1
|
Wang C, Feng L, Chen R, Chen Y. Retrospective Case-Control Study of Risk Factors for Carbapenem-Resistant Klebsiella pneumoniae Infection in Children in China. Pathogens 2024; 13:1106. [PMID: 39770365 PMCID: PMC11728686 DOI: 10.3390/pathogens13121106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
This study aims to investigate the risk factors for infection and mortality associated with carbapenem-resistant Klebsiella pneumoniae (CRKP) in hospitalized children, with the goal of providing valuable insights for the prevention and treatment of these bacterial infections. A retrospective case-control study was conducted, including 153 cases of carbapenem-sensitive K. pneumoniae infection in children and 49 cases of CRKP infection. Among the CRKP cases, 40 children survived and nine died. Logistic regression analysis was used to screen the risk factors for CRKP infection in children, establish a predictive model, and analyze the factors associated with mortality in CRKP-infected children. The results of the multivariate regression analysis showed that hematopoietic malignancies (OR = 28.272, 95% CI: 2.430-328.889), respiratory tract infections (OR = 0.173, 95% CI: 0.047-0.641), mechanical ventilation (OR = 3.002, 95% CI: 1.117-8.071), number of antibiotic agents (OR = 1.491, 95% CI: 1.177-1.889), WBC (OR = 0.849, 95% CI: 0.779-0.926), and neutrophil count (OR = 0.779, 95% CI: 0.677-0.896) were identified as significant factors associated with CRKP infection in children. Specifically, CRKP-infected children with a history of multiple hospitalizations within the past three months, blood stream infections, and decreased WBC and lymphocyte counts should be monitored closely due to poor prognosis. Underlying hematopoietic malignancies in children, non-respiratory tract infections, mechanical ventilation after admission, and use of multiple antibiotics without significant increase in white blood cell and neutrophil counts are major factors influencing CRKP infection. Particularly, CRKP-infected children with blood stream infections and no significant increase in neutrophil count should be closely monitored for potential severity of illness.
Collapse
Affiliation(s)
- Caizhen Wang
- Pediatric Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang 050050, China; (C.W.); (L.F.)
| | - Lijie Feng
- Pediatric Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang 050050, China; (C.W.); (L.F.)
| | - Ruomu Chen
- College of Basic Medical Sciences, Hebei Medical University, Shijiazhuang 050017, China;
| | - Yuan Chen
- Pediatric Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang 050050, China; (C.W.); (L.F.)
| |
Collapse
|
2
|
Rubiñan P, Viñado B, Fernández-Hidalgo N, Larrosa N, Sempere A, Campany D, Rodríguez-Pardo D, González-López JJ, Nuvials X, del Barrio-Tofiño E, Escolà-Vergé L, Los-Arcos I. Ciprofloxacin for the Treatment of Infections Caused by Carbapenemase-Producing Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:1138. [PMID: 39766528 PMCID: PMC11672814 DOI: 10.3390/antibiotics13121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
Background: There is no experience with ciprofloxacin for the treatment of carbapenemase-producing Gram-negative bacteria (CP-GNB) infections. Methods: This is a retrospective single-centre study where we describe the clinical evolution of all consecutive adult patients who received ciprofloxacin monotherapy for the treatment of CP-GNB infections. Primary outcomes were clinical failure (defined as death, lack of clinical improvement or a switch to another drug) at day 14 and 30-day all-cause mortality. Results: Nineteen patients were included. Fifteen (79%) were men, the median age was 74 years (IQR 66-79) and the median Charlson comorbidity index was five (IQR 3-6.5). The most frequent infections were: nine complicated urinary tract infections, three soft tissue infections and three intra-abdominal infections. Twenty CP-GNBs were isolated (one patient had a coinfection): nine VIM-type-producing Enterobacterales, nine OXA-48-type-producing Enterobacterales and two VIM-type-producing Pseudomonas aeruginosa. Six (32%) patients had positive blood cultures, and one presented with septic shock. The median duration of ciprofloxacin treatment was 14 days (IQR 10-15). One patient presented with clinical failure at day 14. There was no 30-day mortality. Two patients exhibited microbiological recurrence at day 90. There were no reported adverse effects. Conclusions: Monotherapy with ciprofloxacin may be an alternative treatment for selected, clinically stable patients with ciprofloxacin-susceptible CP-GNB infections.
