1
|
von Hoyningen-Huene AJE, Bang C, Rausch P, Rühlemann M, Fokt H, He J, Jensen N, Knop M, Petersen C, Schmittmann L, Zimmer T, Baines JF, Bosch TCG, Hentschel U, Reusch TBH, Roeder T, Franke A, Schulenburg H, Stukenbrock E, Schmitz RA. The archaeome in metaorganism research, with a focus on marine models and their bacteria-archaea interactions. Front Microbiol 2024; 15:1347422. [PMID: 38476944 PMCID: PMC10927989 DOI: 10.3389/fmicb.2024.1347422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
Metaorganism research contributes substantially to our understanding of the interaction between microbes and their hosts, as well as their co-evolution. Most research is currently focused on the bacterial community, while archaea often remain at the sidelines of metaorganism-related research. Here, we describe the archaeome of a total of eleven classical and emerging multicellular model organisms across the phylogenetic tree of life. To determine the microbial community composition of each host, we utilized a combination of archaea and bacteria-specific 16S rRNA gene amplicons. Members of the two prokaryotic domains were described regarding their community composition, diversity, and richness in each multicellular host. Moreover, association with specific hosts and possible interaction partners between the bacterial and archaeal communities were determined for the marine models. Our data show that the archaeome in marine hosts predominantly consists of Nitrosopumilaceae and Nanoarchaeota, which represent keystone taxa among the porifera. The presence of an archaeome in the terrestrial hosts varies substantially. With respect to abundant archaeal taxa, they harbor a higher proportion of methanoarchaea over the aquatic environment. We find that the archaeal community is much less diverse than its bacterial counterpart. Archaeal amplicon sequence variants are usually host-specific, suggesting adaptation through co-evolution with the host. While bacterial richness was higher in the aquatic than the terrestrial hosts, a significant difference in diversity and richness between these groups could not be observed in the archaeal dataset. Our data show a large proportion of unclassifiable archaeal taxa, highlighting the need for improved cultivation efforts and expanded databases.
Collapse
Affiliation(s)
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Philipp Rausch
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Hannover Medical School, Institute for Medical Microbiology and Hospital Epidemiology, Hannover, Germany
| | - Hanna Fokt
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Jinru He
- Cell and Developmental Biology, Zoological Institute, Kiel University, Kiel, Germany
| | - Nadin Jensen
- Institute for General Microbiology, Kiel University, Kiel, Germany
| | - Mirjam Knop
- Department of Molecular Physiology, Zoology, Kiel University, Kiel, Germany
| | - Carola Petersen
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
| | - Lara Schmittmann
- Research Unit Ocean Dynamics, GEOMAR Helmholtz Institute for Ocean Research Kiel, Kiel, Germany
| | - Thorsten Zimmer
- Institute for General Microbiology, Kiel University, Kiel, Germany
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - John F. Baines
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Thomas C. G. Bosch
- Cell and Developmental Biology, Zoological Institute, Kiel University, Kiel, Germany
| | - Ute Hentschel
- Marine Evolutionary Ecology, GEOMAR Helmholtz Center for Ocean Research, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Thorsten B. H. Reusch
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Christian-Albrechts-Universität Kiel, Kiel, Germany
| | - Thomas Roeder
- Department of Molecular Physiology, Zoology, Kiel University, Kiel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Hinrich Schulenburg
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic Resistance Group, Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eva Stukenbrock
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Ruth A. Schmitz
- Institute for General Microbiology, Kiel University, Kiel, Germany
| |
Collapse
|
2
|
Rühlemann MC, Bang C, Gogarten JF, Hermes BM, Groussin M, Waschina S, Poyet M, Ulrich M, Akoua-Koffi C, Deschner T, Muyembe-Tamfum JJ, Robbins MM, Surbeck M, Wittig RM, Zuberbühler K, Baines JF, Leendertz FH, Franke A. Functional host-specific adaptation of the intestinal microbiome in hominids. Nat Commun 2024; 15:326. [PMID: 38182626 PMCID: PMC10770139 DOI: 10.1038/s41467-023-44636-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
