1
|
Yao F, Chen Y, Liu J, Zhang J, Xiao Z, Shi Z, Chen Q, Qin Z. Strategies of invasive snail Pomacea canaliculata during hibernation in rice fields of south China: effects of body size, sex, and soil depth. PEST MANAGEMENT SCIENCE 2024; 80:5929-5940. [PMID: 39087755 DOI: 10.1002/ps.8327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The invasive freshwater snail Pomacea canaliculata is an agricultural pest with a certain level of tolerance to abiotic stress. After the harvest of late rice, the snails usually burrow themselves into the soil surface layers to overwinter and pose a renewed threat to rice production in the following year. Revealing the response of snails to environmental stresses is crucial for developing countermeasures to control their damage and spread. RESULTS In this study, we conducted a 120-day in situ experiment during the winter to investigate the survival and physiological changes of hibernating snails in 0-5 and 5-10 cm soil depths, aiming to explore their overwintering strategies. Our results showed that 73.61%, 87.50%, and 90.28% of male, female, and juvenile snails survived after hibernation for 120 days in 0-10 cm soil depth, respectively. The differences in survival rates based on sex and size of snails potentially reflect the countermeasures of snails to rapidly reproduce after hibernation. Simultaneously, the hibernating snails exhibited the ability to maintain a certain level of body weight. During this period, the snails increased their antioxidant enzyme activities to cope with oxidative stress, and enhanced their lipid storage. The hibernation survival of snails was not significantly affected by different soil depths, indicating that they have the potential to hibernate into deeper soils. Furthermore, snails were capable of increasing their contents of bound water and glycerol to cope with sudden cold spells during hibernation. CONCLUSION Our findings emphasize the adaptive changes of P. canaliculata snails overwintering in paddy soils. In future studies, the vulnerabilities of P. canaliculata during hibernation (e.g. shell characteristics, nutrient reserves, and dehydration tolerance, etc.,) should be investigated to develop effective control methods for this period. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fucheng Yao
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Yingtong Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jimin Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jiaen Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Zeheng Xiao
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Zhaoji Shi
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Qi Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Zhong Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Qu G, Yao J, Wang J, Zhang X, Dai J, Yu H, Dai Y, Xing Y. Molluscicide screening and identification of novel targets against Pomacea canaliculata. PEST MANAGEMENT SCIENCE 2024; 80:4264-4272. [PMID: 38624214 DOI: 10.1002/ps.8131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Owing to the nonavailability of any clear targets for molluscicides against Pomacea canaliculata, target-based screening strategy cannot be employed. In this study, the molluscicidal effects of typical pesticides on P. canaliculata were evaluated to obtain the molluscicide target. A series of arylpyrrole compounds were synthesized based on the discovered target, and their structure-activity relationships explored. A preliminary strategy for screening molluscicides based on specific targets was also developed. RESULTS A laboratory colony of P. canaliculata was developed, which showed no difference in sensitivity to niclosamide compared with the wild group, while exhibiting a higher stability against pesticide response. Mitochondrial adenosine triphosphate (ATP) synthase inhibitors and mitochondrial membrane potential uncouplers were identified and validated as potential targets for molluscicide screening against P. canaliculata. A series of arylpyrrole compounds were designed and synthesized. The median lethal concentration of 4-bromo-2-(4-chlorophenyl)-5-(trifluoromethyl)-1H-pyrrole-3-carbonitrile (Compound 102) was 10-fold lower than that of niclosamide. CONCLUSION New molluscicide targets were discovered and validated, and preliminary strategies were explored for pesticide screening based on these targets. Compound 102 exhibited a high molluscicidal activity and had a great potential value for exploring a molluscicide to control P. canaliculata. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guoli Qu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jiakai Yao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jie Wang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jianrong Dai
