1
|
Pattanayak B, Lameirinhas A, Torres-Ruiz S, Burgués O, Rovira A, Martínez MT, Tapia M, Zazo S, Albanell J, Rojo F, Bermejo B, Eroles P. Role of SALL4 in HER2+ Breast Cancer Progression: Regulating PI3K/AKT Pathway. Int J Mol Sci 2022; 23:13292. [PMID: 36362083 PMCID: PMC9655635 DOI: 10.3390/ijms232113292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 08/30/2023] Open
Abstract
Treatment for the HER2+ breast cancer subtype is still unsatisfactory, despite breakthroughs in research. The discovery of various new molecular mechanisms of transcription factors may help to make treatment regimens more effective. The transcription factor SALL4 has been related to aggressiveness and resistance therapy in cancer. Its molecular mechanisms and involvement in various signaling pathways are unknown in the HER2+ breast cancer subtype. In this study, we have evaluated the implication of SALL4 in the HER2+ subtype through its expression in patients' samples and gain and loss of function in HER2+ cell lines. We found higher SALL4 expression in breast cancer tissues compared to healthy tissue. Interestingly, high SALL4 expression was associated with disease relapse and poor patient survival. In HER2+ cell lines, transient overexpression of SALL4 modulates PI3K/AKT signaling through regulating PTEN expression and BCL2, which increases cell survival and proliferation while reducing the efficacy of trastuzumab. SALL4 has also been observed to regulate the epithelial-mesenchymal transition and stemness features. SALL4 overexpression significantly reduced the epithelial markers E-cadherin, while it increased the mesenchymal markers β-catenin, vimentin and fibronectin. Furthermore, it has been also observed an increased expression of MYC, an essential transcription factor for regulating epithelial-mesenchymal transition and/or cancer stem cells. Our study demonstrates, for the first time, the importance of SALL4 in the HER2+ subtype and partial regulation of trastuzumab sensitivity. It provides a viable molecular mechanism-driven therapeutic strategy for an important subset of HER2-overexpressing patients whose malignancies are mediated by SALL4 expression.
Collapse
Affiliation(s)
| | - Ana Lameirinhas
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
| | | | - Octavio Burgués
- Department of Pathology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
| | - Ana Rovira
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - María Teresa Martínez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Marta Tapia
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Sandra Zazo
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Pathology, Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Joan Albanell
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
- Department of Medical Oncology, Hospital del Mar, 08003 Barcelona, Spain
| | - Federico Rojo
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Pathology, Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Begoña Bermejo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), 28029 Madrid, Spain
- Department of Physiology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Biotechnology, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| |
Collapse
|
2
|
Elsayed GH, Fahim AM, Khodair AI. Synthesis, anti-cancer activity, gene expression and docking stimulation of 2-thioxoimidazolidin-4-one derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Moein S, Tenen DG, Amabile G, Chai L. SALL4: An Intriguing Therapeutic Target in Cancer Treatment. Cells 2022; 11:cells11162601. [PMID: 36010677 PMCID: PMC9406946 DOI: 10.3390/cells11162601] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Spalt-Like Transcription Factor 4 (SALL4) is a critical factor for self-renewal ability and pluripotency of stem cells. On the other hand, various reports show tight relation of SALL4 to cancer occurrence and metastasis. SALL4 exerts its effects not only by inducing gene expression but also repressing a large cluster of genes through interaction with various epigenetic modifiers. Due to high expression of SALL4 in cancer cells and its silence in almost all adult tissues, it is an ideal target for cancer therapy. However, targeting SALL4 meets various challenges. SALL4 is a transcription factor and designing appropriate drug to inhibit this intra-nucleus component is challenging. On the other hand, due to lack of our knowledge on structure of the protein and the suitable active sites, it becomes more difficult to reach the appropriate drugs against SALL4. In this review, we have focused on approaches applied yet to target this oncogene and discuss the potential of degrader systems as new therapeutics to target oncogenes.
Collapse
Affiliation(s)
- Shiva Moein
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Daniel G. Tenen
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
- Harvard Stem Cells Institute, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| | - Giovanni Amabile
- Believer Pharmaceuticals, Inc., Wilmington, DE 19801, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| | - Li Chai
- Harvard Stem Cells Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| |
Collapse
|
4
|
Forghanifard MM, Salehi S. Co-overexpression of self-renewal markers SALL4 and HIWI is correlated with depth of tumor invasion and metastasis in colorectal cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00333-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
SALL4 and HIWI are involved in the maintenance of self-renewal capacity of stem cells. Several scrutinizes have demonstrated that SALL4 and HIWI play a key role in cancer development. However, the correlation between these genes regarding different clinicopathological features of patients with colorectal cancer (CRC) is still unclear.
