Res 2024; 281:127623. [PMID: 38301380 DOI: 10.1016/j.micres.2024.127623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/03/2023] [Accepted: 01/13/2024] [Indexed: 02/03/2024]
Abstract
Cellulolytic bacteria were isolated from yak dung samples collected from different habitats of Sikkim, India. Isolate YE16 from the Yumthang Valley sample showed highest enzyme activity of 7.68 U/mL and was identified as Bacillus sp., which has a sequence similarity of 96.15% with B. velezensis. One factor at a time (OFAT) analysis revealed that an acidic pH of 5 with 37 °C temperature was optimum for maximum enzyme production after 36 hrs of incubation (13.88 U/mL), which was further increased after statistical optimization (34.70 U/mL). Media optimization based on response surface methodology predicted that Carboxymethyl cellulose (CMC) and MgSO4 at concentrations of 30 g/L and 0.525 g/L, respectively, at pH 5.5 to show CMCase activity of 30.612 U/mL, which was consistent with the observed value of 30.25 U/mL and confirmed the model. The crude enzyme also efficiently hydrolyzed alkaline pretreated sugarcane bagasse, releasing 7.09 g/L of glucose equivalent with an ethanol production of 3.05 g.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok 737102, Sikkim, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok 737102, Sikkim, India.
| |
Collapse
|
10
|
Zhang J, Wei Y, Qiu H, Han J. TMT-based quantitative proteomics reveals the nutritional and stress resistance functions of anaerobic fungi in yak rumen during passage at different time intervals. Anaerobe 2024; 85:102805. [PMID: 38049048 DOI: 10.1016/j.anaerobe.2023.102805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/16/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVES Anaerobic fungi are critical for nutrient digestion in the yak rumen. Although studies have reported the effects of passage at different time intervals on the community structure of yak rumen anaerobic fungi, it is unknown whether passage culture at different time intervals affects the microbial proteins of rumen anaerobic fungi and their functions. METHODS Mycelium was obtained using the anaerobic continuous batch culture (CBC) of yak rumen fluid at intervals of 3 d, 5 d and 7 d. Quantitative analysis of fungal proteins and functional analysis was performed using tandem mass tagging (TMT) and bioinformatics. RESULTS A total of 56 differential proteins (DPs) were found in 5 d vs. 3 d and 7 d vs. 3 d. Gene ontology (GO) enrichment indicated that the up-regulated proteins were mainly involved in biological regulation, cellular process, metabolic process, macromolecular complex, membrane, cell part, organelle, binding, catalytic activity and transporter activity. The downregulated proteins were mainly enriched in metabolic process, cell part, binding and catalytic activity. Furthermore, the downregulated proteins in 7 d vs. 3 d were related to membrane and organelle. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results indicated that DPs were enriched in 14 pathways in 5 d vs. 3 d and 7 d vs. 3 d, mainly including terpenoid backbone biosynthesis, alaine, aspartate and glutamate metabolism, arginine biosynthesis, hypotaurine, cyanoamino acid, glutathione, β-alanine, pyrimidine, purine, galactose and propanate metabolism, steroid biosynthesis, ribosome biogenesis in eukaryotes and aminoacyl tRNA biosynthesis. The DPs were enriched in only 2 pathways in 5 d vs 3 d, lysine biosynthesis and cysteine and methionine metabolism. N-glycan biosynthesis and retinol metabolism are only found in the metabolism of DPs in 7 d vs 3 d. CONCLUSIONS Yak rumen anaerobic fungal proteins are involved in nutrition and stress tolerance during passage at different time intervals.
