1
|
Prosswimmer T, Heng A, Daggett V. Mechanistic insights into the role of amyloid-β in innate immunity. Sci Rep 2024; 14:5376. [PMID: 38438446 PMCID: PMC10912764 DOI: 10.1038/s41598-024-55423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Colocalization of microbial pathogens and the β-amyloid peptide (Aβ) in the brain of Alzheimer's disease (AD) patients suggests that microbial infection may play a role in sporadic AD. Aβ exhibits antimicrobial activity against numerous pathogens, supporting a potential role for Aβ in the innate immune response. While mammalian amyloid is associated with disease, many bacteria form amyloid fibrils to fortify the biofilm that protects the cells from the surrounding environment. In the microbial AD hypothesis, Aβ aggregates in response to infection to combat the pathogen. We hypothesize that this occurs through toxic Aβ oligomers that contain α-sheet structure and form prior to fibrillization. De novo designed α-sheet peptides specifically bind to the α-sheet structure present in the oligomers of both bacterial and mammalian amyloidogenic proteins to neutralize toxicity and inhibit aggregation. Here, we measure the effect of E. coli on Aβ, including upregulation, aggregation, and toxicity. Additionally, we determined the effect of Aβ structure on E. coli amyloid fibrils, or curli comprised of the CsgA protein, and biofilm formation. We found that curli formation by E. coli increased Aβ oligomer production, and Aβ oligomers inhibited curli biogenesis and reduced biofilm cell density. Further, curli and biofilm inhibition by Aβ oligomers increased E. coli susceptibility to gentamicin. Toxic oligomers of Aβ and CsgA interact via α-sheet interactions, neutralizing their toxicity. These results suggest that exposure to toxic oligomers formed by microbial pathogens triggers Aβ oligomer upregulation and aggregation to combat infection via selective interactions between α-sheet oligomers to neutralize toxicity of both species with subsequent inhibition of fibrillization.
Collapse
Affiliation(s)
- Tatum Prosswimmer
- Molecular Engineering Program, University of Washington, Seattle, WA, 98195-5610, USA
| | - Anthony Heng
- Department of Neuroscience, University of Washington, Seattle, WA, 98195-5610, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-5610, USA
| | - Valerie Daggett
- Molecular Engineering Program, University of Washington, Seattle, WA, 98195-5610, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-5610, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195-5610, USA.
| |
Collapse
|
2
|
Whitson HE, Banks WA, Diaz MM, Frost B, Kellis M, Lathe R, Schmader KE, Spudich SS, Tanzi R, Garden G. New approaches for understanding the potential role of microbes in Alzheimer's disease. Brain Behav Immun Health 2024; 36:100743. [PMID: 38435720 PMCID: PMC10906156 DOI: 10.1016/j.bbih.2024.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Alzheimer's disease (AD) involves a complex pathological process that evolves over years, and its etiology is understood as a classic example of gene-environment interaction. The notion that exposure to microbial organisms may play some role in AD pathology has been proposed and debated for decades. New evidence from model organisms and -omic studies, as well as epidemiological data from the recent COVID-19 pandemic and widespread use of vaccines, offers new insights into the "germ hypothesis" of AD. To review new evidence and identify key research questions, the Duke/University of North Carolina (Duke/UNC) Alzheimer's Disease Research Center hosted a virtual symposium and workshop: "New Approaches for Understanding the Potential Role of Microbes in Alzheimer's disease." Discussion centered around the antimicrobial protection hypothesis of amyloid accumulation, and other mechanisms by which microbes could influence AD pathology including immune cell activation, changes in blood-brain barrier, or direct neurotoxicity. This summary of proceedings reviews the content presented in the symposium and provides a summary of major topics and key questions discussed in the workshop.