Methods
The expression of SALL4 and HIWI in different clinicopathological features of 46 CRC patients was analyzed using relative comparative real-time PCR.
Results
mRNA expression levels of SALL4 and HIWI genes were significantly correlated with each other in CRC (P = 0.013, Pearson correlation = 0.364). HIWI expression was notably increased in tumors with overexpression of SALL4 in comparison with other samples. This correlation was significant in non-metastatic CRCs compared to the metastatic tumors and in invaded tumors to the serosa (T3/T4) in comparison with non-invaded tumors (T1/T2).
Conclusions
Based on the significant association of SALL4 and HIWI in different indices of CRC poor prognosis, it may be concluded that simultaneous expression of these genes is notably contributed to the growth and development of the disease, and therefore, their co-overexpression may be considered for prognosis of aggressive CRCs.
Collapse
|
5
|
Sun B, Xu L, Bi W, Ou WB. SALL4 Oncogenic Function in Cancers: Mechanisms and Therapeutic Relevance. Int J Mol Sci 2022; 23:ijms23042053. [PMID: 35216168 PMCID: PMC8876671 DOI: 10.3390/ijms23042053] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
SALL4, a member of the SALL family, is an embryonic stem cell regulator involved in self-renewal and pluripotency. Recently, SALL4 overexpression was found in malignant cancers, including lung cancer, hepatocellular carcinoma, breast cancer, gastric cancer, colorectal cancer, osteosarcoma, acute myeloid leukemia, ovarian cancer, and glioma. This review updates recent advances of our knowledge of the biology of SALL4 with a focus on its mechanisms and regulatory functions in tumors and human hematopoiesis. SALL4 overexpression promotes proliferation, development, invasion, and migration in cancers through activation of the Wnt/β-catenin, PI3K/AKT, and Notch signaling pathways; expression of mitochondrial oxidative phosphorylation genes; and inhibition of the expression of the Bcl-2 family, caspase-related proteins, and death receptors. Additionally, SALL4 regulates tumor progression correlated with the immune microenvironment involved in the TNF family and gene expression through epigenetic mechanisms, consequently affecting hematopoiesis. Therefore, SALL4 plays a critical oncogenic role in gene transcription and tumor growth. However, there are still some scientific hypotheses to be tested regarding whether SALL4 is a therapeutic target, such as different tumor microenvironments and drug resistance. Thus, an in-depth understanding and study of the functions and mechanisms of SALL4 in cancer may help develop novel strategies for cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Wen-Bin Ou
- Correspondence: ; Tel./Fax: +86-571-8684-3303
| |
Collapse
|
6
|
Boustan A, Mosaffa F, Jahangiri R, Heidarian-Miri H, Dahmardeh-Ghalehno A, Jamialahmadi K. Role of SALL4 and Nodal in the prognosis and tamoxifen resistance of estrogen receptor-positive breast cancer. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2021; 10:109-119. [PMID: 34476264 PMCID: PMC8340312 DOI: 10.22099/mbrc.2021.39878.1597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the discovery of a number of different mechanisms underlying tamoxifen resistance, its molecular pathway is not completely clear. The upregulation of SALL4 and Nodal has been reported in breast cancer. Nevertheless, their role in tamoxifen resistance has not been investigated. In the present study, we compared Nodal and SALL4 expression in 72 tamoxifen sensitive (TAMS) and tamoxifen-resistant (TAMR) patients. Afterward, the correlation of expression data with clinicopathological features and survival of patients was studied. Results showed that both SALL4 and Nodal were significantly upregulated in TAMR compared to TAMS patients. Besides, there was a positive association between Nodal and SALL4 expression. Furthermore, we evaluated their correlation with the expression of Oct4, Nanog and Sox2 stemness markers. The results demonstrated that in most tissue samples there was a positive correlation between Nodal and SALL4 expression with these stemness markers. Besides, the overexpression of SALL4 and Nodal significantly correlated with the N stage. Moreover, the overexpression of SALL4 was associated with extracapsular invasion and lymphatic invasion. High level expressions of SALL4 and Nodal had a significant association with worse disease-free survival (DFS) rates. In addition, increased level of Nodal expression provides a superior predictor factor for DFS. The multivariate Cox regression analysis also revealed that for DFS, perineural invasion (PNI) was independently an unfavorable prognostic value. These findings suggest that the high expression of SALL4 and Nodal could contribute to tamoxifen resistance and worse survival rates in tamoxifen-treated ER+ breast cancer patients.