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Haonan Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yang Dai
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Yuntian Xing
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| |
Collapse
|
3
|
Shi Z, Yao F, Chen Q, Chen Y, Zhang J, Guo J, Zhang S, Zhang C. More deterministic assembly constrains the diversity of gut microbiota in freshwater snails. Front Microbiol 2024; 15:1394463. [PMID: 39040899 PMCID: PMC11260827 DOI: 10.3389/fmicb.2024.1394463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Growing evidence has suggested a strong link between gut microbiota and host fitness, yet our understanding of the assembly mechanisms governing gut microbiota remains limited. Here, we collected invasive and native freshwater snails coexisting at four independent sites in Guangdong, China. We used high-throughput sequencing to study the assembly processes of their gut microbiota. Our results revealed significant differences in the diversity and composition of gut microbiota between invasive and native snails. Specifically, the gut microbiota of invasive snails exhibited lower alpha diversity and fewer enriched bacteria, with a significant phylogenetic signal identified in the microbes that were enriched or depleted. Both the phylogenetic normalized stochasticity ratio (pNST) and the phylogenetic-bin-based null model analysis (iCAMP) showed that the assembly process of gut microbiota in invasive snails was more deterministic compared with that in native snails, primarily driven by homogeneous selection. The linear mixed-effects model revealed a significant negative correlation between deterministic processes (homogeneous selection) and alpha diversity of snail gut microbiota, especially where phylogenetic diversity explained the most variance. This indicates that homogeneous selection acts as a filter by the host for specific microbial lineages, constraining the diversity of gut microbiota in invasive freshwater snails. Overall, our study suggests that deterministic assembly-mediated lineage filtering is a potential mechanism for maintaining the diversity of gut microbiota in freshwater snails.
Collapse
Affiliation(s)
- Zhaoji Shi
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Fucheng Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Qi Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yingtong Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jiaen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jing Guo
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Shaobin Zhang
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Chunxia Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Liu M, Sui C, Wang B, Huang R, Zhang W, Zhang T, Zhang Q, Liu Y. Effects of short-term exposure to Pomacea canaliculata secretions on Limnodrilus hoffmeisteri and Propsilocerus akamusi: A study based on behavior, intestinal microbiota, and antioxidant system. Ecol Evol 2024; 14:e11591. [PMID: 38932957 PMCID: PMC11199190 DOI: 10.1002/ece3.11591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Pomacea canaliculata is one of the most notorious invasive aquatic snail, capable of influencing various aquatic organisms through their secretions. Limnodrilus hoffmeisteri and Propsilocerus akamusi are the most prevalent and powerful bioturbators in aquatic ecosystems. However, the mechanism of P. canaliculata's secretions affecting bioturbators remains unknown. This study aimed to investigate the effects of P. canaliculata's secretion on L. hoffmeisteri and P. akamusi. L. hoffmeisteri and P. akamusi were treated for 24 h with P. canaliculata and the native species Bellamya aeruginosa secretions at different densities (1 or 20). The migration numbers and aggregation rate of L. hoffmeisteri indicated that P. canaliculata secretion caused L. hoffmeisteri to become alert and migrate away from the nucleus community, resulting in poor population identification, especially at high concentrations. Moreover, the antioxidant enzymatic activity, lipid peroxidation, intestinal microbial diversity, and composition of the two bioturbators were analyzed. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) concentration were elevated following P. canaliculata secretion treatment, indicating oxidative damage. Furthermore, the composition and diversity of intestinal microbiota of L. hoffmeisteri and P. akamusi were changed. The abundance of functional microbiota decreased, and pathogenic bacteria such as Aeromonas became dominant in the intestines of both bioturbators. The current research evaluates the effects of P. canaliculata secretion on the behavior, oxidative stress, and intestinal microbial composition and diversity of two bioturbators, providing new insights into the assessment of post-invaded ecosystems.