Fine-scale knowledge of the changes in composition and function of the human gut microbiome compared that of our closest relatives is critical for understanding the evolutionary processes underlying its developmental trajectory. To infer taxonomic and functional changes in the gut microbiome across hominids at different timescales, we perform high-resolution metagenomic-based analyzes of the fecal microbiome from over two hundred samples including diverse human populations, as well as wild-living chimpanzees, bonobos, and gorillas. We find human-associated taxa depleted within non-human apes and patterns of host-specific gut microbiota, suggesting the widespread acquisition of novel microbial clades along the evolutionary divergence of hosts. In contrast, we reveal multiple lines of evidence for a pervasive loss of diversity in human populations in correlation with a high Human Development Index, including evolutionarily conserved clades. Similarly, patterns of co-phylogeny between microbes and hosts are found to be disrupted in humans. Together with identifying individual microbial taxa and functional adaptations that correlate to host phylogeny, these findings offer insights into specific candidates playing a role in the diverging trajectories of the gut microbiome of hominids. We find that repeated horizontal gene transfer and gene loss, as well as the adaptation to transient microaerobic conditions appear to have played a role in the evolution of the human gut microbiome.
Collapse
Affiliation(s)
- M C Rühlemann
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany.
| | - C Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - J F Gogarten
- Applied Zoology and Nature Conservation, University of Greifswald, Greifswald, Germany
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), Greifswald, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
- Viral Evolution, Robert Koch Institute, Berlin, Germany
| | - B M Hermes
- Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - M Groussin
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - S Waschina
- Nutriinformatics Research Group, Institute for Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - M Poyet
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - M Ulrich
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), Greifswald, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - C Akoua-Koffi
- Training and Research Unit for in Medical Sciences, Alassane Ouattara University / University Teaching Hospital of Bouaké, Bouaké, Côte d'Ivoire
| | - T Deschner
- Comparative BioCognition, Institute of Cognitive Science, University of Osnabrück, Osnabrück, Germany
| | - J J Muyembe-Tamfum
- National Institute for Biomedical Research, National Laboratory of Public Health, Kinshasa, Democratic Republic of the Congo
| | - M M Robbins
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - M Surbeck
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - R M Wittig
- Institute of Cognitive Sciences, CNRS UMR5229 University Lyon 1, Bron Cedex, France
- Taï Chimpanzee Project, CSRS, Abidjan, Côte d'Ivoire
| | - K Zuberbühler
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, Scotland, UK
| | - J F Baines
- Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - F H Leendertz
- Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), Greifswald, Germany
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, Berlin, Germany
| | - A Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
| |
Collapse
|
3
|
Starke S, Harris DMM, Zimmermann J, Schuchardt S, Oumari M, Frank D, Bang C, Rosenstiel P, Schreiber S, Frey N, Franke A, Aden K, Waschina S. Amino acid auxotrophies in human gut bacteria are linked to higher microbiome diversity and long-term stability. THE ISME JOURNAL 2023; 17:2370-2380. [PMID: 37891427 PMCID: PMC10689445 DOI: 10.1038/s41396-023-01537-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Amino acid auxotrophies are prevalent among bacteria. They can govern ecological dynamics in microbial communities and indicate metabolic cross-feeding interactions among coexisting genotypes. Despite the ecological importance of auxotrophies, their distribution and impact on the diversity and function of the human gut microbiome remain poorly understood. This study performed the first systematic analysis of the distribution of amino acid auxotrophies in the human gut microbiome using a combined metabolomic, metagenomic, and metabolic modeling approach. Results showed that amino acid auxotrophies are ubiquitous in the colon microbiome, with tryptophan auxotrophy being the most common. Auxotrophy frequencies were higher for those amino acids that are also essential to the human host. Moreover, a higher overall abundance of auxotrophies was associated with greater microbiome diversity and stability, and the distribution of auxotrophs was found to be related to the human host's metabolome, including trimethylamine oxide, small aromatic acids, and secondary bile acids. Thus, our results suggest that amino acid auxotrophies are important factors contributing to microbiome ecology and host-microbiome metabolic interactions.