Collapse
Affiliation(s)
- Heather E. Whitson
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Busse Bldg Rm 3502, Durham, NC, 27710, USA
- Durham VA Medical Center, Geriatric Research Education and Clinical Center, 508 Fulton Street, Durham, NC, 27705, USA
| | - William A. Banks
- Veterans Affairs Puget Sound Health Care System, 1660 S Columbian Way, Seattle, WA, 98108, USA
| | - Monica M. Diaz
- Department of Neurology, University of North Carolina at Chapel Hill, 170 Manning Dr, CB 7025, Chapel Hill, NC, 27599, USA
| | - Bess Frost
- Barshop Institute for Longevity & Aging Studies, 4939 Charles Katz Rm 1041, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St., Cambridge, MA, 02139, USA
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh BioQuarter, Little France, Edinburgh, EH16 4SB, UK
| | - Kenneth E. Schmader
- Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Busse Bldg Rm 3502, Durham, NC, 27710, USA
- Durham VA Medical Center, Geriatric Research Education and Clinical Center, 508 Fulton Street, Durham, NC, 27705, USA
| | - Serena S. Spudich
- Department of Neurology, Yale University School of Medicine, 300 George Street, Room 8300, New Haven, CT, 06510, USA
| | - Rudolph Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, 114 16th Street, Charlestown, MA, 02129, USA
| | - Gwenn Garden
- University of North Carolina - Dept of Neurology, 170 Manning Drive, Campus Box 7025, Chapel Hill, NC, 27599-7025, USA
| |
Collapse
|
3
|
Greenblatt CL, Lathe R. Vaccines and Dementia: Part II. Efficacy of BCG and Other Vaccines Against Dementia. J Alzheimers Dis 2024; 98:361-372. [PMID: 38393913 DOI: 10.3233/jad-231323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
There is growing awareness that infections may contribute to the development of senile dementia including Alzheimer's disease (AD), and that immunopotentiation is therefore a legitimate target in the management of diseases of the elderly including AD. In Part I of this work, we provided a historical and molecular background to how vaccines, adjuvants, and their component molecules can elicit broad-spectrum protective effects against diverse agents, culminating in the development of the tuberculosis vaccine strain Bacille Calmette-Guérin (BCG) as a treatment for some types of cancer as well as a prophylactic against infections of the elderly such as pneumonia. In Part II, we critically review studies that BCG and other vaccines may offer a measure of protection against dementia development. Five studies to date have determined that intravesicular BCG administration, the standard of care for bladder cancer, is followed by a mean ∼45% reduction in subsequent AD development in these patients. Although this could potentially be ascribed to confounding factors, the finding that other routine vaccines such as against shingles (herpes zoster virus) and influenza (influenza A virus), among others, also offer a degree of protection against AD (mean 29% over multiple studies) underlines the plausibility that the protective effects are real. We highlight clinical trials that are planned or underway and discuss whether BCG could be replaced by key components of the mycobacterial cell wall such as muramyl dipeptide. We conclude that BCG and similar agents merit far wider consideration as prophylactic agents against dementia.
Collapse
Affiliation(s)
- Charles L Greenblatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK
| |
Collapse
|
4
|
Lathe R, Schultek NM, Balin BJ, Ehrlich GD, Auber LA, Perry G, Breitschwerdt EB, Corry DB, Doty RL, Rissman RA, Nara PL, Itzhaki R, Eimer WA, Tanzi RE. Establishment of a consensus protocol to explore the brain pathobiome in patients with mild cognitive impairment and Alzheimer's disease: Research outline and call for collaboration. Alzheimers Dement 2023; 19:5209-5231. [PMID: 37283269 PMCID: PMC10918877 DOI: 10.1002/alz.13076] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 06/08/2023]
Abstract
Microbial infections of the brain can lead to dementia, and for many decades microbial infections have been implicated in Alzheimer's disease (AD) pathology. However, a causal role for infection in AD remains contentious, and the lack of standardized detection methodologies has led to inconsistent detection/identification of microbes in AD brains. There is a need for a consensus methodology; the Alzheimer's Pathobiome Initiative aims to perform comparative molecular analyses of microbes in post mortem brains versus cerebrospinal fluid, blood, olfactory neuroepithelium, oral/nasopharyngeal tissue, bronchoalveolar, urinary, and gut/stool samples. Diverse extraction methodologies, polymerase chain reaction and sequencing techniques, and bioinformatic tools will be evaluated, in addition to direct microbial culture and metabolomic techniques. The goal is to provide a roadmap for detecting infectious agents in patients with mild cognitive impairment or AD. Positive findings would then prompt tailoring of antimicrobial treatments that might attenuate or remit mounting clinical deficits in a subset of patients.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Edinburgh, UK
| | | | - Brian J. Balin
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Edward B. Breitschwerdt
- Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - David B. Corry
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Richard L. Doty
- Smell and Taste Center, Department of Otorhinolaryngology: Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert A. Rissman
- Department of Neurosciences, University of California, San Diego and VA San Diego Healthcare System, La Jolla, CA
| | | | - Ruth Itzhaki
- Institute of Population Ageing, University of Oxford, Oxford, UK
| | - William A. Eimer
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- McCance Cancer Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Charlestown, MA 02129, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- McCance Cancer Center for Brain Health, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Intracell Research Group Consortium Collaborators
- David L. Hahn (Intracell Research Group, USA), Benedict C. Albensi (Nova Southeastern, USA), James St John (Griffith University, Australia), Jenny Ekberg (Griffith University, Australia), Mark L. Nelson (Intracell Research Group, USA), Gerald McLaughlin (National Institutes of Health, USA), Christine Hammond (Philadelphia College of Osteopathic Medicine, USA), Judith Whittum-Hudson (Wayne State University, USA), Alan P. Hudson (Wayne State University, USA), Guillaume Sacco (Université Cote d’Azur, Centre Hospitalier Universitaire de Nice, CoBTek, France), Alexandra Konig (Université Cote d’Azur and CoBTek, France), Bruno Pietro Imbimbo (Chiesi Farmaceutici, Parma, Italy), Nicklas Linz (Ki Elements Ltd, Saarbrücken, Germany), Nicole Danielle Bell (Author, 'What Lurks in the Woods'), Shima T. Moein (Smell and Taste Center, Department of Otorhinolaryngology, Perelman School of Medicine, University of Philadelphia, USA), Jürgen G. Haas (Infection Medicine, University of Edinburgh Medical School, UK)