Collapse
Affiliation(s)
- Arad Boustan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rosa Jahangiri
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Heidarian-Miri
- Department of Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asefeh Dahmardeh-Ghalehno
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Chen T, Tsang JYS, Su XC, Li P, Sun WQ, Wong ILK, Choy KY, Yang Q, Tse GMK, Chan TH, Chow LMC. SALL4 promotes tumor progression in breast cancer by targeting EMT. Mol Carcinog 2020; 59:1209-1226. [PMID: 32835442 DOI: 10.1002/mc.23250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
Sal-like protein 4 (SALL4) is overexpressed in breast cancer and might contribute to breast cancer progression, but the molecular mechanism remains unknown. Here, we found that within a group of 371 ethnic Chinese breast cancer patients, SALL4 was associated with lower grade (P = .002) and progesterone receptor positivity (P = .004) for overall cases; lower Ki67 (P = .045) and high vimentin (P = .007) for luminal cases. Patients with high SALL4 expression in lymph node metastasis showed a significantly worse survival than those with low expression. Knockout of SALL4 in a triple-negative breast cancer cell line MDA-MB-231-Red-FLuc-GFP led to suppressed ability in proliferation, clonogenic formation, migration, and mammosphere formation in vitro, tumorigenicity and lung colonization in vivo. On the other hand, overexpression of SALL4 enhanced migration and mammosphere formation in vitro and tumorigenicity in vivo. Mechanistically, there was a positive correlation between SALL4 expression and mesenchymal markers including Zinc finger E-box binding homeobox 1 (ZEB1), vimentin, Slug, and Snail in vivo. Chromatin immunoprecipitation experiment indicated that SALL4 can bind to the promoter region of vimentin (-778 to -550 bp). Taken together, we hypothesize that SALL4 promotes tumor progression in breast cancer by inducing the mesenchymal markers like vimentin through directly binding to its promoter. Increased SALL4 level in metastatic lymph node relative to the primary site is an important poor survival marker in breast cancer.
Collapse
Affiliation(s)
- Teng Chen
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Julia Y S Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR
| | - Xiao-Chun Su
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Peng Li
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Wen-Qin Sun
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Iris L K Wong
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Kit-Ying Choy
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Qing Yang
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR
| | - Tak H Chan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR.,Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR
| |
Collapse
|
8
|
Xu F, Wang Y, Xiao K, Hu Y, Tian Z, Chen Y. Quantitative site- and structure-specific N-glycoproteomics characterization of differential N-glycosylation in MCF-7/ADR cancer stem cells. Clin Proteomics 2020; 17:3. [PMID: 32042278 PMCID: PMC7001331 DOI: 10.1186/s12014-020-9268-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 01/25/2020] [Indexed: 01/11/2023] Open
Abstract
Background Cancer stem cells (CSCs) are reported to be responsible for tumor initiation, progression, metastasis, and therapy resistance where P-glycoprotein (P-gp) as well as other glycoproteins are involved. Identification of these glycoprotein markers is critical for understanding the resistance mechanism and developing therapeutics. Methods In this study, we report our comparative and quantitative site- and structure-specific N-glycoproteomics study of MCF-7/ADR cancer stem cells (CSCs) vs. MCF-7/ADR cells. With zic-HILIC enrichment, isotopic diethyl labeling, RPLC–MS/MS (HCD) analysis and GPSeeker DB search, differentially expressed N-glycosylation was quantitatively characterized at the intact N-glycopeptide level. Results 4016 intact N-glycopeptides were identified with spectrum-level FDR ≤ 1%. With the criteria of ≥ 1.5 fold change and p value < 0.05, 247 intact N-glycopeptides were found differentially expressed in MCF-7/ADR CSCs as putative markers. Raw data are available via ProteomeXchange with identifier PXD013836. Conclusions Quantitative site- and structure-specific N-glycoproteomics characterization may help illustrate the cell stemness property.
