1
|
Feng DH, Cui JL. Progress on metabolites of Astragalus medicinal plants and a new factor affecting their formation: Biotransformation of endophytic fungi. Arch Pharm (Weinheim) 2024; 357:e2400249. [PMID: 38838334 DOI: 10.1002/ardp.202400249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
It is generally believed that the main influencing factors of plant metabolism are genetic and environmental factors. However, the transformation and catalysis of metabolic intermediates by endophytic fungi have become a new factor and resource attracting attention in recent years. There are over 2000 precious plant species in the Astragalus genus. In the past decade, at least 303 high-value metabolites have been isolated from the Astragalus medicinal plants, including 124 saponins, 150 flavonoids, two alkaloids, six sterols, and over 20 other types of compounds. These medicinal plants contain abundant endophytic fungi with unique functions, and nearly 600 endophytic fungi with known identity have been detected, but only about 35 strains belonging to 13 genera have been isolated. Among them, at least four strains affiliated to Penicillium roseopurpureum, Alternaria eureka, Neosartorya hiratsukae, and Camarosporium laburnicola have demonstrated the ability to biotransform four saponin compounds from the Astragalus genus, resulting in the production of 66 new compounds, which have significantly enhanced our understanding of the formation of metabolites in plants of the Astragalus genus. They provide a scientific basis for improving the cultivation quality of Astragalus plants through the modification of dominant fungal endophytes or reshaping the endophytic fungal community. Additionally, they open up new avenues for the discovery of specialized, green, efficient, and sustainable biotransformation pathways for complex pharmaceutical intermediates.
Collapse
Affiliation(s)
- Ding-Hui Feng
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, People's Republic of China
| | - Jin-Long Cui
- Institute of Applied Chemistry, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, Shanxi, People's Republic of China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijng, People's Republic of China
| |
Collapse
|
2
|
Abdelhameed RE, Soliman ERS, Gahin H, Metwally RA. Enhancing drought tolerance in Malva parviflora plants through metabolic and genetic modulation using Beauveria bassiana inoculation. BMC PLANT BIOLOGY 2024; 24:662. [PMID: 38987668 PMCID: PMC11238386 DOI: 10.1186/s12870-024-05340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Enhancing crops' drought resilience is necessary to maintain productivity levels. Plants interact synergistically with microorganisms like Beauveria bassiana to improve drought tolerance. Therefore, the current study investigates the effects of biopriming with B. bassiana on drought tolerance in Malva parviflora plants grown under regular irrigation (90% water holding capacity (WHC)), mild (60% WHC), and severe drought stress (30% WHC). RESULTS The results showed that drought stress reduced the growth and physiological attributes of M. parviflora. However, those bioprimed with B. bassiana showed higher drought tolerance and enhanced growth, physiological, and biochemical parameters: drought stress enriched malondialdehyde and H2O2 contents. Conversely, exposure to B. bassiana reduced stress markers and significantly increased proline and ascorbic acid content under severe drought stress; it enhanced gibberellic acid and reduced ethylene. Bioprimed M. parviflora, under drought conditions, improved antioxidant enzymatic activity and the plant's nutritional status. Besides, ten Inter-Simple Sequence Repeat primers detected a 25% genetic variation between treatments. Genomic DNA template stability (GTS) decreased slightly and was more noticeable in response to drought stress; however, for drought-stressed plants, biopriming with B. bassiana retained the GTS. CONCLUSION Under drought conditions, biopriming with B. bassiana enhanced Malva's growth and nutritional value. This could attenuate photosynthetic alterations, up-regulate secondary metabolites, activate the antioxidant system, and maintain genome integrity.