Collapse
Affiliation(s)
- Pablo Rubiñan
- Infectious Diseases Unit, Internal Medicine Department, Complexo Hospitalario Universitario de Vigo, 36312 Vigo, Spain;
| | - Belén Viñado
- Microbiology Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (B.V.); (N.L.); (J.J.G.-L.); (E.d.B.-T.)
| | - Nuria Fernández-Hidalgo
- Department of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (N.F.-H.); (D.R.-P.); (X.N.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
| | - Nieves Larrosa
- Microbiology Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (B.V.); (N.L.); (J.J.G.-L.); (E.d.B.-T.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (N.F.-H.); (D.R.-P.); (X.N.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Abiu Sempere
- Infectious Diseases Department, Hospital Clinic de Barcelona, 08036 Barcelona, Spain;
| | - David Campany
- Pharmacy Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain;
| | - Dolors Rodríguez-Pardo
- Department of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (N.F.-H.); (D.R.-P.); (X.N.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
| | - Juan José González-López
- Microbiology Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (B.V.); (N.L.); (J.J.G.-L.); (E.d.B.-T.)
- Department of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (N.F.-H.); (D.R.-P.); (X.N.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Xavier Nuvials
- Department of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (N.F.-H.); (D.R.-P.); (X.N.)
- Critical Care Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Sepsis Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain
| | - Ester del Barrio-Tofiño
- Microbiology Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (B.V.); (N.L.); (J.J.G.-L.); (E.d.B.-T.)
| | - Laura Escolà-Vergé
- Department of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (N.F.-H.); (D.R.-P.); (X.N.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Infectious Diseases Unit, Internal Medicine Department, Hospital de la Santa Creu i Sant Pau, Institut de Recerca Sant Pau, 08025 Barcelona, Spain
| | - Ibai Los-Arcos
- Department of Medicine, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (N.F.-H.); (D.R.-P.); (X.N.)
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
| |
Collapse
|
3
|
Hoseinzadeh M, Sedighi M, Yahyapour Y, Javanian M, Beiranvand M, Mohammadi M, Zarei S, Pournajaf A, Ebrahimzadeh Namvar A. Prevalence of plasmid-mediated quinolone resistance genes in extended-spectrum beta-lactamase producing Klebsiella pneumoniae isolates in northern Iran. Heliyon 2024; 10:e37534. [PMID: 39315185 PMCID: PMC11417531 DOI: 10.1016/j.heliyon.2024.e37534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Plasmid-mediated quinolone resistance (PMQR) in extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae (K. pneumoniae) contributes to treatment failures, extended hospital stays, and increased mortality percentages. We aimed to determine the prevalence of PMQR genes in ESBL-producing K. pneumoniae isolates from clinical samples in Babol, North of Iran region. This is the first study in this region to investigate this specific association. A total of 95 K. pneumoniae isolates were obtained from hospitalized patients with various clinical infections during March 2022 to February 2023. Disk diffusion and Combination disk method were performed to identification of antimicrobial resistance profiles and ESBL-producing strains. The presence of ESBL and PMQR genes among K. pneumoniae isolates was assessed using polymerase chain reaction (PCR) method. Of the isolates, 68 (71.57 %) were considered as ESBL-producers. The bla TEM, bla SHV and bla CTX-M genes were detected in 74.73 %, 57.89 %, and 41.05 % of K. pneumoniae isolates, respectively. Among the PMQR encoding genes, the highest and lowest frequency was associated to qepA (67.3 %) and qnrA (4.2 %), respectively. The frequency of qnrA, qnrB, qnrS, acc (6')-Ib-cr, qepA, oqxA, and oqxB genes in 26 MDR-Kp isolates was 11.53 % (n; 3), 69.23 % (n; 18), 65.38 % (n; 17), 73.07 % (n; 19), 80.76 % (n; 21), 84.61 % (n; 22), and 76.92 % (n; 20), respectively. Our result revealed of the 68 ESBL gene-positive isolates, 60 (88.23 %) were positive for the PMQR gene. The co-occurrence of these genes within resistant isolates suggests potential linkage on mobile genetic elements such as plasmids. These findings highlight the significant burden of PMQR determinants in ESBL-producing K. pneumoniae and underscore the urgent need for effective control measures. Implementing robust antimicrobial stewardship programs and strengthening drug-resistance surveillance and control protocols are crucial to prevent the spread of resistant isolates.