Collapse
Affiliation(s)
- Mingyuan Liu
- School of Life ScienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
| | - Changrun Sui
- School of Life ScienceLiaoning Normal UniversityDalianChina
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
| | - Baolong Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
- College of Marine Science and EnvironmentDalian Ocean UniversityDalianChina
| | - Ruipin Huang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
- College of Marine Science and EnvironmentDalian Ocean UniversityDalianChina
| | - Weixiao Zhang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
- College of Marine Science and EnvironmentDalian Ocean UniversityDalianChina
| | - Tao Zhang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
- College of Marine Science and EnvironmentDalian Ocean UniversityDalianChina
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
- College of Marine Science and EnvironmentDalian Ocean UniversityDalianChina
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University) Ministry of EducationDalianChina
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
| |
Collapse
|
5
|
Li P, Hong J, Yuan Z, Huang Y, Wu M, Ding T, Wu Z, Sun X, Lin D. Gut microbiota in parasite-transmitting gastropods. Infect Dis Poverty 2023; 12:105. [PMID: 38001502 PMCID: PMC10668521 DOI: 10.1186/s40249-023-01159-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Gastropoda, the largest class within the phylum Mollusca, houses diverse gut microbiota, and some gastropods serve as intermediate hosts for parasites. Studies have revealed that gut bacteria in gastropods are associated with various biological aspects, such as growth, immunity and host-parasite interactions. Here, we summarize our current knowledge of gastropod gut microbiomes and highlight future research priorities and perspectives. METHODS A literature search was undertaken using PubMed, Web of Science and CNKI for the articles on the gut microbiota of gastropods until December 31, 2022. We retrieved a total of 166 articles and identified 73 eligible articles for inclusion in this review based on the inclusion and exclusion criteria. RESULTS Our analysis encompassed freshwater, seawater and land snails, with a specific focus on parasite-transmitting gastropods. We found that most studies on gastropod gut microbiota have primarily utilized 16S rRNA gene sequencing to analyze microbial composition, rather than employing metagenomic, metatranscriptomic, or metabolomic approaches. This comprehensive review provided an overview of the parasites carried by snail species in the context of gut microbiota studies. We presented the gut microbial trends, a comprehensive summary of the diversity and composition, influencing factors, and potential functions of gastropod gut microbiota. Additionally, we discussed the potential applications, research gaps and future perspectives of gut microbiomes in parasite-transmitting gastropods. Furthermore, several strategies for enhancing our comprehension of gut microbiomes in snails were also discussed. CONCLUSIONS This review comprehensively summarizes the current knowledge on the composition, potential function, influencing factors, potential applications, limitations, and challenges of gut microbiomes in gastropods, with a specific emphasis on parasite-transmitting gastropods. These findings provide important insights for future studies aiming to understand the potential role of gastropod gut microbiota in controlling snail populations and snail-borne diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China
| | - Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhanhong Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Yun Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Mingrou Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Tao Ding
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China.
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China.
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
6
|
Li P, Hong J, Wu M, Yuan Z, Li D, Wu Z, Sun X, Lin D. Metagenomic Analysis Reveals Variations in Gut Microbiomes of the Schistosoma mansoni-Transmitting Snails Biomphalaria straminea and Biomphalaria glabrata. Microorganisms 2023; 11:2419. [PMID: 37894077 PMCID: PMC10609589 DOI: 10.3390/microorganisms11102419] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Biomphalaria snails play a crucial role in the transmission of the human blood fluke Schistosoma mansoni. The gut microbiota of intermediate hosts is known to influence their physiological functions, but little is known about its composition and role in Biomphalaria snails. To gain insights into the biological characteristics of these freshwater intermediate hosts, we conducted metagenomic sequencing on Biomphalaria straminea and B. glabrata to investigate variations in their gut microbiota. This study revealed that the dominant members of the gut microbiota in B. glabrata belong to the phyla Bacteroidetes and Proteobacteria, which were also found to be the top two most abundant gut bacteria in B. straminea. We identified Firmicutes, Acidovorax and Bosea as distinctive gut microbes in B. straminea, while Aeromonas, Cloacibacterium and Chryseobacterium were found to be dependent features of the B. glabrata gut microbiota. We observed significant differences in the community structures and bacterial functions of the gut microbiota between the two host species. Notably, we found a distinctive richness of antibiotic resistance genes (ARGs) associated with various classes of antibiotics, including bacitracin, chloramphenicol, tetracycline, sulfonamide, penicillin, cephalosporin_ii and cephalosporin_i, fluoroquinolone, aminoglycoside, beta-lactam, multidrug and trimethoprim, in the digestive tracts of the snails. Furthermore, this study revealed the potential correlations between snail gut microbiota and the infection rate of S. mansoni using Spearman correlation analysis. Through metagenomic analysis, our study provided new insights into the gut microbiota of Biomphalaria snails and how it is influenced by host species, thereby enhancing our understanding of variant patterns of gut microbial communities in intermediate hosts. Our findings may contribute to future studies on gastropod-microbe interactions and may provide valuable knowledge for developing snail control strategies to combat schistosomiasis in the future.