Collapse
Affiliation(s)
- Svenja Starke
- Institute of Human Nutrition and Food Science, Nutriinformatics, Kiel University, Kiel, Germany
| | - Danielle M M Harris
- Institute of Human Nutrition and Food Science, Nutriinformatics, Kiel University, Kiel, Germany
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Johannes Zimmermann
- Zoological Institute, Research Group Evolutionary Ecology and Genetics, Kiel University, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Sven Schuchardt
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hanover, Germany
| | - Mhmd Oumari
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Hamburg, Kiel, Lübeck, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, Kiel, Germany
- German Centre for Cardiovascular Research (DZHK), Partner site Hamburg, Kiel, Lübeck, Germany
- Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany.
| | - Silvio Waschina
- Institute of Human Nutrition and Food Science, Nutriinformatics, Kiel University, Kiel, Germany.
| |
Collapse
|
4
|
Taxonomic, Genomic, and Functional Variation in the Gut Microbiomes of Wild Spotted Hyenas Across 2 Decades of Study. mSystems 2023; 8:e0096522. [PMID: 36533929 PMCID: PMC9948708 DOI: 10.1128/msystems.00965-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The gut microbiome provides vital functions for mammalian hosts, yet research on its variability and function across adult life spans and multiple generations is limited in large mammalian carnivores. Here, we used 16S rRNA gene and metagenomic high-throughput sequencing to profile the bacterial taxonomic composition, genomic diversity, and metabolic function of fecal samples collected from 12 wild spotted hyenas (Crocuta crocuta) residing in the Masai Mara National Reserve, Kenya, over a 23-year period spanning three generations. The metagenomic data came from four of these hyenas and spanned two 2-year periods. With these data, we determined the extent to which host factors predicted variation in the gut microbiome and identified the core microbes present in the guts of hyenas. We also investigated novel genomic diversity in the mammalian gut by reporting the first metagenome-assembled genomes (MAGs) for hyenas. We found that gut microbiome taxonomic composition varied temporally, but despite this, a core set of 14 bacterial genera were identified. The strongest predictors of the microbiome were host identity and age, suggesting that hyenas possess individualized microbiomes and that these may change with age during adulthood. The gut microbiome functional profiles of the four adult hyenas were also individual specific and were associated with prey abundance, indicating that the functions of the gut microbiome vary with host diet. We recovered 149 high-quality MAGs from the hyenas' guts; some MAGs were classified as taxa previously reported for other carnivores, but many were novel and lacked species-level matches to genomes in existing reference databases. IMPORTANCE There is a gap in knowledge regarding the genomic diversity and variation of the gut microbiome across a host's life span and across multiple generations of hosts in wild mammals. Using two types of sequencing approaches, we found that although gut microbiomes were individualized and temporally variable among hyenas, they correlated similarly to large-scale changes in the ecological conditions experienced by their hosts. We also recovered 149 high-quality MAGs from the hyena gut, greatly expanding the microbial genome repertoire known for hyenas, carnivores, and wild mammals in general. Some MAGs came from genera abundant in the gastrointestinal tracts of canid species and other carnivores, but over 80% of MAGs were novel and from species not previously represented in genome databases. Collectively, our novel body of work illustrates the importance of surveying the gut microbiome of nonmodel wild hosts, using multiple sequencing methods and computational approaches and at distinct scales of analysis.