Collapse
Affiliation(s)
- Jingrong Zhang
- College of Pratacultural, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yaqin Wei
- Institute of Biology, Gansu Academy of Science, Lanzhou, 730030, China
| | - Huizhen Qiu
- College of Pratacultural, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jiayi Han
- Gansu Academy of Science, Lanzhou, 730030, China
| |
Collapse
|
11
|
Zhang Y, Song H, Liu Z, Ai C, Yan C, Dong X, Song S. Interaction between a Sulfated Polysaccharide from Sea Cucumber and Gut Microbiota Influences the Fat Metabolism in Rats. Foods 2023; 12:4476. [PMID: 38137281 PMCID: PMC10743057 DOI: 10.3390/foods12244476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Due to its significant physiological effects, a sulfated polysaccharide has been considered an important nutrient of sea cucumber, but its metabolism in vivo is still unclear. The present study investigated the metabolism of a sea cucumber sulfated polysaccharide (SCSP) in rats and its influence on the metabolite profiles. The quantification by HPLC-MS/MS revealed that the blood level of SCSP achieved a maximum of 54.0 ± 4.8 μg/mL at 2 h after gavage, almost no SCSP was excreted through urine, and 55.4 ± 29.8% of SCSP was eliminated through feces within 24 h. These results prove the utilization of SCSP by gut microbiota, and a further microbiota sequencing analysis indicated that the SCSP utilization in the gut was positively correlated with Muribaculaceae and Clostridia_UCG-014. In addition, the non-targeted metabolomic analysis demonstrated the significant effects of SCSP administration on the metabolite profiles of blood, urine, and feces. It is worth noting that the SCSP supplement decreased palmitic acid, stearic acid, and oleic acid in blood and urine while increasing stearic acid, linoleic acid, and γ-linolenic acid in feces, suggesting the inhibition of fat absorption and the enhancement of fat excretion by SCSP, respectively. The present study shed light on the metabolism in vivo and the influence on the fat metabolism of SCSP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shuang Song
- Liaoning Key Laboratory of Food Nutrition and Health, Collaborative Innovation Center of Seafood Deep Processing, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.Z.); (H.S.); (Z.L.); (C.A.); (C.Y.); (X.D.)
| |
Collapse
|
12
|
Wang M, Zheng H, Wang S, Luo H, Li Z, Song X, Xu H, Li P, Sun S, Wang Y, Yuan Z. Comparative analysis of changes in diarrhea and gut microbiota in Beigang pigs. Microb Pathog 2023; 185:106441. [PMID: 37944676 DOI: 10.1016/j.micpath.2023.106441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Increasing evidence indicated that the gut microbiota is a large and complex organic combination, which is closely related to the host health. Diarrhea is a disease with devastating effects on livestock that has been demonstrated to be associated with gut microbiota. Currently, studies on gut microbiota and diarrhea have involved multiple species, but changes in gut microbiota of Beigang pigs during diarrhea have not been characterized. Here, we described gut microbial changes of Beigang pigs during diarrhea. Results indicated that a total of 4423 OTUs were recognized in diarrheic and healthy Beigang pigs, and Firmicutes and Bacteroidota were the most dominant phyla regardless of health status. However, the major components of the gut microbiota changed between diarrheic and healthy Beigang pigs. Bacterial taxonomic analysis revealed that the relative abundances of 3 phyla (Synergistota, Actinobacteriota and Spirochaetota) and 30 genera increased significantly during diarrhea, whereas the relative abundances of 3 phyla (Patescibacteria, Bacteroidota and Fibrobacterota) and 41 genera decreased significantly. In conclusion, this study found significant changes in the gut microbiota of Beigang pigs during diarrhea. Meanwhile, this also lays the foundation for the prevention and treatment of diarrhea in Beigang pigs and the further discovery of more anti-diarrhea probiotics.
Collapse
Affiliation(s)
- Meng Wang
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Hao Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Shuaiwei Wang
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Houqiang Luo
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Ziwei Li
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Xianzhang Song
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Hongxi Xu
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Peide Li
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Siyu Sun
- College of Animal Science, Wenzhou Vocational College of Science and Technology, Wenzhou, 325006, China
| | - Yan Wang
- Tibet Livestock Research Institute, Tibet Academy of Agriculture and Animal Science, Lhasa, 850009, China.
| | - Zhenjie Yuan
- Tibet Livestock Research Institute, Tibet Academy of Agriculture and Animal Science, Lhasa, 850009, China.
