1
|
He D, Gao C, Zhao S, Chen H, Li P, Yang X, Li D, Zhao T, Jiang H, Liu C. Antibacterial, Herbicidal, and Plant Growth-Promoting Properties of Streptomyces sp. STD57 from the Rhizosphere of Adenophora stricta. Microorganisms 2024; 12:2245. [PMID: 39597634 PMCID: PMC11596161 DOI: 10.3390/microorganisms12112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Bacterial wilt triggered by the soil-borne pathogenic bacterium Ralstonia solanacearum is one of the most serious diseases in tomato plants, leading to huge economic losses worldwide. Biological control is considered an environmentally friendly and sustainable way to manage soil-borne diseases. In this study, Streptomyces sp. STD57 isolated from the rhizosphere of Adenophora stricta showed strong antibacterial activity against R. solanacearum. Pot experiments showed that strain STD57 exhibited a significant biocontrol effect (81.7%) on tomato bacterial wilt in the greenhouse environment. Furthermore, strain STD57 could inhibit the growth of weeds (Amaranthus retroflexus, Portulaca oleracea, and Echinochloa crusgalli) but promote the growth of crops (wheat, rice, and tomato). The plant growth-promoting substance was identified as indoleacetic acid (IAA) by high-pressure liquid chromatography-mass spectrometry and genome analysis. Coarse separation of the fermented extracts revealed that the antibacterial and herbicidal substances were mainly in the fermentation supernatant and belonged to different products. These findings suggested that strain STD57 may be a potential biocontrol and bioherbicide agent useful in agriculture.
Collapse
Affiliation(s)
- Dan He
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Congting Gao
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.G.); (H.C.)
| | - Shen Zhao
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Hongmin Chen
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.G.); (H.C.)
| | - Peng Li
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Xishan Yang
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Deping Li
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Tingting Zhao
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Hong Jiang
- Heilongjiang Academy of Land Reclamation Sciences, Harbin 150030, China; (D.H.); (S.Z.); (X.Y.); (D.L.); (T.Z.); (H.J.)
| | - Chongxi Liu
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China; (C.G.); (H.C.)
| |
Collapse
|
2
|
Boukelloul I, Aouar L, Cherb N, Carvalho MF, Oliveira RS, Akkal S, Nieto G, Zellagui A, Necib Y. Actinobacteria Isolated from Soils of Arid Saharan Regions Display Simultaneous Antifungal and Plant Growth Promoting Activities. Curr Microbiol 2024; 81:327. [PMID: 39181975 DOI: 10.1007/s00284-024-03851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Application of actinobacteria has grown exponentially in recent years in sustainable agricultural. Most actinobacterial inoculants are tailored to function as either biocontrol agents or biofertilizers. Hence, there is the need to obtain and include multifunctional actinobacterial strains in inocula formulations. In this research, 90 actinobacterial isolates were isolated from rhizospheric and non-rhizospheric soils of Algerian Saharan arid regions and were screened for their activity against the phytopathogenic fungi Alternaria alternata, Aspergillus flavus, Botrytis cinerea, Fusarium oxysporum, and Fusarium solani. Five isolates that inhibited at least three of these fungi were characterized according to morphological, environmental and biochemical parameters, and were preliminarily identified as Streptomyces enissocaesilis A1, Streptomyces olivoverticillatus A5, Streptomyces erumpens A6, Streptomyces cavourensis A8, and Streptomyces microflavus A20. These strains were then screened for plant growth promoting activities. All strains produced siderophores, hydrocyanic acid, ammonia and the auxin indole-3-acetic acid (IAA) and were capable of solubilizing phosphate. The highest producer of siderophores (69.19 percent siderophore units), ammonia (70.56 μg mL-1) and IAA (148.76 μg mL-1) was strain A8, A20, and A5, respectively. These findings showed that the five actinobacteria are multipurpose strains with simultaneous antifungal and plant growth promoting activities and have the potential to be used for sustainable agricultural practices, particularly in arid regions.
Collapse
Affiliation(s)
- Inas Boukelloul
- Department of Natural Sciences and Life, University of Oum El Bouaghi, 04000, Oum El Bouaghi, Algeria.