Collapse
|
5
|
Labenz J, Borkenstein DP, Heil FJ, Madisch A, Tappe U, Schmidt H, Terjung B, Klymiuk I, Horvath A, Gross M, Stadlbauer V. Application of a multispecies probiotic reduces gastro-intestinal discomfort and induces microbial changes after colonoscopy. Front Oncol 2023; 12:1078315. [PMID: 36698396 PMCID: PMC9870247 DOI: 10.3389/fonc.2022.1078315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/02/2022] [Indexed: 01/11/2023] Open
Abstract
Even after decades of research and pharmaceutical development, cancer is still one of the most common causes of death in the western population and the management of cancer will remain a major challenge of medical research. One of the most common types of cancer is colorectal cancer (CRC). Prevention by detection of early-stage precursors is the most reliable method to prevent CRC development. In dependence of age, familial predisposition, and other risk factors the preventative routine screening for CRC by colonoscopy should be performed at least twice in intervals of about ten years. Although colonoscopy is a life-saving clinical examination reducing both incidence and mortality of CRC significantly, it has still a bad reputation in the population as an uncomfortable procedure with unpleasant side effects lasting sometimes over days to weeks. These effects are most likely caused by the bowel preparation before colonoscopy, which is crucial for a successful colonoscopy with high quality. Beside pain, bleeding and other rare but severe complications of colonoscopy, cleaning of the intestinal mucosa alters the gut microbiome significantly and consistently. Abdominal pain, cramps, diarrhea, nausea, bloating, and constipation are common adverse events which can continue to affect patients for days or even weeks after the procedure. In this multicenter, placebo controlled, double blind clinical trial, we investigated the effect of an intervention with a multispecies probiotic formulation for 30 days on the adverse events due to bowel preparation. We show that the treatment of participants with the multispecies probiotic formulation decreases the number of days with constipation significantly, and reduced pain, bloating, diarrhea, and general discomfort. 16S based amplicon analyses reveal recovery of administered probiotic strains from stool samples and differences in alpha diversity dynamics with higher variability in the probiotic group compared to the placebo group. In conclusion, the probiotic ameliorates the side effects after colonoscopy and might be an important supplement to increase acceptance of this life-saving preventative examination. Further, we present here for the first time that probiotic intervention of only 30 days affects alpha diversity parameters in stool samples.
Collapse
Affiliation(s)
- Joachim Labenz
- Department of Internal Medicine, Diakonie Klinikum Jung-Stilling, Siegen, Germany
| | | | | | - Ahmed Madisch
- Department of Internal Medicine I, Hospital Clinic Siloah, Hannover, Germany
- Centrum Gastroenterologie Bethanien, Agaplesion Krankenhaus Bethanien, Frankfurt, Germany
| | - Ulrich Tappe
- Gastropraxis an der St. Barbara Klinik, Hamm, Germany
| | - Harald Schmidt
- Praxis für Innere Medizin und Gastroenterologie Dr. H. Schmidt, Berlin, Germany
| | | | - Ingeborg Klymiuk
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Angela Horvath
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Area 3 Microbiome Modulation for Precision Medicine, Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Manfred Gross
- Department of Internal medicine, Internistisches Klinikum München Süd, Munich, Germany
| | - Vanessa Stadlbauer
- Division for Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Area 3 Microbiome Modulation for Precision Medicine, Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| |
Collapse
|
6
|
Schwarz A, Philippsen R, Piticchio SG, Hartmann JN, Häsler R, Rose-John S, Schwarz T. Crosstalk between microbiome, regulatory T cells and HCA2 orchestrates the inflammatory response in a murine psoriasis model. Front Immunol 2023; 14:1038689. [PMID: 36891315 PMCID: PMC9986334 DOI: 10.3389/fimmu.2023.1038689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
The organ-specific microbiome plays a crucial role in tissue homeostasis, among other things by inducing regulatory T cells (Treg). This applies also to the skin and in this setting short chain fatty acids (SCFA) are relevant. It was demonstrated that topical application of SCFA controls the inflammatory response in the psoriasis-like imiquimod (IMQ)-induced murine skin inflammation model. Since SCFA signal via HCA2, a G-protein coupled receptor, and HCA2 expression is reduced in human lesional psoriatic skin, we studied the effect of HCA2 in this model. HCA2 knock-out (HCA2-KO) mice reacted to IMQ with stronger inflammation, presumably due to an impaired function of Treg. Surprisingly, injection of Treg from HCA2-KO mice even enhanced the IMQ reaction, suggesting that in the absence of HCA2 Treg switch from a suppressive into a proinflammatory type. HCA2-KO mice differed in the composition of the skin microbiome from wild type mice. Co-housing reversed the exaggerated response to IMQ and prevented the alteration of Treg, implying that the microbiome dictates the outcome of the inflammatory reaction. The switch of Treg into a proinflammatory type in HCA2-KO mice could be a downstream phenomenon. This opens the opportunity to reduce the inflammatory tendency in psoriasis by altering the skin microbiome.