Collapse
Affiliation(s)
- Feifei Xu
- 1School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Yue Wang
- 2School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092 China
| | - Kaijie Xiao
- 2School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092 China
| | - Yechen Hu
- 1School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Zhixin Tian
- 2School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092 China
| | - Yun Chen
- 1School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
9
|
Yang Y, Bin YD, Qin QP, Luo XJ, Zou BQ, Zhang HX. Novel Quinoline-based Ir(III) Complexes Exhibit High Antitumor Activity in Vitro and in Vivo. ACS Med Chem Lett 2019; 10:1614-1619. [PMID: 31857836 DOI: 10.1021/acsmedchemlett.9b00337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/06/2019] [Indexed: 12/18/2022] Open
Abstract
Eight novel Ir(III) complexes listed as [Ir(H-P)2(P)]PF6 (PyP-Ir), [Ir(H-P)2(dMP)]PF6 (PydMP-Ir), [Ir(H-P)2(MP)]PF6 (PyMP-Ir), [Ir(H-P)2(tMP)]PF6 (PytMP-Ir), [Ir(MPy)2(P)]PF6 (MPyP-Ir), [Ir(MPy)2(dMP)]PF6 (MPydMP-Ir), [Ir(MPy)2(MP)]PF6 (MPyMP-Ir), [Ir(MPy)2((tMP)]PF6 (MPytMP-Ir) with 2-phenylpyri-dine (H-P) and 3-methyl-2-phenylpyridine (MPy) as ancillary ligands and pyrido-[3,2-a]-pyrido[1',2':1,2]imidazo[4,5-c]phenazine (P), 12,13-dimethyl pyrido-[3,2-a]-pyrido[1',2':1,2]-imidazo-[4,5-c]-phenazine (dMP), 2-methylpyrido [3,2-a]-pyrido-[1',2':1,2]-imidazo-[4,5-c]-phenazine (MP), and 2,12,13-trimethylpyrido-[3,2-a]-pyrido-[1',2':1,2]-imidazo-[4,5-c]-phenazine (tMP) as main ligands, respectively, were designed and synthesized to fully characterize and explore the effect of their toxicity on cancer cells. Cytotoxic mechanism studies demonstrated that the eight Ir(III) complexes exhibited highly potent antitumor activity selectively against cancer cell lines NCI-H460, T-24, and HeLa, and no activity against HL-7702, a noncancerous cell line. Among the eight Ir(III) complexes, MPytMP-Ir exhibited the highest cytotoxicity with an IC50 = 5.05 ± 0.22 nM against NCI-H460 cells. The antitumor activity of MPytMP-Ir in vitro could be contributed to the steric or electronic effect of the methyl groups, which induced telomerase inhibition and damaged mitochondria in NCI-H460 cells. More importantly, MPytMP-Ir displayed a superior inhibitory effect on NCI-H460 xenograft in vivo than cisplatin. Our work demonstrates that MPytMP-Ir could potentially be developed as a novel potent Ir-based antitumor drug.
Collapse
Affiliation(s)
- Yan Yang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, P. R. China
| | - Yi-Dong Bin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
- School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, P. R. China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Xu-Jian Luo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
| | - Bi-Qun Zou
- Department of Chemistry, Guilin Normal College, 9 Feihu Road, Gulin 541001, China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Hua-Xin Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxuedong Road, Nanning 530004, P. R. China
| |
Collapse
|
10
|
Naghizadeh S, Mansoori B, Mohammadi A, Sakhinia E, Baradaran B. Gene Silencing Strategies in Cancer Therapy: An Update for Drug Resistance. Curr Med Chem 2019; 26:6282-6303. [DOI: 10.2174/0929867325666180403141554] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/10/2018] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
RNAi, post-transcriptional gene silencing mechanism, could be considered as one of the
most important breakthroughs and rapidly growing fields in science. Researchers are trying to use this
discovery in the treatment of various diseases and cancer is one of them although there are multiple
treatment procedures for treatment-resistant cancers, eradication of resistance remain as an unsolvable
problem yet. The current review summarizes both transcriptional and post-transcriptional gene silencing
mechanisms, and highlights mechanisms leading to drug-resistance such as, drug efflux, drug inactivation,
drug target alteration, DNA damages repair, and the epithelial-mesenchymal transition, as
well as the role of tumor cell heterogeneity and tumor microenvironment, involving genes in these
processes. It ultimately points out the obstacles of RNAi application for in vivo treatment of diseases
and progressions that have been achieved in this field.