Collapse
Affiliation(s)
- Peipei Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou 510180, China
| | - Mingrou Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhanhong Yuan
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dinghao Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China (Z.W.)
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Provincial Engineering Technology Research Center for Diseases-Vectors Control, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
7
|
Jiang XR, Dai YY, Wang YR, Guo K, Du Y, Gao JF, Lin LH, Li P, Li H, Ji X, Qu YF. Dietary and Sexual Correlates of Gut Microbiota in the Japanese Gecko, Gekko japonicus (Schlegel, 1836). Animals (Basel) 2023; 13:ani13081365. [PMID: 37106928 PMCID: PMC10134999 DOI: 10.3390/ani13081365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Numerous studies have demonstrated that multiple intrinsic and extrinsic factors shape the structure and composition of gut microbiota in a host. The disorder of the gut microbiota may trigger various host diseases. Here, we collected fecal samples from wild-caught Japanese geckos (Gekko japonicus) and captive conspecifics fed with mealworms (mealworm-fed geckos) and fruit flies (fly-fed geckos), aiming to examine the dietary and sexual correlates of the gut microbiota. We used 16S rRNA gene sequencing technology to determine the composition of the gut microbiota. The dominant phyla with a mean relative abundance higher than 10% were Verrucomicrobiota, Bacteroidota, and Firmicutes. Gut microbial community richness and diversity were higher in mealworm-fed geckos than in wild geckos. Neither community evenness nor beta diversity of gut microbiota differed among wild, mealworm-fed, and fly-fed geckos. The beta rather than alpha diversity of gut microbiota was sex dependent. Based on the relative abundance of gut bacteria and their gene functions, we concluded that gut microbiota contributed more significantly to the host's metabolic and immune functions. A higher diversity of gut microbiota in mealworm-fed geckos could result from higher chitin content in insects of the order Coleoptera. This study not only provides basic information about the gut microbiota of G. japonicus but also shows that gut microbiota correlates with dietary habits and sex in the species.
Collapse
Affiliation(s)
- Xin-Ru Jiang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ying-Yu Dai
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yu-Rong Wang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Kun Guo
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yu Du
- Hainan Key Laboratory of Herpetological Research, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya 572022, China
| | - Jian-Fang Gao
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Long-Hui Lin
- Herpetological Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Peng Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hong Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiang Ji
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Yan-Fu Qu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
8
|
Escobar-Correas S, Mendoza-Porras O, Castro-Vazquez A, Vega IA, Colgrave ML. Proteomic analysis of digestive tract peptidases and lipases from the invasive gastropod Pomacea canaliculata. PEST MANAGEMENT SCIENCE 2023; 79:1420-1430. [PMID: 36464640 DOI: 10.1002/ps.7311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The invasive gastropod Pomacea canaliculata has received great attention in the last decades as a result of its negative impact on crops agriculture, yet knowledge of their digestive physiology remains incomplete, particularly the enzymatic breakdown of macromolecules such as proteins and lipids. RESULTS Discovery proteomics revealed aspartic peptidases, cysteine peptidases, serine peptidases, metallopeptidases and threonine peptidases, as well as acid and neutral lipases and phospholipases along the digestive tract of P. canaliculata. Peptides specific to peptidases (139) and lipases (14) were quantified by targeted mass spectrometry. Digestion begins in the mouth via diverse salivary peptidases (nine serine peptidases; seven cysteine peptidases, one aspartic peptidase and 22 