- Department of Natural Sciences and Life, Laboratory of Biomolecules and Plant Breeding, University of Oum El Bouaghi, 04000, Oum El Bouaghi, Algeria.
| | - Lamia Aouar
- Department of Natural Sciences and Life, Laboratory of Biomolecules and Plant Breeding, University of Oum El Bouaghi, 04000, Oum El Bouaghi, Algeria
| | - Nora Cherb
- Biotechnology Research Center-CRBT, Constantine-Algeria, 25000, Constantine, Algeria
| | - Maria F Carvalho
- Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros Do Porto de Leixões, University of Porto, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Rui S Oliveira
- Centre for Functional Ecology, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Salah Akkal
- Unit for the Valorization of Natural Resources, Faculty of Exact Sciences, Department of Chemistry, Bioactive Molecules and Physico-Chemical and Biological Analyzes, Mentouri University of Constantine 1, Algeria Route de Ain El Bey, 25000, Constantine, Algeria
| | - Gema Nieto
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", 30071, Murcia, Espinardo, Spain
| | - Amar Zellagui
- Department of Natural Sciences and Life, Laboratory of Biomolecules and Plant Breeding, University of Oum El Bouaghi, 04000, Oum El Bouaghi, Algeria
| | - Youcef Necib
- Department of Biochemistry and Cellular and Molecular Biology, Laboratory of Microbiological Engineering and Applications, Mentouri University of Constantine 1, Algeria Route de Ain El Bey, 25000, Constantine, Algeria
| |
Collapse
|
3
|
Veilumuthu P, Nagarajan T, Magar S, Sundaresan S, Moses LJ, Theodore T, Christopher JG. Genomic insights into an endophytic Streptomyces sp. VITGV156 for antimicrobial compounds. Front Microbiol 2024; 15:1407289. [PMID: 38887720 PMCID: PMC11180775 DOI: 10.3389/fmicb.2024.1407289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
Endophytic Streptomyces sp. are recognized as a potential resource for valuable natural products but are less explored. This study focused on exploring endophytic Streptomyces species residing within tomato plants (Solanum lycopersicum) harboring genes for the production of a novel class of antibiotics. Our research involved the isolation and characterization of Streptomyces sp. VITGV156, a newly identified endophytic Streptomyces species that produces antimicrobial products. VITGV156 harbors a genome of 8.18 mb and codes 6,512 proteins, of which 4,993 are of known function (76.67%) and 1,519 are of unknown function (23.32%). By employing genomic analysis, we elucidate the genome landscape of this microbial strain and shed light on various BGCs responsible for producing polyketide antimicrobial compounds, with particular emphasis on the antibiotic kendomycin. We extended our study by evaluating the antibacterial properties of kendomycin. Overall, this study provides valuable insights into the genome of endophytic Streptomyces species, particularly Streptomyces sp. VITGV156, which are prolific producers of antimicrobial agents. These findings hold promise for further research and exploitation of pharmaceutical compounds, offering opportunities for the development of novel antimicrobial drugs.
Collapse
Affiliation(s)
- Pattapulavar Veilumuthu
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - T. Nagarajan
- Department of Biological Sciences, SRM University-AP, Amaravathi, India
| | - Sharayu Magar
- Department of Biological Sciences, SRM University-AP, Amaravathi, India
| | - Sasikumar Sundaresan
- Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Lenus Joy Moses
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Thomas Theodore
- School of Chemical Engineering, Vellore Institute of Technology, Vellore, India
| | - John Godwin Christopher
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
4
|
Abdelghany WR, Yassin AS, Abu-Ellail FFB, Al-Khalaf AA, Omara RI, Hozzein WN. Combatting Sugar Beet Root Rot: Streptomyces Strains' Efficacy against Fusarium oxysporum. PLANTS (BASEL, SWITZERLAND) 2024; 13:311. [PMID: 38276766 PMCID: PMC10820957 DOI: 10.3390/plants13020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024]
Abstract
Sugar beet root rot disease triggered by Fusarium oxysporum f. sp. radicis-betae is a destructive disease and dramatically affects the production and quality of the sugar beet industry. Employing beneficial microorganisms as a biocontrol strategy represents an eco-friendly and sustainable approach to combat various plant diseases. The distinct aspect of this study was to assess the antifungal and plant growth-promoting capabilities of recently isolated Streptomyces to treat sugar beet plants against infection with the phytopathogen F. oxysporum. Thirty-seven actinobacterial isolates were recovered from the rhizosphere of healthy sugar beet plants and screened for their potential to antagonize F. oxysporum in vitro. Two isolates SB3-15 and SB2-23 that displayed higher antagonistic effects were morphologically and molecularly identified as Streptomyces spp. Seed treatment with the fermentation broth of the selected Streptomyces strains SB3-15 and SB2-23 significantly reduced disease severity compared to the infected control in a greenhouse experiment. Streptomyces SB2-23 exhibited the highest protective activity with high efficacy ranging from 91.06 to 94.77% compared to chemical fungicide (86.44 to 92.36%). Furthermore, strain SB2-23 significantly increased plant weight, root weight, root length, and diameter. Likewise, it improves sucrose percentage and juice purity. As a consequence, the strain SB2-23's intriguing biocontrol capability and sugar beet root growth stimulation present promising prospects for its utilization in both plant protection and enhancement strategies.