Collapse
Affiliation(s)
- Sanaz Naghizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Nie X, Guo E, Wu C, Liu D, Sun W, Zhang L, Long G, Mei Q, Wu K, Xiong H, Hu G. SALL4 induces radioresistance in nasopharyngeal carcinoma via the ATM/Chk2/p53 pathway. Cancer Med 2019; 8:1779-1792. [PMID: 30907073 PMCID: PMC6488116 DOI: 10.1002/cam4.2056] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is the mainstay and primary curative treatment modality in nasopharyngeal carcinoma (NPC), whose efficacy is limited by the development of intrinsic and acquired radioresistance. Thus, deciphering new molecular targets and pathways is essential for enhancing the radiosensitivity of NPC. SALL4 is a vital factor in the development and prognosis of various cancers, but its role in radioresistance remains elusive. This study aimed to explore the association of SALL4 expression with radioresistance of NPC. It was revealed that SALL4 expression was closely correlated with advanced T classification of NPC patients. Inhibition of SALL4 reduced proliferation and sensitized cells to radiation both in vitro and in vivo. Furthermore, SALL4 silencing increased radiation-induced DNA damage, apoptosis, and G2/M arrest in CNE2 and CNE2R cells. Moreover, knockdown of SALL4 impaired the expression of p-ATM, p-Chk2, p-p53, and anti-apoptosis protein Bcl-2, while pro-apoptosis protein was upregulated. These findings indicate that SALL4 could induce radioresistance via ATM/Chk2/p53 pathway and its downstream proteins related to apoptosis. Targeting SALL4 might be a promising approach for the development of novel radiosensitizing therapeutic agents for radioresistant NPC patients.
Collapse
Affiliation(s)
- Xin Nie
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ergang Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Cheng Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dongbo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Linli Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guoxian Long
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
12
|
Hesari A, Anoshiravani AA, Talebi S, Noruzi S, Mohammadi R, Salarinia R, Zare R, Ghasemi F. Knockdown of sal-like 4 expression by small interfering RNA induces apoptosis in breast cancer cells. J Cell Biochem 2018; 120:9392-9399. [PMID: 30520112 DOI: 10.1002/jcb.28214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
Abstract
Breast cancer is the most prevalent cancers worldwide and causes a significant amount of deaths annually. Spalt-like transcription factor 4 is known as a transcription factor, which has an important role in the proliferation of cancerous cells. Small interfering RNA (siRNA) is a short-chain molecule of 20 to 25 nucleotides that protrude on two sides of the 3', two nucleotides. In this study, using a specific sequence of siRNA against the sequence of this gene, its activity is investigated in the cell line of breast cancer. The breast cancer cells (MCF-7) were cultured and then, using a specific anti-sal-like 4 (SALL4) siRNA, their toxic doses were determined. Then, the gene is transfected into the cell. Proliferation and expression of the SALL4 and BCL-2 gene were measured using the real-time polymerase chain reaction method. The specific concentration of siRNA IC50 of the SALL4 gene was 40.35 nmole. Gene expression results indicated that the expression of the Bcl-2 gene in the siRNA group was significantly reduced ( P < 0.05). SiRNA can increase the apoptosis of breast cancer cells by reducing the gene expression of SALL4 gene and Bcl-2; it can be used as a novel targeted therapy. This strategy, in addition to increasing the specificity of the drug, also reduces the side effects when compared with conventional chemotherapy.
Collapse
Affiliation(s)
- Amireza Hesari
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Samaneh Talebi
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayye Noruzi
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Rezvan Mohammadi
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Salarinia
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Zare
- Student Research Committee, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Next to Milad Tower, Tehran, Iran
| |
Collapse
|
13
|
Jiang G, Liu CT. Knockdown of SALL4 overcomes cisplatin-resistance through AKT/mTOR signaling in lung cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:634-641. [PMID: 31938149 PMCID: PMC6958024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/27/2017] [Indexed: 06/10/2023]
Abstract
Drug resistance is an important factor for the poor prognosis of non-small cell lung cancer (NSCLC). Sal-like protein 4 (Sall4) is a stem cell marker, and plays a role in maintaining self-renewal. Previous studies have demonstrated that Sall4 may be a candidate for use as support in the diagnosis of lung cancer, and may also represent a therapeutic target. However, the role of Sall4 on drug resistance of lung cancer cells and the mechanism by which Sall4 regulates the sensitivity of lung cancer cells to cisplatin (DDP) remains unknown. In this study, we aim to investigate whether knockdown of Sall4 by siRNA can enhance the apoptosis induced by cisplatin in lung cancer cells. We here reported that the expression of Sall4 was dramatically upregulated in cisplatin-resistant A549 cells compared with the parental cells. Knockdown of Sall4 by siRNA in cisplatin-resistant A549 cells reduced the IC50 compared with the parental cells. In addition, knockdown of Sall4 significantly inhibited cell proliferation, induced apoptosis and invasion cisplatin-resistant A549 cells through AKT/mTOR signaling. Our findings demonstrate that Sall4 is an essential regulator in cisplatin-induced apoptosis, and knockdown of Sall4 may restore cisplatin sensitivity in acquired resistant cells. Thus, our study provides an effective therapeutic strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Gang Jiang