Collapse
Affiliation(s)
- Agatha Schwarz
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany
| | - Rebecca Philippsen
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany
| | - Serena G Piticchio
- Institute of Clinical Molecular Biology (IKMB), University Kiel, Kiel, Germany.,Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | - Jan N Hartmann
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany
| | - Robert Häsler
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany
| | | | - Thomas Schwarz
- Department of Dermatology and Allergology, University Kiel, Kiel, Germany
| |
Collapse
|
7
|
Pezzuto JM, Dave A, Park EJ, Beyoğlu D, Idle JR. Short-Term Grape Consumption Diminishes UV-Induced Skin Erythema. Antioxidants (Basel) 2022; 11:2372. [PMID: 36552580 PMCID: PMC9774720 DOI: 10.3390/antiox11122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Over three million Americans are affected by skin cancer each year, largely as a result of exposure to sunlight. The purpose of this study was to determine the potential of grape consumption to modulate UV-induced skin erythema. With 29 human volunteers, we report that nine demonstrated greater resistance to UV irradiation of the skin after consuming the equivalent of three servings of grapes per day for two weeks. We further explored any potential relationship to the gut-skin axis. Alpha- and beta-diversity of the gut microbiome were not altered, but grape consumption modulated microbiota abundance, enzyme levels, and KEGG pathways. Striking differences in the microbiome and metabolome were discerned when comparing the nine individuals showing greater UV resistance with the 20 non-responders. Notably, three urinary metabolites, 2'-deoxyribonic acid, 3-hydroxyphenyl acetic and scyllo-inositol, were depressed in the UV-resistant group. A ROC curve revealed a 71.8% probability that measurement of urinary 2'-deoxyribonic acid identifies a UV skin non-responder. 2'-Deoxyribonic acid is cleaved from the DNA backbone by reactive oxygen species. Three of the nine subjects acquiring UV resistance following grape consumption showed a durable response, and these three demonstrated unique microbiomic and metabolomic profiles. Variable UV skin sensitivity was likely due to glutathione S-transferase polymorphisms. We conclude that a segment of the population is capable of demonstrating greater resistance to a dermal response elicited by UV irradiation as a result of grape consumption. It is uncertain if modulation of the gut-skin axis leads to enhanced UV resistance, but there is correlation. More broadly, it is reasonable to expect that these mechanisms relate to other health outcomes anticipated to result from grape consumption.