metallopeptidases) and then continues in the oesophagus (crop) via three luminal metallopeptidases (Family M12) and six serine peptidases (Family S1). Downstream, the digestive gland provides a battery of enzymes composed of aspartic peptidase (one), cysteine peptidases (nine), serine peptidases (12) and metallopeptidases (24), including aminopeptidases, carboxypeptidases and dipeptidases). The coiled gut has M1 metallopeptidases that complete the digestion of small peptides. Lipid extracellular digestion is completed by triglyceride lipases. CONCLUSION From an integrative physiological and anatomical perspective, P. canaliculata shows an unexpected abundance and diversity of peptidases, which participate mainly in extracellular digestion. Moreover, the previously unknown occurrence of luminal lipases from the digestive gland is reported for the first time. Salivary and digestive glands were the main tissues involved in the synthesis and secretion of these enzymes, but plausibly the few luminally exclusive peptidases are secreted by ventrolateral pouches or epithelial unicellular glands. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sophia Escobar-Correas
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina
- CSIRO, Agriculture & Food, St. Lucia, Queensland, Australia
| | | | - Alfredo Castro-Vazquez
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Israel A Vega
- IHEM, CONICET, Universidad Nacional de Cuyo, Mendoza, Argentina
- Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Instituto de Fisiología, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Biología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | |
Collapse
|
9
|
Liu H, Yang X, Yang W, Zheng Z, Zhu J. Gut Microbiota of Freshwater Gastropod (Bellamya aeruginosa) Assist the Adaptation of Host to Toxic Cyanobacterial Stress. Toxins (Basel) 2023; 15:toxins15040252. [PMID: 37104190 PMCID: PMC10141019 DOI: 10.3390/toxins15040252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Gut microbes play a critical role in helping hosts adapt to external environmental changes and are becoming an important phenotype for evaluating the response of aquatic animals to environmental stresses. However, few studies have reported the role that gut microbes play after the exposure of gastropods to bloom-forming cyanobacteria and toxins. In this study, we investigated the response pattern and potential role of intestinal flora in freshwater gastropod Bellamya aeruginosa when exposed to toxic and non-toxic strains of Microcystis aeruginosa, respectively. Results showed that the composition of the intestinal flora of the toxin-producing cyanobacteria group (T group) changed significantly over time. The concentration of microcystins (MCs) in hepatopancreas tissue decreased from 2.41 ± 0.12 on day 7 to 1.43 ± 0.10 μg·g−1 dry weight on day 14 in the T group. The abundance of cellulase-producing bacteria (Acinetobacter) was significantly higher in the non-toxic cyanobacteria group (NT group) than that in the T group on day 14, whereas the relative abundance of MC-degrading bacteria (Pseudomonas and Ralstonia) was significantly higher in the T group than that in the NT group on day 14. In addition, the co-occurrence networks in the T group were more complex than that in the NT group at day 7 and day 14. Some genera identified as key nodes, such as Acinetobacter, Pseudomonas, and Ralstonia, showed different patterns of variation in the co-occurrence network. Network nodes clustered to Acinetobacter increased in the NT group from day 7 to day 14, whereas the interactions between Pseudomonas and Ralstonia and other bacteria almost changed from positive correlations in the D7T group to negative correlations in the D14T group. These results suggested that these bacteria not only have the ability to improve host resistance to toxic cyanobacterial stress by themselves, but they can also further assist host adaptation to environmental stress by regulating the interaction patterns within the community. This study provides useful information for understanding the role of freshwater gastropod gut flora in response to toxic cyanobacteria and reveals the underlying tolerance mechanisms of B. aeruginosa to toxic cyanobacteria.