Collapse
Affiliation(s)
- Maedeh Hoseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mansour Sedighi
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Zoonoses Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yousef Yahyapour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mostafa Javanian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Beiranvand
- Division of Pulmonary, Critical Care and Sleep, College of Medicine-Jacksonville, University of Florida, Jacksonville, FL, USA
| | - Mohsen Mohammadi
- Non-Communicable Pediatric Disease Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sepide Zarei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Abazar Pournajaf
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Amirmorteza Ebrahimzadeh Namvar
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
Kherroubi L, Bacon J, Rahman KM. Navigating fluoroquinolone resistance in Gram-negative bacteria: a comprehensive evaluation. JAC Antimicrob Resist 2024; 6:dlae127. [PMID: 39144447 PMCID: PMC11323783 DOI: 10.1093/jacamr/dlae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Since the introduction of quinolone and fluoroquinolone antibiotics to treat bacterial infections in the 1960s, there has been a pronounced increase in the number of bacterial species that have developed resistance to fluoroquinolone treatment. In 2017, the World Health Organization established a priority list of the most critical Gram-negative resistant pathogens. These included Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli. In the last three decades, investigations into the mechanisms of fluoroquinolone resistance have revealed that mutations in the target enzymes of fluoroquinolones, DNA gyrase or topoisomerase IV, are the most prevalent mechanism conferring high levels of resistance. Alterations to porins and efflux pumps that facilitate fluoroquinolone permeation and extrusion across the bacterial cell membrane also contribute to the development of resistance. However, there is a growing observation of novel mutants with newer generations of fluoroquinolones, highlighting the need for novel treatments. Currently, steady progress has been made in the development of novel antimicrobial agents that target DNA gyrase or topoisomerase IV through different avenues than current fluoroquinolones to prevent target-mediated resistance. Therefore, an updated review of the current understanding of fluoroquinolone resistance within the literature is imperative to aid in future investigations.
Collapse
Affiliation(s)
- Linda Kherroubi
- School of Cancer and Pharmaceutical Science, King’s College London, London SE1 9NH, UK
| | - Joanna Bacon
- Discovery Group, Vaccine Development and Evaluation Centre, UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | | |
Collapse
|
5
|
Chen Y, Liu L, Guo Y, Chu J, Wang B, Sui Y, Wei H, Hao H, Huang L, Cheng G. Distribution and genetic characterization of fluoroquinolone resistance gene qnr among Salmonella strains from chicken in China. Microbiol Spectr 2024; 12:e0300023. [PMID: 38411972 PMCID: PMC10986518 DOI: 10.1128/spectrum.03000-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/06/2023] [Indexed: 02/28/2024] Open
Abstract
The prevalence and dissemination of the plasmid-mediated fluoroquinolone (FQ) resistance gene qnr in Salmonella are considered serious public health concerns worldwide. So far, no comprehensive large-scale studies have focused on the prevalence and genetic characteristics of the qnr gene in Salmonella isolated from chickens. Herein, this study aimed to investigate the prevalence, antimicrobial resistance (AMR) patterns, and molecular characteristics of chicken-originated qnr-positive Salmonella strains from chicken farms, slaughterhouses, and markets in 12 provinces of China in 2020-2021. The overall prevalence of the qnr gene was 21.13% (56/265), with the highest prevalence in markets (36.11%, 26/72), followed in farms (17.95%, 21/117), and slaughterhouses (10.53%, 9/76). Only the qnrS and qnrB genes were detected, and the prevalence rate of the qnrS gene (19.25%, 51/265) was higher than that of the qnrB gene (1.89%, 5/265). Whole genome sequencing identified 37 distinct AMR genes and 15 plasmid replicons, and the most frequent mutation in quinolone resistance determining regions was parC (T57S; 91.49%, 43/47). Meanwhile, four different qnrS and two qnrB genetic environments were discovered among 47 qnr-positive Salmonella strains. In total, 21.28% (10/47) of the strains were capable of conjugative transfer, and all were qnrS1-positive strains, with the majority of transferable plasmids being IncHI2 types (n = 4). Overall, the prevalence of qnr-positive Salmonella strains from chickens in China and their carriage of multiple resistance and virulence genes and transferable plasmids is a major concern, which calls for continuous surveillance of qnr-positive Salmonella and the development of measures to control its prevalence and transmission.IMPORTANCESalmonella is a common foodborne pathogen responsible for 155,000 deaths annually worldwide. Fluoroquinolones (FQs) are used as first-line drugs for the treatment of Salmonella infections in several countries and regions. However, the emergence and increasing prevalence of the FQ-resistant gene qnr in Salmonella isolated from chickens have been widely reported. Gaining insight into the genetic mechanisms of AMR genes in chicken could lead to the development of preventive measures to control and reduce the risk of drug resistance. In this study, we identified qnr-positive Salmonellae isolated from chickens in different regions of China and their AMR patterns and genome-wide characteristics, providing a theoretical basis for further control of their prevalence and transmission.