Collapse
Affiliation(s)
- John M. Pezzuto
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
- Department of Medicine, UMass Chan Medical School—Baystate, Springfield, MA 01199, USA
| | - Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eun-Jung Park
- Division of Pharmaceutical Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY 11201, USA
| | - Diren Beyoğlu
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| | - Jeffrey R. Idle
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA
| |
Collapse
|
8
|
Kumari M, Dasriya VL, Nataraj BH, Nagpal R, Behare PV. Lacticaseibacillus rhamnosus-Derived Exopolysaccharide Attenuates D-Galactose-Induced Oxidative Stress and Inflammatory Brain Injury and Modulates Gut Microbiota in a Mouse Model. Microorganisms 2022; 10:microorganisms10102046. [PMID: 36296322 PMCID: PMC9611687 DOI: 10.3390/microorganisms10102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
This study aimed to investigate the protective effect of a novel exopolysaccharide EPSRam12, produced by Lacticaseibacillus rhamnosus Ram12, against D-galactose-induced brain injury and gut microbiota dysbiosis in mice. The findings demonstrate that EPSRam12 increases the level of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase, total antioxidant capacity, and the level of anti-inflammatory cytokine IL-10, while decreasing malonaldehyde, nitric oxide, pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, MCP-1, and the mRNA expression of cyclooxygenase-2, inducible nitric oxide synthase, and the activation of nuclear factor-kappa-B in the brain tissues of D-galactose-treated mice. Further analyses reveal that EPSRam12 improves gut mucosal barrier function and increases the levels of short-chain fatty acids (SCFAs) in the intestine while restoring gut microbial diversity by enriching the abundance of SCFA-producing microbial genera Prevotella, Clostridium, Intestinimonas, and Acetatifactor while decreasing potential pathobionts including Helicobacter. These findings of antioxidative and anti-inflammatory effects in the brain and ameliorative effects on epithelial integrity, SCFAs and microbiota in the gut, provide novel insights into the effect of EPSRam12 intervention on the gut–microbiome–brain axis and should facilitate prospective understanding of microbial exopolysaccharide for improved host health.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starter Lab., National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, Haryana, India
- College of Dairy and Food Technology, Agriculture University, Jodhpur 342304, Rajasthan, India
| | - Vaishali L. Dasriya
- Technofunctional Starter Lab., National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Basavaprabhu H. Nataraj
- Technofunctional Starter Lab., National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
- Correspondence: (R.N.); (P.V.B.)
| | - Pradip V. Behare
- Technofunctional Starter Lab., National Collection of Dairy Cultures (NCDC), Dairy Microbiology Division, National Dairy Research Institute, Karnal 132001, Haryana, India
- Correspondence: (R.N.); (P.V.B.)
| |
Collapse
|
9
|
Malik H, Ratovonamana YR, Rakotondranary SJ, Ganzhorn JU, Sommer S. Anthropogenic Disturbance Impacts Gut Microbiome Homeostasis in a Malagasy Primate. Front Microbiol 2022; 13:911275. [PMID: 35801106 PMCID: PMC9253676 DOI: 10.3389/fmicb.2022.911275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/19/2022] [Indexed: 12/05/2022] Open
Abstract
Increasing anthropogenic disturbances in Madagascar are exerting constrains on endemic Malagasy lemurs and their habitats, with possible effects on their health and survival. An important component of health is the gut microbiome, which might be disrupted by various stressors associated with environmental change. We have studied the gut microbiome of gray-brown mouse lemurs (Microcebus griseorufus), one of the smallest Malagasy primates and an important model of the convergent evolution of diseases. We sampled two sites: one situated in a national park and the other consisting of a more disturbed site around human settlement. We found that more intense anthropogenic disturbances indeed disrupted the gut microbiome of this lemur species marked by a reduction in bacterial diversity and a shift in microbial community composition. Interestingly, we noted a decrease in beneficial bacteria (i.e., members of the Bacteroidaceae family) together with a slight increase in disease-associated bacteria (i.e., members of the Veillonellaceae family), and alterations in microbial metabolic functions. Because of the crucial services provided by the microbiome to pathogen resistance and host health, such negative alterations in the gut microbiome of mouse lemurs inhabiting anthropogenically disturbed habitats might render them susceptible to diseases and ultimately affecting their survival in the shrinking biodiversity seen in Madagascar. Gut microbiome analyses might thus serve as an early warning signal for pending threats to lemur populations.