| |
Collapse
|
13
|
Santos-Pereira C, Sousa J, Costa ÂMA, Santos AO, Rito T, Soares P, Franco-Duarte R, Silvério SC, Rodrigues LR. Functional and sequence-based metagenomics to uncover carbohydrate-degrading enzymes from composting samples. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12627-9. [PMID: 37417976 PMCID: PMC10390414 DOI: 10.1007/s00253-023-12627-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023]
Abstract
The renewable, abundant , and low-cost nature of lignocellulosic biomass can play an important role in the sustainable production of bioenergy and several added-value bioproducts, thus providing alternative solutions to counteract the global energetic and industrial demands. The efficient conversion of lignocellulosic biomass greatly relies on the catalytic activity of carbohydrate-active enzymes (CAZymes). Finding novel and robust biocatalysts, capable of being active under harsh industrial conditions, is thus imperative to achieve an economically feasible process. In this study, thermophilic compost samples from three Portuguese companies were collected, and their metagenomic DNA was extracted and sequenced through shotgun sequencing. A novel multi-step bioinformatic pipeline was developed to find CAZymes and characterize the taxonomic and functional profiles of the microbial communities, using both reads and metagenome-assembled genomes (MAGs) as input. The samples' microbiome was dominated by bacteria, where the classes Gammaproteobacteria, Alphaproteobacteria, and Balneolia stood out for their higher abundance, indicating that the degradation of compost biomass is mainly driven by bacterial enzymatic activity. Furthermore, the functional studies revealed that our samples are a rich reservoir of glycoside hydrolases (GH), particularly of GH5 and GH9 cellulases, and GH3 oligosaccharide-degrading enzymes. We further constructed metagenomic fosmid libraries with the compost DNA and demonstrated that a great number of clones exhibited β-glucosidase activity. The comparison of our samples with others from the literature showed that, independently of the composition and process conditions, composting is an excellent source of lignocellulose-degrading enzymes. To the best of our knowledge, this is the first comparative study on the CAZyme abundance and taxonomic/functional profiles of Portuguese compost samples. KEY POINTS: • Sequence- and function-based metagenomics were used to find CAZymes in compost samples. • Thermophilic composts proved to be rich in bacterial GH3, GH5, and GH9 enzymes. • Compost-derived fosmid libraries are enriched in clones with β-glucosidase activity.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Joana Sousa
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Ângela M A Costa
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Andréia O Santos
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| | - Teresa Rito
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- IB-S-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Pedro Soares
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- IB-S-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Ricardo Franco-Duarte
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- IB-S-Institute of Science and Innovation for Bio-Sustainability, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sara C Silvério
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal.
| | - Lígia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade Do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, Guimarães, Braga, Portugal
| |
Collapse
|
14
|
Abstract
Common culturing techniques and priorities bias our discovery towards specific traits that may not be representative of microbial diversity in nature. So far, these biases have not been systematically examined. To address this gap, here we use 116,884 publicly available metagenome-assembled genomes (MAGs, completeness ≥80%) from 203 surveys worldwide as a culture-independent sample of bacterial and archaeal diversity, and compare these MAGs to the popular RefSeq genome database, which heavily relies on cultures. We compare the distribution of 12,454 KEGG gene orthologs (used as trait proxies) in the MAGs and RefSeq genomes, while controlling for environment type (ocean, soil, lake, bioreactor, human, and other animals). Using statistical modeling, we then determine the conditional probabilities that a species is represented in RefSeq depending on its genetic repertoire. We find that the majority of examined genes are significantly biased for or against in RefSeq. Our systematic estimates of gene prevalences across bacteria and archaea in nature and gene-specific biases in reference genomes constitutes a resource for addressing these issues in the future.
Collapse
Affiliation(s)
- Sage Albright
- Department of Biology, University of Oregon, Eugene, USA
| | - Stilianos Louca
- Department of Biology, University of Oregon, Eugene, USA.
- Institute of Ecology and Evolution, University of Oregon, Eugene, USA.