Collapse
Affiliation(s)
- Yang Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lihui Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yali Guo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinhua Chu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bangjuan Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuxin Sui
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hanqi Wei
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guyue Cheng
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Ma Y, Guo P, Chen X, Xu M, Liu W, Jin X. Anti-Klebsiella pneumoniae activity of secondary metabolism of Achromobacter from the intestine of Periplaneta americana. BMC Microbiol 2023; 23:162. [PMID: 37277707 DOI: 10.1186/s12866-023-02909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Klebsiella pneumoniae is one of the main pathogens of clinical isolation and nosocomial infections, as K. pneumoniae show broad-spectrum resistance to β-lactam and carbapenem antibiotics. It is emerging clinical need for a safe and effective drug to anti-K. pneumoniae. At present, Achromobacter mainly focused on its degradation of petroleum hydrocarbons, polycyclic aromatic hydrocarbons, assisting insects to decompose, degrade heavy metals and utilize organic matter, but there were few reports on the antibacterial activity of the secondary metabolites of Achromobacter. RESULTS In this study, a strain WA5-4-31 from the intestinal tract of Periplaneta americana exhibited strong activity against K. Pneumoniae through preliminary screening. The strain was determined to be Achromobacter sp. through the morphological characteristics, genotyping and phylogenetic tree analysis, which is homologous to Achromobacter ruhlandii by 99%, its accession numbe in GenBank at National Center for Biotechnology Information (NCBI) is MN007235, and its deposit number was GDMCC NO.1.2520. Six compounds (Actinomycin D, Actinomycin X2, Collismycin A, Citrinin, Neoechinulin A and Cytochalasin E) were isolated and determined by activity tracking, chemical separation, nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis. Among them, Actinomycin D, Actinomycin X2, Collismycin A, Citrinin and Cytochalasin E showed a good effect on anti-K. pneumoniae, with MIC values of 16-64 µg/mL. CONCLUSIONS The study reported Achromobacter, which was from the intestinal tract of Periplaneta americana with the activity against K. Pneumoniae, can produce antibacterial compounds for the first time. It lays the foundation for development of secondary metabolites of insect intestinal microorganisms.
Collapse
Affiliation(s)
- Yan Ma
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ping Guo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Clinical Laboratory, Shenzhen Bao'An District Central Hospital, Shenzhen, 518103, China
| | - Xueqin Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Minhua Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Clinical laboratory, Foshan Fosun Chancheng Hospital, Foshan, 528000, China
| | - Wenbin Liu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiaobao Jin
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Rallis D, Giapros V, Serbis A, Kosmeri C, Baltogianni M. Fighting Antimicrobial Resistance in Neonatal Intensive Care Units: Rational Use of Antibiotics in Neonatal Sepsis. Antibiotics (Basel) 2023; 12:508. [PMID: 36978375 PMCID: PMC10044400 DOI: 10.3390/antibiotics12030508] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Antibiotics are the most frequently prescribed drugs in neonatal intensive care units (NICUs) due to the severity of complications accompanying neonatal sepsis. However, antimicrobial drugs are often used inappropriately due to the difficulties in diagnosing sepsis in the neonatal population. The reckless use of antibiotics leads to the development of resistant strains, rendering multidrug-resistant pathogens a serious problem in NICUs and a global threat to public health. The aim of this narrative review is to provide a brief overview of neonatal sepsis and an update on the data regarding indications for antimicrobial therapy initiation, current guidance in the empirical antimicrobial selection and duration of therapy, and indications for early discontinuation.
Collapse
Affiliation(s)
- Dimitrios Rallis
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Vasileios Giapros
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Anastasios Serbis
- Department of Paediatrics, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Chrysoula Kosmeri
- Department of Paediatrics, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| | - Maria Baltogianni
- Neonatal Intensive Care Unit, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece
| |
Collapse
|
8
|
Molecular patterns of clinically important fluoroquinolone resistance in multidrug-resistant Klebsiella pneumoniae isolates during nosocomial outbreaks in Shanghai, PR China. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction. The soaring resistance of
Klebsiella pneumoniae
to fluoroquinolones in PR China has substantially limited the application of these antimicrobials, especially in those clinical settings that were threatened by persistent carbapenem-resistant
K. pneumoniae
(CRKP), necessitating strict implementation of antimicrobial stewardship and active enhanced surveillance of infection control.
Hypothesis. There is interplay between plasmid-mediated quinolone resistance (PMQR) determinants and quinolone resistance-determining region (QRDR) mutations during the acquisition of a clinically important fluoroquinolone resistance (CI-FR) profile in multidrug-resistant
K. pneumoniae
(MDR-KP) isolates.
Aim. To investigate the high-risk CRKP clones responsible for nosocomial spread and analyse the molecular patterns of CI-FR in MDR-KP isolates in a tertiary hospital in Shanghai, PR China.
Methodology. A total of 34 isolates, including 30 CRKPs, were molecularly characterized. Investigations included antimicrobial susceptibility tests, multilocus sequence typing (MLST) and wzi genotyping, PCR sequencing and phylogenetic analysis for resistance-associated genes, and clinical information retrieval from medical records.