| |
Collapse
|
5
|
Moné Y, Earl JP, Król JE, Ahmed A, Sen B, Ehrlich GD, Lapides JR. Evidence supportive of a bacterial component in the etiology for Alzheimer's disease and for a temporal-spatial development of a pathogenic microbiome in the brain. Front Cell Infect Microbiol 2023; 13:1123228. [PMID: 37780846 PMCID: PMC10534976 DOI: 10.3389/fcimb.2023.1123228] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 07/05/2023] [Indexed: 10/03/2023] Open
Abstract
Background Over the last few decades, a growing body of evidence has suggested a role for various infectious agents in Alzheimer's disease (AD) pathogenesis. Despite diverse pathogens (virus, bacteria, fungi) being detected in AD subjects' brains, research has focused on individual pathogens and only a few studies investigated the hypothesis of a bacterial brain microbiome. We profiled the bacterial communities present in non-demented controls and AD subjects' brains. Results We obtained postmortem samples from the brains of 32 individual subjects, comprising 16 AD and 16 control age-matched subjects with a total of 130 samples from the frontal and temporal lobes and the entorhinal cortex. We used full-length 16S rRNA gene amplification with Pacific Biosciences sequencing technology to identify bacteria. We detected bacteria in the brains of both cohorts with the principal bacteria comprising Cutibacterium acnes (formerly Propionibacterium acnes) and two species each of Acinetobacter and Comamonas genera. We used a hierarchical Bayesian method to detect differences in relative abundance among AD and control groups. Because of large abundance variances, we also employed a new analysis approach based on the Latent Dirichlet Allocation algorithm, used in computational linguistics. This allowed us to identify five sample classes, each revealing a different microbiota. Assuming that samples represented infections that began at different times, we ordered these classes in time, finding that the last class exclusively explained the existence or non-existence of AD. Conclusions The AD-related pathogenicity of the brain microbiome seems to be based on a complex polymicrobial dynamic. The time ordering revealed a rise and fall of the abundance of C. acnes with pathogenicity occurring for an off-peak abundance level in association with at least one other bacterium from a set of genera that included Methylobacterium, Bacillus, Caulobacter, Delftia, and Variovorax. C. acnes may also be involved with outcompeting the Comamonas species, which were strongly associated with non-demented brain microbiota, whose early destruction could be the first stage of disease. Our results are also consistent with a leaky blood-brain barrier or lymphatic network that allows bacteria, viruses, fungi, or other pathogens to enter the brain.
Collapse
Affiliation(s)
- Yves Moné
- Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Joshua P Earl
- Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jarosław E Król
- Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Azad Ahmed
- Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Bhaswati Sen
- Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Garth D Ehrlich
- Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jeffrey R Lapides
- Department of Microbiology and Immunology, Centers for Genomic Sciences and Advanced Microbial Processing, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Lathe R, St Clair D. Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biol Rev Camb Philos Soc 2023; 98:1424-1458. [PMID: 37068798 DOI: 10.1111/brv.12959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/19/2023]
Abstract
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master 'clock of age' (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial - specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection Medicine, Chancellor's Building, University of Edinburgh Medical School, Little France, Edinburgh, EH16 4SB, UK
| | - David St Clair
- Institute of Medical Sciences, School of Medicine, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
7
|
Morrison AG, Sarkar S, Umar S, Lee STM, Thomas SM. The Contribution of the Human Oral Microbiome to Oral Disease: A Review. Microorganisms 2023; 11:318. [PMID: 36838283 PMCID: PMC9962706 DOI: 10.3390/microorganisms11020318] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
The oral microbiome is an emerging field that has been a topic of discussion since the development of next generation sequencing and the implementation of the human microbiome project. This article reviews the current literature surrounding the oral microbiome, briefly highlighting most recent methods of microbiome characterization including cutting edge omics, databases for the microbiome, and areas with current gaps in knowledge. This article also describes reports on microorganisms contained in the oral microbiome which include viruses, archaea, fungi, and bacteria, and provides an in-depth analysis of their significant roles in tissue homeostasis. Finally, we detail key bacteria involved in oral disease, including oral cancer, and the current research surrounding their role in stimulation of inflammatory cytokines, the role of gingival crevicular fluid in periodontal disease, the creation of a network of interactions between microorganisms, the influence of the planktonic microbiome and cospecies biofilms, and the implications of antibiotic resistance. This paper provides a comprehensive literature analysis while also identifying gaps in knowledge to enable future studies to be conducted.
Collapse
Affiliation(s)
- Austin Gregory Morrison
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Soumyadev Sarkar
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Shahid Umar
- Department of General Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sonny T. M. Lee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- 1717 Claflin Road, 136 Ackert Hall, Manhattan, KS 66506, USA
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Departments of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Departments of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- 3901 Rainbow Blvd., 4031 Wahl Hall East, MS 3040, Kansas City, KS 66160, USA
| |
Collapse
|