Collapse
|
10
|
Zhang L, Yang Z, Yang F, Wang G, Zeng M, Zhang Z, Yang M, Wang Z, Li Z. Gut microbiota of two invasive fishes respond differently to temperature. Front Microbiol 2023; 14:1087777. [PMID: 37056740 PMCID: PMC10088563 DOI: 10.3389/fmicb.2023.1087777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Temperature variation structures the composition and diversity of gut microbiomes in ectothermic animals, key regulators of host physiology, with potential benefit to host or lead to converse results (i.e., negative). So, the significance of either effect may largely depend on the length of time exposed to extreme temperatures and how rapidly the gut microbiota can be altered by change in temperature. However, the temporal effects of temperature on gut microbiota have rarely been clarified. To understand this issue, we exposed two juvenile fishes (Cyprinus carpio and Micropterus salmoides), which both ranked among the 100 worst invasive alien species in the world, to increased environmental temperature and sampled of the gut microbiota at multiple time points after exposure so as to determine when differences in these communities become detectable. Further, how temperature affects the composition and function of microbiota was examined by comparing predicted metagenomic profiles of gut microbiota between treatment groups at the final time point of the experiment. The gut microbiota of C. carpio was more plastic than those of M. salmoides. Specifically, communities of C. carpio were greatly altered by increased temperature within 1 week, while communities of M. salmoides exhibit no significant changes. Further, we identified 10 predicted bacterial functional pathways in C. carpio that were temperature-dependent, while none functional pathways in M. salmoides was found to be temperature-dependent. Thus, the gut microbiota of C. carpio was more sensitive to temperature changes and their functional pathways were significantly changed after temperature treatment. These results showed the gut microbiota of the two invasive fishes differ in response to temperature change, which may indicate that they differ in colonization modes. Broadly, we have confirmed that the increased short-term fluctuations in temperatures are always expected to alter the gut microbiota of ectothermic vertebrates when facing global climate change.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
- Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem and The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, China
- *Correspondence: Lixia Zhang,
| | - Zi Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Fan Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Gege Wang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Ming Zeng
- Jigongshan National Nature Reserve, Xinyang, China
| | | | - Mengxiao Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, China
| | - Zhibing Li
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang, China
| |
Collapse
|
11
|
Li S, Qian Z, Gao S, Shen W, Li X, Li H, Chen L. Effect of long-term temperature stress on the intestinal microbiome of an invasive snail. Front Microbiol 2022; 13:961502. [PMID: 36106079 PMCID: PMC9465035 DOI: 10.3389/fmicb.2022.961502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/28/2022] [Indexed: 01/04/2023] Open
Abstract
The gut microbiome is vital to the physiological and biochemical functions of the host, and changes in the composition of these microbial communities may affect growth and adaptability to the environment. Pomacea canaliculata is an invasive freshwater snail which has become a serious agricultural pest. Temperature adaptation is considered an important reason for the widespread distribution of this species. To date, the contribution of the gut microbes to host fitness of P. canaliculata during long-term temperature stress is not well understood. In this study, the morphological changes and intestinal microbiome of P. canaliculata under long-term stress at low temperature (15°C) and high temperature (35°C) were investigated with laboratory experiments. Compared with control group (25°C), the alpha diversity increased and pathogenic bacteria enriched changed under high and low temperature stress. The effect of high temperature stress on the intestinal microbiome of P. canaliculata was more significant than that of low temperature stress. A sustained high temperature environment led to an increase in the abundance of pathogenic bacteria, such as Aeromonas and Enterobacter, and a decrease in the abundance of immune-related bacteria such as Bacteroidetes, Firmicutes, and Lactococcus. These intestine microbiome changes can increase the risk of diseases like intestinal inflammation, and lead to more deaths at high temperature environments. In addition, with the extension of stress time from 14 to 28 days, the beneficial bacteria such as Bacteroidetes, Firmicutes, and Lactococcus were significantly enriched, while potential pathogenic bacteria such as Pseudomonas, Acinetobacter, Shivalella, and Flavobacterium decreased, suggesting that intestinal microbiota may play an important role in host response to heat stress. These results are consistent with previously reported results that the survival rate of both male and female P. canaliculata no longer significantly reduced after 21 days of high temperature stress, suggesting that the surviving P. canaliculata had gradually adapted to high temperature environments under long-term high temperature stress.