Collapse
Affiliation(s)
- Hina Malik
- Centre for One Health, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Yedidya R Ratovonamana
- Institute of Zoology, Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
- Département Biologie Animale, Faculté des Sciences, Université d' Antananarivo, Antananarivo, Madagascar
| | - Solofomalala Jacques Rakotondranary
- Institute of Zoology, Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
- Département Biologie Animale, Faculté des Sciences, Université d' Antananarivo, Antananarivo, Madagascar
| | - Jörg U Ganzhorn
- Institute of Zoology, Animal Ecology and Conservation, Universität Hamburg, Hamburg, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
10
|
Mirzayi C, Renson A, Zohra F, Elsafoury S, Geistlinger L, Kasselman LJ, Eckenrode K, van de Wijgert J, Loughman A, Marques FZ, MacIntyre DA, Arumugam M, Azhar R, Beghini F, Bergstrom K, Bhatt A, Bisanz JE, Braun J, Bravo HC, Buck GA, Bushman F, Casero D, Clarke G, Collado MC, Cotter PD, Cryan JF, Demmer RT, Devkota S, Elinav E, Escobar JS, Fettweis J, Finn RD, Fodor AA, Forslund S, Franke A, Furlanello C, Gilbert J, Grice E, Haibe-Kains B, Handley S, Herd P, Holmes S, Jacobs JP, Karstens L, Knight R, Knights D, Koren O, Kwon DS, Langille M, Lindsay B, McGovern D, McHardy AC, McWeeney S, Mueller NT, Nezi L, Olm M, Palm N, Pasolli E, Raes J, Redinbo MR, Rühlemann M, Balfour Sartor R, Schloss PD, Schriml L, Segal E, Shardell M, Sharpton T, Smirnova E, Sokol H, Sonnenburg JL, Srinivasan S, Thingholm LB, Turnbaugh PJ, Upadhyay V, Walls RL, Wilmes P, Yamada T, Zeller G, Zhang M, Zhao N, Zhao L, Bao W, Culhane A, Devanarayan V, Dopazo J, Fan X, Fischer M, Jones W, Kusko R, Mason CE, Mercer TR, Sansone SA, Scherer A, Shi L, Thakkar S, Tong W, Wolfinger R, Hunter C, Segata N, Huttenhower C, Dowd JB, Jones HE, Waldron L. Reporting guidelines for human microbiome research: the STORMS checklist. Nat Med 2021; 27:1885-1892. [PMID: 34789871 PMCID: PMC9105086 DOI: 10.1038/s41591-021-01552-x] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 09/23/2021] [Indexed: 12/18/2022]
Abstract
The particularly interdisciplinary nature of human microbiome research makes the organization and reporting of results spanning epidemiology, biology, bioinformatics, translational medicine and statistics a challenge. Commonly used reporting guidelines for observational or genetic epidemiology studies lack key features specific to microbiome studies. Therefore, a multidisciplinary group of microbiome epidemiology researchers adapted guidelines for observational and genetic studies to culture-independent human microbiome studies, and also developed new reporting elements for laboratory, bioinformatics and statistical analyses tailored to microbiome studies. The resulting tool, called 'Strengthening The Organization and Reporting of Microbiome Studies' (STORMS), is composed of a 17-item checklist organized into six sections that correspond to the typical sections of a scientific publication, presented as an editable table for inclusion in supplementary materials. The STORMS checklist provides guidance for concise and complete reporting of microbiome studies that will facilitate manuscript preparation, peer review, and reader comprehension of publications and comparative analysis of published results.