Results. Two high-risk CRKP clones, ST11-wzi64 and ST15-wzi19/wzi24, were identified as being responsible for nosocomial outbreaks in the intensive care unit (ICU) and the neurosurgery department, potentially by the respiratory route. QRDR mutations of both gyrA and parC were detected in isolates of ST15 (S83F/D87A/S80I), ST11 (S83I/D87G/S80I) and ST218 (D87A/S80I), respectively. The PMQR genes, qnrS1, aac(6′)-Ib-cr and oqxAB, were present in 32 (94.1 %) of the isolates alone or in combination, co-occurring with genes (bla) encoding β-lactamases, 16S rRNA methylases and putrescine ABC permeases. AcrR, an AcrAB transcriptional repressor, was insertion-inactivated by the IS5-like element in ST11 isolates. The encoding sequences of OmpK35 and OmpK36 genes were associated with specific STs and wzi alleles. ST11, ST15-wzi19 and ST218 isolates had frameshift disruptions in OmpK35 and specific GD insertions at position 134–135 in OmpK36. The 27 isolates with clinically important ciprofloxacin resistance (MICs ≥2 mg l−1) included 25 isolates (ST15, ST11, ST218) with multiple QRDR mutations, plus 1 with only 2 PMQR determinants (ST290-wzi21) and another with an unknown resistance mechanism (ST65-wzi72). Ciprofloxacin-susceptible isolates maintained intact ompK36 genes, including two CRKPs each with ST13-wzi74 (KPC-2 and NDM-1 coproducers) and ST65-wzi72, plus carbapenem-susceptible isolates (ST15-wzi24, ST65-wzi72, ST107-wzi173).
Conclusions. Under selective pressures, the accumulation of mutations of three types (QRDR, acrR, ompK36) and the acquisition of resistance-conferring genes have continuously contributed to CI-FR in MDR-KP isolates.
Collapse
|
9
|
Yang C, Han J, Berglund B, Zou H, Gu C, Zhao L, Meng C, Zhang H, Ma X, Li X. Dissemination of bla NDM-5 and mcr-8.1 in carbapenem-resistant Klebsiella pneumoniae and Klebsiella quasipneumoniae in an animal breeding area in Eastern China. Front Microbiol 2022; 13:1030490. [PMID: 36338046 PMCID: PMC9627307 DOI: 10.3389/fmicb.2022.1030490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/04/2022] [Indexed: 07/30/2023] Open
Abstract
Animal farms have become one of the most important reservoirs of carbapenem-resistant Klebsiella spp. (CRK) owing to the wide usage of veterinary antibiotics. "One Health"-studies observing animals, the environment, and humans are necessary to understand the dissemination of CRK in animal breeding areas. Based on the concept of "One-Health," 263 samples of animal feces, wastewater, well water, and human feces from 60 livestock and poultry farms in Shandong province, China were screened for CRK. Five carbapenem-resistant Klebsiella pneumoniae (CRKP) and three carbapenem-resistant Klebsiella quasipneumoniae (CRKQ) strains were isolated from animal feces, human feces, and well water. The eight strains were characterized by antimicrobial susceptibility testing, plasmid conjugation assays, whole-genome sequencing, and bioinformatics analysis. All strains carried the carbapenemase-encoding gene bla NDM-5, which was flanked by the same core genetic structure (IS5-bla NDM-5-ble MBL-trpF-dsbD-IS26-ISKox3) and was located on highly related conjugative IncX3 plasmids. The colistin resistance gene mcr-8.1 was carried by three CRKP and located on self-transmissible IncFII(K)/IncFIA(HI1) and IncFII(pKP91)/IncFIA(HI1) plasmids. The genetic context of mcr-8.1 consisted of IS903-orf-mcr-8.1-copR-baeS-dgkA-orf-IS903 in three strains. Single nucleotide polymorphism (SNP) analysis confirmed the clonal spread of CRKP carrying-bla NDM-5 and mcr-8.1 between two human workers in the same chicken farm. Additionally, the SNP analysis showed clonal expansion of CRKP and CRKQ strains from well water in different farms, and the clonal CRKP was clonally related to isolates from animal farms and a wastewater treatment plant collected in other studies in the same province. These findings suggest that CRKP and CRKQ are capable of disseminating via horizontal gene transfer and clonal expansion and may pose a significant threat to public health unless preventative measures are taken.