Collapse
Affiliation(s)
- Walaa R. Abdelghany
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Abeer S. Yassin
- Sugar Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | | | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Reda I. Omara
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
5
|
Das R, Bharadwaj P, Thakur D. Insights into the functional role of Actinomycetia in promoting plant growth and biocontrol in tea (Camellia sinensis) plants. Arch Microbiol 2024; 206:65. [PMID: 38227026 DOI: 10.1007/s00203-023-03789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Tea, a highly aromatic and globally consumed beverage, is derived from the aqueous infusion of dried leaves of Camellia sinensis (L.) O. Kuntze. Northeast India, encompassing an expansive geographical area between 24° and 27° N latitude and 88° and 95° E longitude, is a significant tea-producing region covering approximately 312,210 hectares. Despite its prominence, this region faces persistent challenges owing to a conducive climate that harbors the prevalence of pests, fungal pathogens, and weeds, necessitating agrochemicals. Helopeltis theivora, Oligonychus coffeae, and Biston suppressaria are prominent among the tea pests in this region. Concurrently, tea plants encounter fungal infections such as blister blight, brown root rot, and Fusarium dieback. The growing demand for safer tea production and the need to reduce pesticide and fertilizer usage has spurred interest in exploring biological control methods. This review focuses on Actinomycetia, which potentially safeguards plants from diseases and pest infestations by producing many bioactive substances. Actinomycetia, which resides in the tea rhizosphere and internal plant tissues, can produce antagonistic secondary metabolites and extracellular enzymes while promoting plant growth. Harnessing the biocontrol potential of Actinomycetia offers a promising solution to enhance tea production, while minimizing reliance on harmful agrochemicals, contributing to a more environmentally conscious and economically viable tea cultivation system.
Collapse
Affiliation(s)
- Rictika Das
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, 781001, India
| | - Pranami Bharadwaj
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, 781035, India.
| |
Collapse
|
6
|
Fu L, Wang YF, Long PL, Xiao Y, Jiang MG, Gao J. Streptomyces koelreuteriae sp. nov., isolated from the rhizosphere soil of Koelreuteria paniculata and healthy leaves of Xanthium sibiricum. Int J Syst Evol Microbiol 2023; 73. [PMID: 38054463 DOI: 10.1099/ijsem.0.006196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
Two actinomycete strains, designated MG62T and CRLD-Y-1, were isolated from rhizosphere soil of Koelreuteria paniculata and healthy leaves of Xanthium sibiricum, respectively, in Hunan province, PR China. They could produce abundant aerial mycelia that generated rod-shaped spores with spiny surfaces. Morphological features of the two strains are typical of the genus Streptomyces. Strains MG62T and CRLD-Y-1 exhibited 99.93 % 16S rRNA gene sequence similarity. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between them were 99.99 and 100 %, respectively, suggesting that they belonged to the same species. 16S rRNA gene sequences analysis revealed that the two strains belonged to the genus Streptomyces and showed highest similarities to Streptomyces violarus NBRC 13104T (99.07-99.29 %) and Streptomyces arenae ISP 5293T (99.21-99.35 %). Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains MG62T and CRLD-Y-1 were closely related to S. violarus NBRC 13104T and S. arenae ISP 5293T. However, the ANI, dDDH and multilocus sequence analysis evolutionary distance values between the two strains and their relatives provide a robust basis upon which to verify strains MG62T and CRLD-Y-1 as representing a novel species. Moreover, a comprehensive comparison of phenotypic and chemotaxonomic characteristics further confirmed that the two strains were distinct from their relatives. Based on all these data above, strains MG62T and CRLD-Y-1 should represent a novel Streptomyces species, for which the name Streptomyces koelreuteriae sp. nov. is proposed. The type strain is MG62T (=JCM 34747T=MCCC 1K06175T).