Collapse
Affiliation(s)
- Shuxian Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zijin Qian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shuo Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenjia Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Xuexia Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
12
|
Chen X, An M, Zhang W, Li K, Kulyar MFEA, Duan K, Zhou H, Wu Y, Wan X, Li J, Quan L, Mai Z, Bai W, Wu Y. Integrated Bacteria-Fungi Diversity Analysis Reveals the Gut Microbial Changes in Buffalo With Mastitis. Front Vet Sci 2022; 9:918541. [PMID: 35832328 PMCID: PMC9271935 DOI: 10.3389/fvets.2022.918541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
The gut microbial community is closely related to mastitis, but studies regarding the influences of mastitis on gut microbiota in buffalo remain scarce. Herein, we characterized the differences in gut bacterial and fungal communities between mastitis-affected and healthy buffalos. Interestingly, although mastitis had no effect on gut bacterial and fungal diversities in the buffalos, some bacterial and fungal taxa were significantly altered. Bacterial and fungal taxonomic analysis showed that the preponderant bacterial phyla (Firmicutes and Bacteroidetes) and fungal phyla (Ascomycota and Basidiomycota) in buffalo were the same regardless of health status. At the level of genus, the changes in some gut bacterial and fungal abundances between both groups were gradually observed. Compared with healthy buffalos, the proportions of 3 bacterial genera (uncultured_bacterium_f_Muribaculaceae, Eubacterium_nodatum_group, and Lachnoclostridium_10) and 1 fungal genus (Pichia) in the mastitis-affected buffalo were significantly increased, whereas 4 bacterial genera (Ruminococcus_2, Candidatus_Stoquefichus, Turicibacter, and Cellulosilyticum) and 4 fungal genera (Cladosporium, Thermothelomyces, Ganoderma and Aspergillus) were significantly decreased. Taken together, this research revealed that there was significant difference in the compositions of the gut microbial community between the healthy and mastitis-affected buffalos. To our knowledge, this is the first insight into the characteristics of the gut microbiota in buffalos with mastitis, which is beneficial to understand the gut microbial information of buffalo in different health states and elucidate the pathogenesis of mastitis from the gut microbial perspective.
Collapse
Affiliation(s)
- Xiushuang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Miao An
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenqian Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | | | - Kun Duan
- China Tobacco Henan Industrial Co. Ltd., Zhengzhou, China
| | - Hui Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xin Wan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianlong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Lingtong Quan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Wenxia Bai
- Nanjing Superbiotech Co. Ltd., Nanjing, China
| | - Yi Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Yi Wu
| |
Collapse
|
13
|
Chen Z, Chen J, Liu Y, Zhang J, Chen X, Qu Y. Comparative study on gut microbiota in three Anura frogs from a mountain stream. Ecol Evol 2022; 12:e8854. [PMID: 35475186 PMCID: PMC9021931 DOI: 10.1002/ece3.8854] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 12/25/2022] Open
Abstract
Composition and diversity in gut microbiota are impacted by a wide variety of factors. The similarity of gut microbiota in related or sympatric species has been gaining recent traction. Here, 16S rRNA gene sequencing technology was employed to study the gut microbiota of three sympatric frog species, namely Odorrana tormota, O. graminea, and Amolops wuyiensis. In these three frog species, the most abundant phylum was Proteobacteria, followed by Bacteroidetes, Verrucomicrobia, and Firmicutes. The most abundant family was Burkholderiaceae in three species. The most dominant genera were Burkholderia, Caballeronia, and Paraburkholderia with the highest relative abundance in O. tormota, O. graminea, and A. wuyiensis, respectively. No differences were observed in alpha diversity indexes among the three frog species. However, bacterial similarity of gut microbiota was significantly different between O. tormota and A. wuyiensis and between O. graminea and A. wuyiensis. Metabolism‐related gene function was predominantly enriched in the gut microbiota of the three evaluated frog species. From these findings, that the relative abundance of the gut microbiota and predicted gene functions differed in three species, we conclude that there were significant differences in the gut microbiota of the three species. Similar alpha diversity and interspecific bacterial similarity in the gut might be related to bacterial transmission among the three Anura frogs evaluated in this study.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
| | - Jun‐Qiong Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| | - Yao Liu
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
| | - Jie Zhang
- College of Fisheries Henan Normal University Xinxiang Henan China
| | - Xiao‐Hong Chen
- College of Life Sciences Henan Normal University Xinxiang Henan China
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province Xinxiang Henan China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| | - Yan‐Fu Qu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology College of Life Sciences Nanjing Normal University Nanjing Jiangsu China
| |
Collapse
|
14
|