Collapse
Affiliation(s)
- Chengxia Yang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jingyi Han
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Björn Berglund
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Congcong Gu
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ling Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chen Meng
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Zhang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xianjun Ma
- Department of Blood Transfusion, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Lee MC, Chang H, Sun FJ, Wu AYJ, Lu CH, Lee CM. Association between Antimicrobial Consumption and the Prevalence of Nosocomial Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae in a Tertiary Hospital in Northern Taiwan. Am J Trop Med Hyg 2022; 107:467-473. [PMID: 35895586 PMCID: PMC9393431 DOI: 10.4269/ajtmh.21-1242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/21/2022] [Indexed: 08/03/2023] Open
Abstract
Carbapenem-resistant Enterobacteriales has become a threat in Taiwan. This is the first local study focusing on the association between carbapenem-resistant Enterobacteriales and antimicrobial consumption. From January 2012 to December 2020, data were collected in a tertiary care hospital in Taipei, Taiwan. Antimicrobial consumption was estimated by the defined daily dose/1,000 patient-days. During the same period, the prevalence of carbapenem-resistant Escherichia coli (CREC) and carbapenem-resistant Klebsiella pneumoniae (CRKP) were collected through routine surveillance data. The following retrospective analyses were conducted: 1) analysis of antimicrobial consumption over time, (2) analysis and forecast of CREC and CRKP prevalence over time, and 3) analysis of correlation between antimicrobial consumption and the prevalence of CREC and CRKP. The consumption of piperacillin/tazobactam (β = 0.615), fluoroquinolones (β = 0.856), meropenem (β = 0.819), and doripenem (β = 0.891) increased during the observation period (P < 0.001), and the consumption of aminoglycosides (β = -0.852) and imipenem/cilastatin (β = -0.851) decreased (P < 0.001). The prevalence of CRKP rose over time (β = 0.522, P = 0.001) and correlated positively with the consumption of fluoroquinolones, levofloxacin, penicillin/β-lactamase inhibitor, piperacillin/tazobactam, meropenem, and doripenem (P < 0.05). The prevalence of CRKP and CREC both correlated negatively with consumption of aminoglycosides (P < 0.01). The prevalence of CRKP in our hospital increased as the forecast predicted based on an autoregressive integrated moving average model. This study provides alarming messages for members participating in antimicrobial stewardship programs, including the increasing prevalence of CRKP, the increasing consumption of broad-spectrum antibiotics, and the positive correlation between them.
Collapse
Affiliation(s)
- Mei-Chun Lee
- Department of Pharmacy, MacKay Memorial Hospital, Taipei, Taiwan
- Nursing and Management, Mackay Junior College of Medicine, Taipei, Taiwan
| | - Hsun Chang
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Fang-Ju Sun
- Nursing and Management, Mackay Junior College of Medicine, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Alice Ying-Jung Wu
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Hung Lu
- Department of Pharmacy, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chun-Ming Lee
- Nursing and Management, Mackay Junior College of Medicine, Taipei, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- MacKay Medical College, New Taipei City, Taiwan
- Department of Internal Medicine, St. Joseph’s Hospital, Yunlin County, Taiwan
| |
Collapse
|
11
|
Onishi R, Shigemura K, Osawa K, Yang YM, Maeda K, Tanimoto H, Kado M, Fang SB, Sung SY, Miyara T, Fujisawa M. Impact on quinolone resistance of plasmid-mediated quinolone resistance gene and mutations in quinolone resistance-determining regions in extended spectrum beta lactamase-producing Klebsiella pneumoniae isolated from urinary tract infection patients. Pathog Dis 2022; 80:6649813. [PMID: 35878410 DOI: 10.1093/femspd/ftac030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/25/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Klebsiella pneumoniae is a typical pathogen in urinary tract infections (UTI), and the emergence of extended spectrum beta-lactamase (ESBL)-producing strains has been frequently reported, accompanied by higher quinolone resistance rates. There are two major mechanisms of quinolone resistance, mutations in quinolone resistance-determining regions (QRDR) and the presence of the plasmid-mediated quinolone resistance (PMQR) genes. This study aimed to investigate quinolone resistance among 105 ESBL-producing K. pneumoniae specimens isolated from UTI patients in Indonesia. These were characterized for antimicrobial resistance to nalidixic acid, ciprofloxacin and levofloxacin, QRDR mutations in gyrA and parC and the presence of PMQR genes. We found that 84.8% of the collected isolates were resistant to at least one of the quinolones. QRDR mutation in gyrA was observed in 49.5% of these strains and parC mutations in 61.0%. PMQR genes were identified in 84.8% of strains. The QRDR mutations clearly had a greater effect on resistance than the PMQR genes. In conclusion, we found high quinolone resistance rates in Indonesian ESBL-producing K. pneumoniae, in which QRDR mutation played a major role.