- Department of Respiration, Hunan Provincial People’s HospitalNo 61 Jiefang West Road, Changsha 410005, Hunan Province, China
| | - Chen-Tao Liu
- Department of Pediatrics, Xiang Ya Hospital, Central South UniversityNo 87 Xiangya Road, Changsha 410008, Hunan Province, China
| |
Collapse
|
14
|
Kroemer M, Spehner L, Mercier-Letondal P, Boullerot L, Kim S, Jary M, Galaine J, Picard E, Ferrand C, Nguyen T, Larosa F, Adotévi O, Godet Y, Borg C. SALL4 oncogene is an immunogenic antigen presented in various HLA-DR contexts. Oncoimmunology 2018; 7:e1412030. [PMID: 29632725 PMCID: PMC5889287 DOI: 10.1080/2162402x.2017.1412030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/11/2017] [Accepted: 11/26/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose: To investigate the immunoprevalence of SALL4-derived peptides in healthy volunteers and cancer patients. Experimental Design: A multistep approach including prediction algorithms was used to design in silico SALL4-derived peptides theoretically able to bind on common HLA-DR and HLA-A/B molecules. The presence of T-cell responses after a long term T-cell assay (28 days) against SALL4 was monitored in 14 healthy donors and the presence of T-cell responses after a short term T-cell assay (10 days) was monitored in 67 cancer patients using IFN-γ ELISPOT assay. A T-cell clone specific for the immunoprevalent A18 K-derived peptide was isolated, characterized and used as a tool to characterize the natural processing of A18 K. Results: A SALL4 specific T-cell repertoire was present in healthy donors (8/14) and cancer patients (29/67) after short term T-cell assay. We further identified two immunoprevalant SALL4-derived peptides, R18 A and A18 K, which bind MHC-class II. In parallel, an A18 K specific Th1 clone recognized monocyte derived Dendritic Cell (moDC) loaded with SALL4 containing cell lysate. The level of IFN-γ secreted by specific T-cell clone was greater in presence of moDC loaded with SALL4 containing cell lysate (49.23 ± 14.02%) than with moDC alone (18.03 ± 3.072%) (p = 0.0477) Conclusion: These results show for the first time immunogenicity of SALL4 oncogenic protein-derived peptides, especially A18 K and R18 A peptides and make them potential targets for personalized medicine. Thus, SALL4 possess major characteristics of a tumor antigen.
Collapse
Affiliation(s)
- Marie Kroemer
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
- Department of pharmacy, University hospital of Besançon, Besançon, France
| | - Laurie Spehner
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
| | - Patricia Mercier-Letondal
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
| | - Laura Boullerot
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
| | - Stefano Kim
- Department of medical oncology, University Hospital of Besançon, Besançon, France
| | - Marine Jary
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
- Department of medical oncology, University Hospital of Besançon, Besançon, France
| | - Jeanne Galaine
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
| | - Emilie Picard
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
| | - Christophe Ferrand
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
| | - Thierry Nguyen
- Department of medical oncology, University Hospital of Besançon, Besançon, France
| | - Fabrice Larosa
- Department of hematology, University Hospital of Besançon, Besançon, France
| | - Olivier Adotévi
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
- Department of medical oncology, University Hospital of Besançon, Besançon, France
| | - Yann Godet
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
| | - Christophe Borg
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
- Department of medical oncology, University Hospital of Besançon, Besançon, France
| |
Collapse
|
15
|
Hu G, Zhao X, Wang J, Lv L, Wang C, Feng L, Shen L, Ren W. miR-125b regulates the drug-resistance of breast cancer cells to doxorubicin by targeting HAX-1. Oncol Lett 2017; 15:1621-1629. [PMID: 29434858 PMCID: PMC5774474 DOI: 10.3892/ol.2017.7476] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/22/2017] [Indexed: 01/17/2023] Open
Abstract
MircroRNAs (miRNAs) are considered as essential regulators in the tumorigenesis and chemoresistance of multiple cancer types. In the present study, it was demonstrated that the expression levels of miR-125b were significantly downregulated in the tissues of patients with breast cancer (BC), as well as the BC cell lines in vitro. To study the association between chemoresistance and miR-125b in BC, doxorubicin (DOX)-resistant MCF-7 (MCF-7/R) cells were established, and gain- and loss-of-function experiments were performed. It was demonstrated that the overexpression of miR-125b increased the sensitivity of MCF-7/R cells to DOX. Furthermore, it was revealed that the sensitization of miR-125b mimics to DOX-induced cell death was regulated by the hematopoietic cell-specific protein 1-associated protein X-1 (HAX-1) vector and HAX-1 small interfering RNA. These results emphasized the notable function of miR-125b and its target of HAX-1 in regulating DOX-resistance. In addition, it was demonstrated that the miR-125b mimics promoted the loss of the mitochondrial membrane potential and the generation of reactive oxygen species induced by DOX treatment in MCF-7/R cells. These data suggest that the miR-125b-HAX-1-mitochondria pathway has a notable function in the treatment of DOX-resistant BC cells, which may provide a novel target for the chemotherapy of BC.