| |
Collapse
|
15
|
Lin L, Lai Z, Zhang J, Zhu W, Mao S. The gastrointestinal microbiome in dairy cattle is constrained by the deterministic driver of the region and the modified effect of diet. MICROBIOME 2023; 11:10. [PMID: 36670455 PMCID: PMC9863278 DOI: 10.1186/s40168-022-01453-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/19/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Dairy cattle (Bos taurus), especially Holstein cows, which are the highest-producing dairy animals and are widely bred to provide milk products to humans, rely critically on their associated gastrointestinal tract (GIT) microbiota to digest plant feed. However, the region-specific taxonomic composition and function of the GIT microbiome in dairy cattle and the mechanistic basis for the diet-induced effects remain to be elucidated. RESULTS: We collected 120 digesta samples from 10 GIT regions of 12 Holstein cows fed forage- and grain-based diets and characterized their GIT microbiome via functional shotgun metagenomics and the resolution of metagenome-assembled genomes. Our results demonstrated that the GIT microbiome was mainly partitioned into three distinct clusters, four-chambered stomach, small intestine, and large intestine. Moreover, we found that the four-chambered stomach microbiome with the highest diversity had a strong ability to degrade recalcitrant polysaccharide substrates, underpinned by the prevalence of potential cellulosome--producing and plant-derived polysaccharide utilization loci-encoding consortia. In contrast, the post-gastric intestinal microbiome orchestrated alternative fermentation pathways to adapt to nutrient availability and energy acquisition. Diet shifts selectively modified the metabolic cascades of the microbiome in specific GIT regions, evidenced by the loss of fiber-degrading taxa and increased hydrogen sinks in propionate after grain introduction. CONCLUSIONS Our findings provide new insights into GIT microbial organization and function in dairy cattle by GIT regions and diet regimes, which offers clues for improving animal production and health in the future. Video Abstract.
Collapse
Affiliation(s)
- Limei Lin
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zheng Lai
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiyou Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research On Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
16
|
Kim DW, Ahn JH, Cha CJ. Biodegradation of plastics: mining of plastic-degrading microorganisms and enzymes using metagenomics approaches. J Microbiol 2022; 60:969-976. [DOI: 10.1007/s12275-022-2313-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
|
17
|
Chen X, Yan F, Liu T, Zhang Y, Li X, Wang M, Zhang C, Xu X, Deng L, Yao J, Wu S. Ruminal Microbiota Determines the High-Fiber Utilization of Ruminants: Evidence from the Ruminal Microbiota Transplant. Microbiol Spectr 2022; 10:e0044622. [PMID: 35924933 PMCID: PMC9430676 DOI: 10.1128/spectrum.00446-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/17/2022] [Indexed: 12/20/2022] Open
Abstract
The rumen, which contains a series of prokaryotes and eukaryotes with high abundance, determines the high ability to degrade complex carbohydrates in ruminants. Using 16S rRNA gene sequencing, we compared the ruminal microbiota of dairy goats with that in the foregut and colon of mice and found more Bacteroides identified in the rumen, which helps ruminants to utilize plant-derived polysaccharides, cellulose, and other structural carbohydrates. Furthermore, high-fiber diets did not significantly increase intestinal fiber-degrading bacteria in mice, but did produce higher levels of ruminal fiber-degrading bacteria in dairy goats. Through rumen microbe transplantation (RMT), we found that rumen-derived fiber-degrading bacteria can colonize the intestines of mice to exert their fiber-degrading function, but their colonization efficiency is affected by diet. Additionally, the colonization of these fiber-degrading bacteria in the colon may involve higher content of butyrate in the colon, protecting the colonic epithelial barrier and promoting energy metabolism. Overall, the fiber degradation function of rumen bacteria through RMT was verified, and our results provide new insights into isolating the functional and beneficial fiber-degrading bacteria in the rumen, providing a theoretical basis for the role of dietary fiber in intestinal health. IMPORTANCE Ruminants have a powerful progastric digestive system that converts structural carbohydrates into nutrients useful to humans. It is well known that this phenomenon is due to the fact that the rumen of ruminants is a natural microbial fermenter, which can ferment structural carbohydrates such as cellulose and hemicellulose and transform them into volatile fatty acids to supply energy for host. However, monogastric animals have an inherent disadvantage in utilizing fiber, so screening rumen-derived fiber-degrading bacteria as a fermentation strain for biological feed is needed in an attempt at improving the fiber digestibility of monogastric animals. In this study, a ruminal microbiota transplant experiment from goats to mice proves that ruminal microbiota could serve as a key factor in utilization of high-fiber diets and provides a new perspective for the development of probiotics with fiber degradation function from the rumen and the importance of the use of prebiotics during the intake of probiotics.