Collapse
Affiliation(s)
- Li Fu
- School of Life and Health Sciences, Hunan University of Science and technology, Xiangtan 411201, PR China
| | - Yin-Feng Wang
- School of Life and Health Sciences, Hunan University of Science and technology, Xiangtan 411201, PR China
| | - Pei-Lan Long
- School of Life and Health Sciences, Hunan University of Science and technology, Xiangtan 411201, PR China
| | - Yan Xiao
- School of Life and Health Sciences, Hunan University of Science and technology, Xiangtan 411201, PR China
| | - Ming-Guo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, PR China
| | - Jian Gao
- School of Life and Health Sciences, Hunan University of Science and technology, Xiangtan 411201, PR China
- Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, PR China
| |
Collapse
|
7
|
Quach NT, Vu THN, Nguyen TTA, Le PC, Do HG, Nguyen TD, Thao PTH, Nguyen TTL, Chu HH, Phi QT. Metabolic and genomic analysis deciphering biocontrol potential of endophytic Streptomyces albus RC2 against crop pathogenic fungi. Braz J Microbiol 2023; 54:2617-2626. [PMID: 37792269 PMCID: PMC10689689 DOI: 10.1007/s42770-023-01134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
Plant diseases caused by phytopathogenic fungi are one of the leading factors affecting crop loss. In the present study, sixty-one Streptomyces strains were screened for their antifungal activity against relevant wide range fungal pathogens prominent in Vietnam, namely Lasiodiplodia theobromae, Fusarium fujikuroi, and Scopulariopsis gossypii. Endophytic strain RC2 was the most effective strain in the mycelial inhibition of the tested fungi. Based on phenotypic characteristics, 16S rDNA gene analysis, and genomic analysis, strain RC2 belonged to Streptomyces albus. An ethyl acetate extract of S. albus RC2 led to the strong growth inhibition of S. gossypii Co1 and F. fujikuroi L3, but not L. theobromae N13. The crude extract also suppressed the spore germination of S. gossypii Co1 and F. fujikuroi L3 to 92.4 ± 3.2% and 87.4% ± 1.9%, respectively. In addition, the RC2 extract displayed potent and broad-spectrum antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, and the phytopathogenic bacteria Ralstonia solanacearum and Xanthomonas oryzae. The genome of strain RC2 was sequenced and revealed the presence of 15 biosynthetic gene clusters (BGCs) with similarities ≥ 45% to reference BGCs available in the antiSMASH database. The UPLC-HRMS analysis led to the identification of 8 other secondary metabolites, which have not been reported in S. albus. The present study indicated that RC2 could be a potent biocontrol agent against phytopathogenic fungi. Further attention should be paid to antifungal metabolites without functional annotation, development of product prototypes, and greenhouse experiments to demonstrate effective control of the plant diseases.
Collapse
Affiliation(s)
- Ngoc Tung Quach
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Hanh Nguyen Vu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Thu An Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Phuong Chi Le
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Hoang Giang Do
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Tien Dat Nguyen
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Phan Thi Hong Thao
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Thi Thanh Loi Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Hoang Ha Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam
| | - Quyet-Tien Phi
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Vietnam.
| |
Collapse
|
8
|
Kitwetch B, Rangseekaew P, Chromkaew Y, Pathom-Aree W, Srinuanpan S. Employing a Plant Probiotic Actinomycete for Growth Promotion of Lettuce ( Lactuca sativa L. var. longifolia) Cultivated in a Hydroponic System under Nutrient Limitation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3793. [PMID: 38005691 PMCID: PMC10675278 DOI: 10.3390/plants12223793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/28/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023]
Abstract
The consumption of lettuce is associated with an increased risk of ingesting nitrate, a naturally occurring and potentially harmful compound that can have adverse effects on human health. Hydroponic cultivation systems serve as effective tools for regulating nutrient solutions and nitrogen availability, which are essential for controlling nitrate levels. However, the techniques for reducing nutrient levels need to be appropriately calibrated based on lettuce growth responses and their interactions with the environment and growing conditions. Previous studies have demonstrated that plant probiotic actinomycetes can alleviate nutritional stress in various crops. However, there is a noticeable gap in research concerning the effects of actinomycetes on hydroponically grown lettuce, particularly under nutrient-limiting conditions. This study aimed to evaluate the effectiveness of the actinomycete Streptomyces thermocarboxydus S3 in enhancing lettuce growth in a nutrient-restricted hydroponic system. The results indicated that the detrimental effects of nutrient stress on lettuce were mitigated by the inoculation of lettuce with S. thermocarboxydus S3. This mitigation was evident in various growth parameters, including leaf count, shoot length, and the fresh and dry weights of both shoots and roots. In the presence of nutritional stress, S. thermocarboxydus S3 likely mitigated the negative effects on lettuce by reducing hydrogen peroxide levels, presumably through the synthesis of H2O2-scavenging enzymes. Furthermore, S. thermocarboxydus S3 successfully survived and colonized lettuce roots. Therefore, the inoculation of lettuce with S. thermocarboxydus S3 offers significant advantages for promoting lettuce growth in nutrient-limited hydroponic systems.