Zhou Z, Wu H, Li D, Zeng W, Huang J, Wu Z. Comparison of gut microbiome in the Chinese mud snail ( Cipangopaludina chinensis) and the invasive golden apple snail ( Pomacea canaliculata). PeerJ 2022; 10:e13245. [PMID: 35402093 PMCID: PMC8992660 DOI: 10.7717/peerj.13245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/18/2022] [Indexed: 01/13/2023] Open
Abstract
Background Gut microbiota play a critical role in nutrition absorption and environmental adaptation and can affect the biological characteristics of host animals. The invasive golden apple snail (Pomacea canaliculata) and native Chinese mud snail (Cipangopaludina chinensis) are two sympatric freshwater snails with similar ecological niche in southern China. However, gut microbiota comparison of interspecies remains unclear. Comparing the difference of gut microbiota between the invasive snail P. canaliculata and native snail C. chinensis could provide new insight into the invasion mechanism of P.canaliculata at the microbial level. Methods Gut samples from 20 golden apple snails and 20 Chinese mud snails from wild freshwater habitats were collected and isolated. The 16S rRNA gene V3-V4 region of the gut microbiota was analyzed using high throughput Illumina sequencing. Results The gut microbiota dominantly composed of Proteobacteria, Bacteroidetes, Firmicutes and Epsilonbacteraeota at phylum level in golden apple snail. Only Proteobacteria was the dominant phylum in Chinese mud snail. Alpha diversity analysis (Shannon and Simpson indices) showed there were no significant differences in gut microbial diversity, but relative abundances of the two groups differed significantly (P < 0.05). Beta diversity analysis (Bray Curtis and weighted UniFrac distance) showed marked differences in the gut microbiota structure (P < 0.05). Unique or high abundance microbial taxa were more abundant in the invasive snail compared to the native form. Functional prediction analysis indicated that the relative abundances of functions differed significantly regarding cofactor prosthetic group electron carrier and vitamin biosynthesis, amino acid biosynthesis, and nucleoside and nucleotide biosynthesis (P < 0.05). These results suggest an enhanced potential to adapt to new habitats in the invasive snail.
Collapse
Affiliation(s)
- Zihao Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Hongying Wu
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Dinghong Li
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Wenlong Zeng
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Jinlong Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China,College of Life Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
15
|
Yang B, Cui Z, Ning M, Chen Y, Wu Z, Huang H. Variation in the intestinal microbiota at different developmental stages of Hynobius maoershanensis. Ecol Evol 2022; 12:e8712. [PMID: 35342562 PMCID: PMC8931708 DOI: 10.1002/ece3.8712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 11/11/2022] Open
Abstract
Intestinal microbiota play an important role in the life of amphibians and its composition may vary by developmental stage. In this study, 16S rRNA high-throughput sequencing was used to profile the intestinal microbiota of Hynobius maoershanensis, which exclusively inhabit the Maoer Mountain swamp at an altitude of approximately 2,000 m. We characterized the bacterial composition, structure, and function of the microbiota of H. maoershanensis at different developmental stages. The alpha diversity was not markedly different for the Simpson, Shannon, Ace, and Sobs indices of microbes. The beta diversity revealed that there were age-related differences in the structure of the intestinal microbes of H. maoershanensis, specifically, at the phylum level. Bacteroidetes and Proteobacteria were the dominant bacteria present in the adult stage, and the relative abundance of Bacteroidetes was significantly higher compared with that of tadpoles. Firmicutes and Proteobacteria were the dominant phylum during the tadpole stage and their relative abundance was significantly higher compared with the adult period. Functional analysis revealed that the pathways associated with organismal systems and metabolism were significantly enriched in the adults, whereas human diseases, genetic information processing, and cellular processes were more enriched in the hindlimb bud stage. Human diseases and environmental information processing were more enriched in the forelimb bud stage at KEGG pathway level 1. Possibilities for the observed discrepancies include the adaptation to eating habits and the remodeling of the intestines during development. We speculated that H. maoershanensis adults may be more suitable to a high-fiber diet, whereas the tadpoles are associated with a carnivorous diet. Our study provides evidence of variations in the intestinal microbiota during development in amphibians, highlighting the influence of historical developments on the intestinal microbiota and an increased understanding of the importance of physiological characteristics in shaping the intestinal microbiota of amphibians. These data will help us formulate more effective protection measures for H. maoershanensis.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Zhenzhen Cui
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Meihong Ning
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Yu Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| | - Huayuan Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of EducationGuilinChina
- Guangxi Key Laboratory of Rare and Endangered Animal EcologyGuangxi Normal UniversityGuilinChina
| |
Collapse
|