Collapse
Affiliation(s)
- Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanling Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
- Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Mengya Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chenguang Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiurong Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Rammala B, Zhou N. Looking into the world's largest elephant population in search of ligninolytic microorganisms for biorefineries: a mini-review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:64. [PMID: 35689287 PMCID: PMC9188235 DOI: 10.1186/s13068-022-02159-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Abstract
Gastrointestinal tracts (GIT) of herbivores are lignin-rich environments with the potential to find ligninolytic microorganisms. The occurrence of the microorganisms in herbivore GIT is a well-documented mutualistic relationship where the former benefits from the provision of nutrients and the latter benefits from the microorganism-assisted digestion of their recalcitrant lignin diets. Elephants are one of the largest herbivores that rely on the microbial anaerobic fermentation of their bulky recalcitrant low-quality forage lignocellulosic diet given their inability to break down major components of plant cells. Tapping the potential of these mutualistic associations in the biggest population of elephants in the whole world found in Botswana is attractive in the valorisation of the bulky recalcitrant lignin waste stream generated from the pulp and paper, biofuel, and agro-industries. Despite the massive potential as a feedstock for industrial fermentations, few microorganisms have been commercialised. This review focuses on the potential of microbiota from the gastrointestinal tract and excreta of the worlds' largest population of elephants of Botswana as a potential source of extremophilic ligninolytic microorganisms. The review further discusses the recalcitrance of lignin, achievements, limitations, and challenges with its biological depolymerisation. Methods of isolation of microorganisms from elephant dung and their improvement as industrial strains are further highlighted.
Collapse
Affiliation(s)
- Bame Rammala
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana.
| |
Collapse
|
19
|
Metagenomic mining of Indian river confluence reveal functional microbial community with lignocelluloytic potential. 3 Biotech 2022; 12:132. [PMID: 35611093 DOI: 10.1007/s13205-022-03190-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/26/2022] [Indexed: 11/01/2022] Open
Abstract
Microbial carbohydrate-active enzymes (CAZyme) can be harnessed for valorization of Lignocellulosic biomass (LCB) to value-added chemicals/products. The two Indian Rivers Ganges and the Yamuna having different origins and flow, face accumulation of carbon-rich substrates due to the discharge of wastewater from adjoining paper and pulp industries, which could potentially contribute to the natural enrichment of LCB utilizing genes, especially at their confluence. We analyzed CAZyme diversity in metagenomic datasets across the sacred confluence of the Rivers Ganges and Yamuna. Functional annotation using CAZyme database identified a total of 77,815 putative genes with functional domains involved in the catalysis of carbohydrate degradation or synthesis of glycosidic bonds. The metagenomic analysis detected ~ 41% CAZymes catalyzing the hydrolysis of lignocellulosic biomass polymers- cellulose, hemicellulose, lignin, and pectin. The Beta diversity analysis suggested higher CAZyme diversity at downstream region of the river confluence, which could be useful niche for culture-based studies. Taxonomic origin for CAZymes revealed the predominance of bacteria (97%), followed by archaea (1.67%), Eukaryota (0.63%), and viruses (0.7%). Metagenome guided CAZyme diversity of the microflora spanning across the confluence of Ganges-Yamuna River, could be harnessed for biomass and bioenergy applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03190-7.
Collapse
|
20
|
Wen Y, Li S, Wang Z, Feng H, Yao X, Liu M, Chang J, Ding X, Zhao H, Ma W. Intestinal Microbial Diversity of Free-Range and Captive Yak in Qinghai Province. Microorganisms 2022; 10:754. [PMID: 35456805 PMCID: PMC9028582 DOI: 10.3390/microorganisms10040754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The gut microbiome is a large and complex organic assemblage with subtle and close relationships with the host. This symbiotic mechanism is important for the health and adaptability of the host to the environment. Compared with other ruminants, there are few studies on yak intestinal microbes. The study of the gut microbiota of the yak will help us better understand the correlation between the microbiota and the environmental adaptability of the host. In this study, we adapted 16S rDNA sequencing technology to investigate the diversity and composition of the intestinal microbial community in free-range yaks and captive yaks living on the Qinghai-Tibet Plateau (QTP). RESULTS Sequencing results showed that the intestinal microbial community diversity was significantly different between free-range yaks and captive yaks. Firmicutes and Bacteroidetes were the dominant bacteria in both free-range and captive yaks. However, there were differences between the microbes of the two analyzed feeding styles in different classification levels. Compared with the captive type, free-range yaks had a higher abundance of Ruminococcaceae, Eubacteriaceae, Desulfovibrionaceae, Elusimicrobium, and Oscillibacter, while the abundance of Succinivibrionaceae, Clostridiales, Lachnospiraceae, Prevotellaceae, Roseburia, and Barnesiella was relatively low. The feeding method may be the key factor for the formation of intestinal flora differences in yaks, while altitude did not significantly affect Qinghai yak. CONCLUSIONS In this study, we used 16S rDNA sequencing technology to investigate the composition of intestinal flora in free-range and captive yaks living on the QTP. The exploration of dietary factors can provide a theoretical basis for scientifically and rationally breeding yaks and provides a new direction for the development of prebiotics and microecological agents.