Collapse
Affiliation(s)
- Benyapa Kitwetch
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pharada Rangseekaew
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yupa Chromkaew
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Biorefinery and Bioprocess Engineering Research Cluster, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Devi S, Manhas RK. Induction of systemic resistance in Solanum lycopersicum and Capsicum annum seedlings against Fusarium wilt by Streptomyces bioformulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109438-109452. [PMID: 37775628 DOI: 10.1007/s11356-023-29973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Plant diseases induced by various phytopathogens pose a significant threat to contemporary agricultural systems around the world. In modern agriculture, the use of pesticides is still a valuable and effective method to control plant diseases. However, agrochemicals are becoming less popular because of the accretion of toxic compounds perilous and potentially hazardous to humans and the environment. Taking into consideration these aspects, the present study was conducted to explore the biocontrol potential of an endophytic Streptomyces sp. SP5 bioformulations against Fusarium wilt. Three bioformulations were prepared using cell biomass and different carriers, i.e., B1 (talc-kaolin), B2 (MgSO4/glycerol/Na-alginate/talc/Ca-lignosulfonate), and B3 (calcium carbonate/CMC/talc). Apart from antagonistic action against Fusarium wilt, the influence of bioformulations on plant growth and systemic resistance was investigated by analyzing morphological parameters (root length, shoot length, root weight, shoot weight), biochemical parameters (photosynthetic pigments, non-enzymatic antioxidants), and induction of antioxidative enzymes, e.g., catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and superoxide dismutase (SOD), in S. lycopersicum and C. annum seedlings. The results revealed that Streptomyces bioformulations effectively controlled Fusarium wilt in S. lycopersicum and C. annum (82.6-83.4% and 81.8-100%, respectively). Besides reducing disease prevalence, bioformulations significantly increased all the morphological parameters and increased the activity of antioxidative enzymes, i.e., CAT, APX, GPX, and SOD, in plants. The current findings display that bioformulations can be utilized as environment-friendly biocontrol agents against Fusarium wilt and also as plant growth promoters.
Collapse
Affiliation(s)
- Sapna Devi
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rajesh Kumari Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
10
|
Devi S, Sharma M, Manhas RK. Purification and biological analysis of antimicrobial compound produced by an endophytic Streptomyces sp. Sci Rep 2023; 13:15248. [PMID: 37709816 PMCID: PMC10502074 DOI: 10.1038/s41598-023-41296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
Fungal phytopathogens and drug-resistant bacteria are two significant challenges in agriculture and public health, respectively. As a result, new sources of antimicrobial compounds are urgently needed. Taking into consideration these aspects, the present study was carried out to explore the antimicrobial activity of Streptomyces sp. SP5 against drug-resistant bacteria, especially methicillin resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterococcus and fungal phytopathogens. MRSA and VRE are both types of antibiotic-resistant bacteria that pose significant challenges to public health. In vitro analysis of the metabolites of Streptomyces sp. SP5 exhibited broad-spectrum antimicrobial activity against drug-resistant bacteria and phytopathogenic fungi. Further chemical investigation of the diethyl ether extract led to the isolation and purification of an antimicrobial compound. The structure of the purified compound was elucidated by performing detailed spectroscopic analysis including MS, IR, and NMR. The compound was identified as plicacetin. Plicacetin is a nucleoside antibiotic that has been reported for antibacterial activity against Gram-positive bacterium Mycobacterium tuberculosis. According to our knowledge, the present study is the first to demonstrate the antimicrobial properties of plicacetin against Fusarium oxysporum, Alternaria brassicicola, Fusarium solani, VRE and Bacillus subtilis. The outcome of the current study endorses that compound produced by Streptomyces sp. SP5 can be used as an antimicrobial agent against fungal phytopathogens and drug-resistant bacteria.
Collapse
Affiliation(s)
- Sapna Devi
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Manish Sharma
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rajesh Kumari Manhas
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|