Collapse
Affiliation(s)
- Chloe Mirzayi
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | - Audrey Renson
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fatima Zohra
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | - Shaimaa Elsafoury
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | - Ludwig Geistlinger
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | - Lora J Kasselman
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | - Kelly Eckenrode
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | - Janneke van de Wijgert
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Amy Loughman
- Food & Mood Centre, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Melbourne, Victoria, Australia
| | - David A MacIntyre
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rimsha Azhar
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | | | - Kirk Bergstrom
- Department of Biology, University of British Columbia-Okanagan Campus, Kelowna, British Columbia, Canada
| | - Ami Bhatt
- Division of Hematology and Division of Bone Marrow Transplantation, Department of Medicine, and Department of Genetics, Stanford University, Stanford, CA, USA
| | - Jordan E Bisanz
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Jonathan Braun
- Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Gregory A Buck
- Center for Microbiome Engineering and Data Analysis, Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - David Casero
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council, Valencia, Spain
| | - Paul D Cotter
- Teagasc Food Research Centre-Moorepark, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- VistaMilk, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Ryan T Demmer
- School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
- Microbiome and Cancer Division, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Juan S Escobar
- Vidarium-Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Jennifer Fettweis
- Center for Microbiome Engineering and Data Analysis, Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Sofia Forslund
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité University Hospital, Berlin, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | | | - Jack Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Elizabeth Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Scott Handley
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela Herd
- McCourt School of Public Policy, Georgetown University, Washington, DC, USA
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Jonathan P Jacobs
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Lisa Karstens
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Dan Knights
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, MN, USA
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Douglas S Kwon
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Morgan Langille
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Brianna Lindsay
- University of Maryland School of Medicine, Institute of Human Virology, Baltimore, MD, USA
| | - Dermot McGovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alice C McHardy
- Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Brunswick, Germany
| | | | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Luigi Nezi
- Department of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Europeo di Oncologia, Milan, Italy
| | - Matthew Olm
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Noah Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega institute, KU Leuven and VIB Center for Microbiology, Leuven, Belgium
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Malte Rühlemann
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick D Schloss
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Lynn Schriml
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Eran Segal
- Department of Computer Science, Weizmann Institute of Science, Rehovot, Israel
| | - Michelle Shardell
- University of Maryland School of Medicine, Institute for Genome Sciences, Baltimore, MD, USA
| | - Thomas Sharpton
- Department of Microbiology and Department of Statistics, Oregon State University, Corvallis, OR, USA
| | - Ekaterina Smirnova
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Harry Sokol
- Gastroenterology Department, Centre de Recherche Saint-Antoine, INSERM, Assistance Publique-Hôpitaux de Paris, Saint Antoine Hospital, Sorbonne Université, Paris, France
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Sujatha Srinivasan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Louise B Thingholm
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Vaibhav Upadhyay
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | | | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Takuji Yamada
- Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mingyu Zhang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Liping Zhao
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Wenjun Bao
- JMP Life Sciences, SAS Institute, Cary, NC, USA
| | - Aedin Culhane
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Joaquin Dopazo
- Clinical Bioinformatics Area, Hospital Virgen del Rocio, Sevilla, Spain
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Matthias Fischer
- Experimental Pediatric Oncology, University Children's Hospital, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | | | | | | | - Tim R Mercer
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Susanna-Assunta Sansone
- Oxford e-Research Centre, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Andreas Scherer
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Shraddha Thakkar
- Office of Computational Science, Office of Translational Sciences, Center for Drug Evaluation and Research, Washington, DC, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Food & Drug Administration, Jefferson, AR, USA
| | - Russ Wolfinger
- Scientific Discovery and Genomics, SAS Institute, Cary, NC, USA
| | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- Department of Experimental Oncology, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Europeo di Oncologia, Milan, Italy
| | | | - Jennifer B Dowd
- Department of Sociology, Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK
| | - Heidi E Jones
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA
| | - Levi Waldron
- CUNY Graduate School of Public Health and Health Policy, Institute for Implementation Science in Public Health, New York, NY, USA.
| |
Collapse
|