Collapse
Affiliation(s)
- Ying Wen
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (J.C.); (X.D.)
| | - Shaofei Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (S.L.); (Z.W.); (H.F.); (X.Y.); (M.L.)
| | - Zishuo Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (S.L.); (Z.W.); (H.F.); (X.Y.); (M.L.)
| | - Hao Feng
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (S.L.); (Z.W.); (H.F.); (X.Y.); (M.L.)
| | - Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (S.L.); (Z.W.); (H.F.); (X.Y.); (M.L.)
| | - Mingjie Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (S.L.); (Z.W.); (H.F.); (X.Y.); (M.L.)
| | - Jianjun Chang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (J.C.); (X.D.)
| | - Xiaoyu Ding
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China; (J.C.); (X.D.)
| | - Huiying Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (S.L.); (Z.W.); (H.F.); (X.Y.); (M.L.)
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China; (S.L.); (Z.W.); (H.F.); (X.Y.); (M.L.)
| |
Collapse
|
21
|
Fan C, Zhang L, Jia S, Tang X, Fu H, Li W, Liu C, Zhang H, Cheng Q, Zhang Y. Seasonal variations in the composition and functional profiles of gut microbiota reflect dietary changes in plateau pikas. Integr Zool 2022; 17:379-395. [PMID: 35051309 PMCID: PMC9305894 DOI: 10.1111/1749-4877.12630] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Seasonal variations in gut microbiota of small mammals and how it is influenced by environmental variables is relatively poorly understood. We sampled 162 wild plateau pikas (Ochotona curzoniae) in four seasons over two and a half years and recorded the air temperature, precipitation, and nutrient content in edible vegetation at the sampling site. After conducting 16S rRNA and shotgun metagenomic sequencing, we found that the highest alpha diversity, the relative abundance of Firmicutes, and the simplest co-occurrence network occurred in winter, whereas that the highest relative abundance of Proteobacteria and the most complex network structure was observed in spring. The highest relative abundance of Verrucomicrobiota and Spirochaetota were seen in summer and autumn, respectively. Air temperature, precipitation, and the contents of crude protein, crude fiber, and polysaccharide in vegetation had significant effects on the seasonal changes in gut microbiota. Diet contributed more to microbial variation than climatic factors. Metagenomic analysis revealed that the amino acid metabolism pathway and axillary activity enzymes were most abundant in summer, while abundance of carbohydrate-binding modules and carbohydrate esterases were highest in spring. These microbial variations were related to the changes in dietary nutrition, indicating that gut microbiota of plateau pika contribute to the efficient use of food resources. This study provides new evidence of how external environmental factors affect the intestinal environment of small mammals. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chao Fan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,College of Life Sciences, Qufu Normal University, Qufu, 273165, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibo Fu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjing Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| | - Chuanfa Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, 810008, China
| |
Collapse
|
22
|
Sun G, Xia T, Wei Q, Dong Y, Zhao C, Yang X, Zhang L, Wang X, Sha W, Zhang H. Analysis of gut microbiota in three species belonging to different genera ( Hemitragus, Pseudois, and Ovis) from the subfamily Caprinae in the absence of environmental variance. Ecol Evol 2021; 11:12129-12140. [PMID: 34522365 PMCID: PMC8427585 DOI: 10.1002/ece3.7976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
This study aimed to identify the effects of host species on the gut microbial flora in three species (Hemitragus jemlahicus, Pseudois nayaur, and Ovis orientalis) from the subfamily Caprinae, by excluding the impact of environment factors. We investigated the differences in intestinal flora of three species belonging to Caprinae, which were raised in identical conditions. Fecal samples were collected from tahr, mouflon, and bharal, and the V3-V4 region of the 16S ribosomal RNA gene was analyzed by high-throughput sequencing. The analysis of 16S rRNA gene sequences reveals that fecal samples were mainly composed of four phyla: Firmicutes, Bacteroidetes, Spirochaetes, and Proteobacteria. The most abundant phyla included Firmicutes and Bacteroidetes accounting for >90% of the bacteria, and a higher Firmicutes/Bacteroidetes ratio was observed in tahrs. Moreover, significant differences existed at multiple levels of classifications in the relative abundance of intestinal flora, differing greatly between species. Phylogenetic analyses based on 16S rRNA gene indicated that mouflon is closely related to bharal, and it is inconsistent with previous reports in the species evolutionary relationships. In this study, we demonstrated that the gut microbiota in tahr had a stronger ability to absorb and store energy from the diet compared with mouflon and bharal, and the characteristics of host-microbiome interactions were not significant.