Collapse
Affiliation(s)
- Reda E Abdelhameed
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Elham R S Soliman
- Cytogenetics and Molecular Genetics Unit, Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Hanan Gahin
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Rabab A Metwally
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
3
|
Leng C, Hou M, Xing Y, Chen J. Perspective and challenges of mycorrhizal symbiosis in orchid medicinal plants. CHINESE HERBAL MEDICINES 2024; 16:172-179. [PMID: 38706832 PMCID: PMC11064572 DOI: 10.1016/j.chmed.2024.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
The family Orchidaceae is of the most diverse taxon in the plant kingdom, and most of its members are highly valuable herbal medicines. Orchids have a unique mycorrhizal symbiotic relationship with specific fungi for carbohydrate and nutrient supplies in their whole lifecycle. The large-scale cultivation of the medicinal plant Gastodia elata is a successful example of using mycorrhizal symbiotic technology. In this review, we adopted G. elata and Dendrobium officinale as examples to describe the characteristics of orchid mycorrhiza and mycorrhizal benefits for host plants' growth and health (e.g. biotic and abiotic stress and secondary metabolite accumulation). The challenges in applying mycorrhizal technology to the cultivation of orchid medicinal plants in the future were also discussed. This review aims to serve as a theoretical guide for the cultivation of mycorrhizal technology in medicinal orchid plants.
Collapse
Affiliation(s)
- Chunyan Leng
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengyan Hou
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yongmei Xing
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Juan Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
4
|
Shan J, Peng F, Yu J, Li Q. Identification and Characterization of a Plant Endophytic Fungus Paraphaosphaeria sp. JRF11 and Its Growth-Promoting Effects. J Fungi (Basel) 2024; 10:120. [PMID: 38392792 PMCID: PMC10890554 DOI: 10.3390/jof10020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Endophytic fungi establish mutualistic relationships with host plants and can promote the growth and development of plants. In this study, the endophytic fungus JRF11 was isolated from Carya illinoinensis. Sequence analysis of the internal transcribed spacer (ITS) region and 18S rRNA gene combined with colonial and conidial morphology identified JRF11 as a Paraphaosphaeria strain. Plant-fungus interaction assays revealed that JRF11 showed significant growth-promoting effects on plants. In particular, JRF11 significantly increased the root biomass and soluble sugar content of plants. Furthermore, transcriptome analysis demonstrated that JRF11 treatment reprogrammed a variety of genes involved in plant mitogen-activated protein kinase (MAPK) signaling and starch and sucrose metabolism pathways through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Our research indicates that beneficial endophytic fungi are able to interact with plants and exhibit outstanding plant growth-promoting activities.
Collapse
Affiliation(s)
- Jie Shan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fangren Peng
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Qi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
5
|
Yao H, Shi W, Wang X, Li J, Chen M, Li J, Chen D, Zhou L, Deng Z. The root-associated Fusarium isolated based on fungal community analysis improves phytoremediation efficiency of Ricinus communis L. in multi metal-contaminated soils. CHEMOSPHERE 2023; 324:138377. [PMID: 36905995 DOI: 10.1016/j.chemosphere.2023.138377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Phytoremediation is a widely accepted bioremediation method of treating heavy metal contaminated soils. Nevertheless, the remediation efficiency in multi-metal contaminated soils is still unsatisfactory attributable to susceptibility to different metals. To isolate root-associated fungi for improving phytoremediation efficiency in multi-metal contaminated soils, the fungal flora in root endosphere, rhizoplane, rhizosphere of Ricinus communis L. in heavy metal contaminated soils and non-heavy metal contaminated soils were compared by ITS amplicon sequencing, and then the critical fungal strains were isolated and inoculated into host plants to improve phytoremediation efficiency in Cd, Pb, and Zn-contaminated soils. The fungal ITS amplicon sequencing analysis indicated that the fungal community in root endosphere was more susceptible to heavy metals than those in rhizoplane and rhizosphere soils and Fusarium dominated the endophytic fungal community of R. communis L. roots under heavy metal stress. Three endophytic strains (Fusarium sp. F2, Fusarium sp. F8, and Fusarium sp. F14) isolated from Ricinus communis L. roots showed high resistances to multi-metals and possessed growth-promoting characteristics. Biomass and metal extraction amount of R. communis L. with Fusarium sp. F2, Fusarium sp. F8, and Fusarium sp. F14 inoculation in Cd-, Pb- and Zn-contaminated soils were significantly higher than those without the inoculation. The results suggested that fungal community analysis-guided isolation could be employed to obtain desired root-associated fungi for enhancing phytoremediation of multi-metal contaminated soils.