Collapse
Affiliation(s)
- Reo Onishi
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan
| | - Katsumi Shigemura
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan.,Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Kayo Osawa
- Department of Medical Technology, Kobe Tokiwa University, 2-6-2 Otani-cho, Nagata-ku, Kobe, 653-0838, Japan
| | - Young-Min Yang
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Koki Maeda
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Hiroshi Tanimoto
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan
| | - Mitsuki Kado
- Department of Public Health, Kobe University Graduate School of Health Sciences, 7-10-2 Tomogaoka Suma-ku, Kobe, 654-0142, Japan
| | - Shiuh-Bin Fang
- Department of Pediatrics, Division of Pediatric Gastroenterology and Hepatology, Shuang Ho Hospital, Taipei Medical University, 291 Jhong Jheng Road, Jhong Ho District, New Taipei City, 23561, Taiwan.,Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, 250, Wu Hsing Street, Hsin Yi District, Taipei, 11031, Taiwan
| | - Shian-Ying Sung
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Takayuki Miyara
- Department of Infection Control and Prevention, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Masato Fujisawa
- Division of Urology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| |
Collapse
|
12
|
Oka K, Tetsuka N, Morioka H, Iguchi M, Kawamura K, Hayashi K, Yanagiya T, Morokuma Y, Watari T, Kiyosuke M, Yagi T. Genetic and epidemiological analysis of ESBL-producing Klebsiella pneumoniae in three Japanese university hospitals. J Infect Chemother 2022; 28:1286-1294. [PMID: 35659435 DOI: 10.1016/j.jiac.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION We aimed to clarify the genetic background and molecular epidemiology of extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae (K. pneumoniae) at three geographically separated university hospitals in Japan. METHODS From January 2014 to December 2016, 118 ESBL-producing K. pneumoniae (EPKP) strains that were detected and stored at three university hospitals were collected. Molecular epidemiological analysis was performed using enterobacterial repetitive intergenic consensus (ERIC)-polymerase chain reaction (PCR) and multi-locus sequence typing (MLST). The ESBL type was determined using the PCR-sequence method. The presence of plasmid-mediated fluoroquinolone resistance (PMQR) genes was analyzed by PCR. We compared the relationships between PMQR gene possession/quinolone resistance-determining region (QRDR) mutation and levofloxacin (LVFX)/ciprofloxacin (CPFX) susceptibility. RESULTS The detection rate of EPKP was 4.8% (144/2987 patients). MLST analysis revealed 62 distinct sequence types (STs). The distribution of STs was diverse, and only some EPKP strains had the same STs. ERIC-PCR showed discriminatory power similar to that of MLST. The major ESBL genotypes were CTX-M-15-, CTX-M-14-, and SHV-types, which were detected in 47, 30, and 27 strains, respectively. Ninety-one out of 118 strains had PMQR genes and 14 out of 65 strains which were not susceptible to CPFX had QRDR mutations, and the accumulation of PMQR genes and QRDR mutations tended to lead to higher minimum inhibitory concentrations (MICs) of LVFX. CONCLUSIONS At three geographically separated university hospitals in Japan, the epidemiology of EPKP was quite diverse, and no epidemic strains were found, whereas CTX-M-14 and CTX-M-15 were predominant.
Collapse
Affiliation(s)
- Keisuke Oka
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8560, Japan; Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, 466-8560, Japan
| | - Nobuyuki Tetsuka
- Department of Infection Control, Gifu University Graduate School of Medicine, Gifu, Gifu, 501-1112, Japan
| | - Hiroshi Morioka
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, 466-8560, Japan
| | - Mitsutaka Iguchi
- Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, 466-8560, Japan
| | - Kazumitsu Kawamura
- Department of Medical Technique, Clinical Laboratory, Nagoya University Hospital, Nagoya, Aichi, 466-8560, Japan
| | - Kengo Hayashi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, 470-1192, Japan
| | - Takako Yanagiya
- Department of Medical Laboratory and Blood Center, Asahikawa Medical University Hospital, Asahikawa, Hokkaido, 078-8510, Japan
| | - Yuiko Morokuma
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Fukuoka, 812-8582, Japan
| | - Tomohisa Watari
- Department of Clinical Laboratory, Kameda Medical Center, Kamogawa, Chiba, 296-8602, Japan
| | - Makiko Kiyosuke
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Hospital, Fukuoka, Fukuoka, 812-8582, Japan
| | - Tetsuya Yagi
- Department of Infectious Diseases, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8560, Japan; Department of Infectious Diseases, Nagoya University Hospital, Nagoya, Aichi, 466-8560, Japan. http://
| |
Collapse
|
13
|
Nakamura-Silva R, Cerdeira L, Oliveira-Silva M, da Costa KRC, Sano E, Fuga B, Moura Q, Esposito F, Lincopan N, Wyres K, Pitondo-Silva A. Multidrug-resistant Klebsiella pneumoniae: a retrospective study in Manaus, Brazil. Arch Microbiol 2022; 204:202. [PMID: 35244778 PMCID: PMC8894834 DOI: 10.1007/s00203-022-02813-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that can cause several infections, mainly in hospitalised or immunocompromised individuals. The spread of K. pneumoniae emerging virulent and multidrug-resistant clones is a worldwide concern and its identification is crucial to control these strains especially in hospitals. This article reports data related to multi-resistant K. pneumoniae strains, isolated from inpatients in the city of Manaus, Brazil, harbouring virulence and antimicrobial-resistance genes, including high-risk international clones belonging to clonal group (CG) 258. Twenty-one strains isolated from different patients admitted to four hospitals in the city of Manaus, located in the state of Amazonas, Northern Brazil (Amazon Rainforest region) were evaluated. The majority of strains (61.9% n = 13) were classified as multidrug-resistant (MDR), and five strains (23.8%) as extensively drug-resistant (XDR). Several virulence and antimicrobial-resistance genes were found among the strains and eight strains (38.1%) presented the hyper-mucoviscous phenotype. MLST analysis demonstrated a great diversity of STs among the strains, totaling 12 different STs (ST11, ST23, ST198, ST277, ST307, ST340, ST378, ST462, ST502, ST3991, ST3993 and ST5209). Three of these (ST11, ST23 and ST340) belong to CG258.