Collapse
Affiliation(s)
- Guinv Hu
- Department of Breast Surgery, Dongyang People's Hospital, Jinhua, Zhejiang 322100, P.R. China
| | - Xiaokang Zhao
- Department of Breast Surgery, Dongyang People's Hospital, Jinhua, Zhejiang 322100, P.R. China
| | - Jiang Wang
- Department of Breast Surgery, Dongyang People's Hospital, Jinhua, Zhejiang 322100, P.R. China
| | - Liting Lv
- Department of Breast Surgery, Dongyang People's Hospital, Jinhua, Zhejiang 322100, P.R. China
| | - Chaoqun Wang
- Department of Breast Surgery, Dongyang People's Hospital, Jinhua, Zhejiang 322100, P.R. China
| | - Liang Feng
- Department of Breast Surgery, Shaoxing Shangyu People's Hospital, Shaoxing, Zhejiang 312300, P.R. China
| | - Liangqiong Shen
- Department of Breast Surgery, Shaoxing Shangyu People's Hospital, Shaoxing, Zhejiang 312300, P.R. China
| | - Weili Ren
- Department of Breast Surgery, Shaoxing Shangyu People's Hospital, Shaoxing, Zhejiang 312300, P.R. China
| |
Collapse
|
16
|
Lu Y, Yang Y, Liu Y, Hao Y, Zhang Y, Hu Y, Jiang L, Gong Y, Wu K, Liu Y. Upregulation of PAG1/Cbp contributes to adipose-derived mesenchymal stem cells promoted tumor progression and chemoresistance in breast cancer. Biochem Biophys Res Commun 2017; 494:719-727. [PMID: 29079189 DOI: 10.1016/j.bbrc.2017.10.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 01/02/2023]
Abstract
C-terminal Src kinase (Csk)-binding protein (Cbp) is a ubiquitously expressed transmembrane adaptor protein which regulating Src family kinase (SFK) activities. Although SFKs are well known for their involvement in breast cancer, the function of Cbp in breast carcinogenesis upon the adipose-tumor microenvironment has not been investigated. Here, we reported that adipose-derived mesenchymal stem cells (ASCs) induced increased expression of Cbp accompanied by enhanced cell proliferation and chemotherapy resistance in breast cancer cell MCF-7/ADR. Depletion of Cbp in breast cancer cell by RNA interference led to remarkable inhibition of cell proliferation, invasion as well as synergy with adriamycin hydrochloride to suppress the tumor growth. Furthermore, silencing of Cbp concomitantly inhibited the expression of phosphoryl of Src, AKT and mTOR signals. Our study highlights the underlying mechanism of cross interaction between ASCs and breast cancer cells, and indicates that PAG1/Cbp in breast cancer cell may modulate tumor progression and acquired chemoresistance in the ASCs-associated breast cancer microenvironment through Src and AKT/mTOR pathways.
Collapse
Affiliation(s)
- Yunshu Lu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yipeng Yang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Liu
- Department of Pharmacy, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yajuan Hao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yijian Zhang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yunping Hu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lin Jiang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yurong Gong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Kejin Wu
- Breast Surgery, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai 200011, China.