Collapse
Affiliation(s)
- Huaxiong Yao
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wenguang Shi
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xing Wang
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Junyan Li
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Meiqi Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jianbin Li
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Danting Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lin Zhou
- School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zujun Deng
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; School of Life Sciences and Biopharmaceutics, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
6
|
Shree B, Jayakrishnan U, Bhushan S. Impact of key parameters involved with plant-microbe interaction in context to global climate change. Front Microbiol 2022; 13:1008451. [PMID: 36246210 PMCID: PMC9561941 DOI: 10.3389/fmicb.2022.1008451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities have a critical influence on climate change that directly or indirectly impacts plant and microbial diversity on our planet. Due to climate change, there is an increase in the intensity and frequency of extreme environmental events such as temperature rise, drought, and precipitation. The increase in greenhouse gas emissions such as CO2, CH4, NOx, water vapor, increase in global temperature, and change in rainfall patterns have impacted soil–plant-microbe interactions, which poses a serious threat to food security. Microbes in the soil play an essential role in plants’ resilience to abiotic and biotic stressors. The soil microbial communities are sensitive and responsive to these stressors. Therefore, a systemic approach to climate adaptation will be needed which acknowledges the multidimensional nature of plant-microbe-environment interactions. In the last two scores of years, there has been an enhancement in the understanding of plant’s response to microbes at physiological, biochemical, and molecular levels due to the availability of techniques and tools. This review highlights some of the critical factors influencing plant-microbe interactions under stress. The association and response of microbe and plants as a result of several stresses such as temperature, salinity, metal toxicity, and greenhouse gases are also depicted. New tools to study the molecular complexity of these interactions, such as genomic and sequencing approaches, which provide researchers greater accuracy, reproducibility, and flexibility for exploring plant-microbe–environment interactions under a changing climate, are also discussed in the review, which will be helpful in the development of resistant crops/plants in present and future.
Collapse
Affiliation(s)
- Bharti Shree
- Department of Agricultural Biotechnology, College of Agriculture, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | | | - Shashi Bhushan
- Department of Agriculture and Biosystem Engineering, North Dakota State University, Fargo, ND, United States
- *Correspondence: Shashi Bhushan,
| |
Collapse
|
7
|
Tian J, Jiang W, Si J, Han Z, Li C, Chen D. Developmental Characteristics and Auxin Response of Epiphytic Root in Dendrobium catenatum. FRONTIERS IN PLANT SCIENCE 2022; 13:935540. [PMID: 35812932 PMCID: PMC9260429 DOI: 10.3389/fpls.2022.935540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium catenatum, a traditional precious Chinese herbal medicine, belongs to epiphytic orchids. Its special life mode leads to the specialization of roots, but there is a lack of systematic research. The aerial root in D. catenatum displays diverse unique biological characteristics, and it initially originates from the opposite pole of the shoot meristem within the protocorm. The root development of D. catenatum is not only regulated by internal cues but also adjusts accordingly with the change in growth environments. D. catenatum root is highly tolerant to auxin, which may be closely related to its epiphytic life. Exogenous auxin treatment has dual effects on D. catenatum roots: relatively low concentration promotes root elongation, which is related to the induced expression of cell wall synthesis genes; excessive concentration inhibits the differentiation of velamen and exodermis and promotes the overproliferation of cortical cells, which is related to the significant upregulation of WOX11-WOX5 regeneration pathway genes and cell division regulatory genes. Overexpression of D. catenatum WOX12 (DcWOX12) in Arabidopsis inhibits cell and organ differentiation, but induces cell dedifferentiation and callus production. Therefore, DcWOX12 not only retains the characteristics of ancestors as stem cell regulators, but also obtains stronger cell fate transformation ability than homologous genes of other species. These findings suggest that the aerial root of D. catenatum evolves special structure and developmental characteristics to adapt to epiphytic life, providing insight into ideal root structure breeding of simulated natural cultivation in D. catenatum and a novel target gene for improving the efficiency of monocot plant transformation.
Collapse
|