Collapse
Affiliation(s)
- Rafael Nakamura-Silva
- Postgraduate Program in Environmental Technology, Universidade de Ribeirão Preto, UNAERP, Bloco J, Laboratório 1. Av. Costábile Romano, 2201 Ribeirânia, Ribeirão Preto, São Paulo, 14096-900, Brazil
| | - Louise Cerdeira
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Mariana Oliveira-Silva
- Postgraduate Program in Environmental Technology, Universidade de Ribeirão Preto, UNAERP, Bloco J, Laboratório 1. Av. Costábile Romano, 2201 Ribeirânia, Ribeirão Preto, São Paulo, 14096-900, Brazil
| | | | - Elder Sano
- Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha, Espírito Santo, Brazil
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), São Paulo, São Paulo, Brazil
- Department of Clinical Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Kelly Wyres
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - André Pitondo-Silva
- Postgraduate Program in Environmental Technology, Universidade de Ribeirão Preto, UNAERP, Bloco J, Laboratório 1. Av. Costábile Romano, 2201 Ribeirânia, Ribeirão Preto, São Paulo, 14096-900, Brazil.
- Postgraduate Program in Dentistry, Universidade de Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
14
|
Piccirilli A, Cherubini S, Azzini AM, Tacconelli E, Lo Cascio G, Maccacaro L, Bazaj A, Naso L, Amicosante G, Perilli M. Whole-Genome Sequencing (WGS) of Carbapenem-Resistant K. pneumoniae Isolated in Long-Term Care Facilities in the Northern Italian Region. Microorganisms 2021; 9:microorganisms9091985. [PMID: 34576880 PMCID: PMC8465262 DOI: 10.3390/microorganisms9091985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 01/05/2023] Open
Abstract
K. pneumoniae (KPN) is one of the widest spread bacteria in which combined resistance to several antimicrobial groups is frequent. The most common β-lactamases found in K. pneumoniae are class A carbapenemases, both chromosomal-encoded (i.e., NMCA, IMI-1) and plasmid-encoded (i.e., GES-enzymes, IMI-2), VIM, IMP, NDM, OXA-48, and extended-spectrum β-lactamases (ESBLs) such as CTX-M enzymes. In the present study, a total of 68 carbapenem-resistant KPN were collected from twelve long-term care facilities (LTCFs) in the Northern Italian region. The whole-genome sequencing (WGS) of each KPN strain was determined using a MiSeq Illumina sequencing platform and analysed by a bacterial analysis pipeline (BAP) tool. The WGS analysis showed the prevalence of ST307, ST512, and ST37 as major lineages diffused among the twelve LTCFs. The other lineages found were: ST11, ST16, ST35, ST253, ST273, ST321, ST416, ST1519, ST2623, and ST3227. The blaKPC-2, blaKPC-3, blaKPC-9, blaSHV-11, blaSHV-28, blaCTX-M-15, blaOXA-1, blaOXA-9, blaOXA-23, qnrS1, qnrB19, qnrB66, aac(6′)-Ib-cr, and fosA were the resistance genes widespread in most LTCFs. In this study, we demonstrated the spreading of thirteen KPN lineages among the LTCFs. Additionally, KPC carbapenemases are the most widespread β-lactamase.
Collapse
Affiliation(s)
- Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.P.); (S.C.); (G.A.)
| | - Sabrina Cherubini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.P.); (S.C.); (G.A.)
| | - Anna Maria Azzini
- Infectious Disease Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (A.M.A.); (E.T.)
| | - Evelina Tacconelli
- Infectious Disease Section, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy; (A.M.A.); (E.T.)
| | - Giuliana Lo Cascio
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.L.C.); (L.M.); (A.B.); (L.N.)
- Microbiology and Virology Unit, AUSL Piacenza, 29121 Piacenza, Italy
| | - Laura Maccacaro
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.L.C.); (L.M.); (A.B.); (L.N.)
| | - Alda Bazaj
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.L.C.); (L.M.); (A.B.); (L.N.)
| | - Laura Naso
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.L.C.); (L.M.); (A.B.); (L.N.)
| | - Gianfranco Amicosante
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.P.); (S.C.); (G.A.)
| | | | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.P.); (S.C.); (G.A.)
- Correspondence:
| |
Collapse
|