Collapse
Affiliation(s)
- Guolei Sun
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Tian Xia
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Qinguo Wei
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Yuehuan Dong
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Chao Zhao
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Xiufeng Yang
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Lei Zhang
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Xibao Wang
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Weilai Sha
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Honghai Zhang
- College of Life ScienceQufu Normal UniversityQufuChina
| |
Collapse
|
23
|
Chen YH, Chiang PW, Rogozin DY, Degermendzhy AG, Chiu HH, Tang SL. Salvaging high-quality genomes of microbial species from a meromictic lake using a hybrid sequencing approach. Commun Biol 2021; 4:996. [PMID: 34426638 PMCID: PMC8382752 DOI: 10.1038/s42003-021-02510-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/01/2021] [Indexed: 11/08/2022] Open
Abstract
Most of Earth's bacteria have yet to be cultivated. The metabolic and functional potentials of these uncultivated microorganisms thus remain mysterious, and the metagenome-assembled genome (MAG) approach is the most robust method for uncovering these potentials. However, MAGs discovered by conventional metagenomic assembly and binning are usually highly fragmented genomes with heterogeneous sequence contamination. In this study, we combined Illumina and Nanopore data to develop a new workflow to reconstruct 233 MAGs-six novel bacterial orders, 20 families, 66 genera, and 154 species-from Lake Shunet, a secluded meromictic lake in Siberia. With our workflow, the average N50 of reconstructed MAGs greatly increased 10-40-fold compared to when the conventional Illumina assembly and binning method were used. More importantly, six complete MAGs were recovered from our datasets. The recovery of 154 novel species MAGs from a rarely explored lake greatly expands the current bacterial genome encyclopedia.
Collapse
Affiliation(s)
- Yu-Hsiang Chen
- Bioinformatics Program, Taiwan International Graduate Program, National Taiwan University, Taipei, Taiwan
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Pei-Wen Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Denis Yu Rogozin
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk, Russia
| | - Andrey G Degermendzhy
- Institute of Biophysics, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Hsiu-Hui Chiu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Sen-Lin Tang
- Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan.
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
24
|
Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N. A Review on Bacterial Contribution to Lignocellulose Breakdown into Useful Bio-Products. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6001. [PMID: 34204975 PMCID: PMC8199887 DOI: 10.3390/ijerph18116001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
Discovering novel bacterial strains might be the link to unlocking the value in lignocellulosic bio-refinery as we strive to find alternative and cleaner sources of energy. Bacteria display promise in lignocellulolytic breakdown because of their innate ability to adapt and grow under both optimum and extreme conditions. This versatility of bacterial strains is being harnessed, with qualities like adapting to various temperature, aero tolerance, and nutrient availability driving the use of bacteria in bio-refinery studies. Their flexible nature holds exciting promise in biotechnology, but despite recent pointers to a greener edge in the pretreatment of lignocellulose biomass and lignocellulose-driven bioconversion to value-added products, the cost of adoption and subsequent scaling up industrially still pose challenges to their adoption. However, recent studies have seen the use of co-culture, co-digestion, and bioengineering to overcome identified setbacks to using bacterial strains to breakdown lignocellulose into its major polymers and then to useful products ranging from ethanol, enzymes, biodiesel, bioflocculants, and many others. In this review, research on bacteria involved in lignocellulose breakdown is reviewed and summarized to provide background for further research. Future perspectives are explored as bacteria have a role to play in the adoption of greener energy alternatives using lignocellulosic biomass.
Collapse
Affiliation(s)
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (O.B.C.); (H.A.T.); (N.I.)
| | | | | |
Collapse
|