| | - Yingbin Liu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
17
|
SALL4 suppresses PTEN expression to promote glioma cell proliferation via PI3K/AKT signaling pathway. J Neurooncol 2017; 135:263-272. [PMID: 28887597 PMCID: PMC5663806 DOI: 10.1007/s11060-017-2589-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 07/23/2017] [Indexed: 12/16/2022]
Abstract
Spalt-like transcription factor 4 (SALL4), a oncogene, is known to participate in multiple carcinomas, and is up-regulated in glioma. However, its actual role and underlying mechanisms in the development of glioma remain unclear. The present study explored the molecular functions of SALL4 in promoting cell proliferation in glioma. The expression level of SALL4 in 69 human glioma samples and six non-tumor brain tissues was determined using real-time polymerase chain reaction (PCR). Then, we transfected U87 and U251 cell lines with siRNA, and assessed cellular proliferation and cell cycle to understand the function of SALL4, and the relationship between SALL4, PTEN and PI3K/AKT pathway. PCR confirmed that the expression of SALL4 was higher in the glioma samples than non-tumor brain tissues. Cellular growth and proliferation were dramatically reduced following inhibition of SALL4 expression. Western blot showed increase in PTEN expression when SALL4 was silenced, which in turn depressed the activation of PI3K/AKT pathway, suggesting that PTEN was a downstream target of SALL4 in glioma development. Therefore, SALL4 could act as a proto-oncogene by regulating the PTEN/PI3K/AKT signaling pathway, thereby facilitating proliferation of glioma cells.
Collapse
|
18
|
Kim J, Xu S, Xiong L, Yu L, Fu X, Xu Y. SALL4 promotes glycolysis and chromatin remodeling via modulating HP1α-Glut1 pathway. Oncogene 2017; 36:6472-6479. [DOI: 10.1038/onc.2017.265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/18/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022]
|
19
|
Abstract
Sal-like protein 4 (SALL4) is a zinc finger transcription factor that has been reported to be aberrantly expressed in several human malignancies and identified as an oncogene. However, the potential role of SALL4 in osteosarcoma remains to be elucidated. In this study, we explored the biological functions of SALL4 in osteosarcoma. We found that SALL4 was overexpressed in osteosarcoma tissues and cell lines. Knockdown of SALL4 inhibited osteosarcoma cell proliferation, migration, and invasion in vitro. In addition, SALL4 knockdown suppressed osteosarcoma growth and metastasis in vivo. We also showed that SALL4 knockdown decreased the protein expression of Wnt3a and β-catenin in osteosarcoma cells. Taken together, our study showed that SALL4 plays an important role in regulating the proliferation, migration, and invasion of osteosarcoma cells. Thus, SALL4 may represent a potential therapeutic target in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Dengfeng Zhang
- Orthopedics Department, Huaihe Hospital of Henan University, Kaifeng, P.R. China
| | - Feng Jiang
- Orthopedics Department, Huaihe Hospital of Henan University, Kaifeng, P.R. China
| | - Xiao Wang
- Orthopedics Department, Huaihe Hospital of Henan University, Kaifeng, P.R. China
| | - Guojun Li
- Orthopedics Department, Huaihe Hospital of Henan University, Kaifeng, P.R. China
| |
Collapse
|
20
|
SALL4 promotes gastric cancer progression through activating CD44 expression. Oncogenesis 2016; 5:e268. [PMID: 27819668 PMCID: PMC5141291 DOI: 10.1038/oncsis.2016.69] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/30/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022] Open
Abstract
The stem cell factor SALL4 (Sal-like protein 4) plays important roles in the development and progression of cancer. SALL4 is critically involved in tumour growth, metastasis and therapy resistance. However, the underlying mechanisms responsible for the oncogenic roles of SALL4 have not been well characterized. In this study, we demonstrated that SALL4 knockdown by short hairpin RNA greatly inhibited the proliferation, migration and invasion of gastric cancer cells. We further confirmed the inhibitory effects of SALL4 knockdown on gastric cancer cells by using a tetracycline-inducible system. Mechanistically, SALL4 knockdown downregulated the expression of CD44. The results of luciferase assay and chromatin immunoprecipitation study showed that SALL4 bound to CD44 promoter region and transcriptionally activated CD44. The results of rescue study revealed that CD44 overexpression antagonized SALL4 knockdown-mediated inhibition of gastric cancer cell proliferation, migration, and invasion in vitro and gastric cancer growth in vivo. Collectively, our findings indicate that SALL4 promotes gastric cancer progression through directly activating CD44 expression, which suggests a novel mechanism for the oncogenic roles of SALL4 in gastric cancer and represents a new target for gastric cancer therapy.
Collapse
|
21
|
Snijders AM, Mao JH. Multi-omics approach to infer cancer therapeutic targets on chromosome 20q across tumor types. ACTA ACUST UNITED AC 2016; 2:215-223. [PMID: 27642640 PMCID: PMC5025263 DOI: 10.18282/amor.v2.i4.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The identification of good targets is a critical step for the development of targeted therapies for cancer treatment. Here, we used a multi-omics approach to delineate potential targets on chromosome 20q, which frequently shows a complex pattern of DNA copy number amplification in many human cancers suggesting the presence of multiple driver genes. By comparing the amounts of individual mRNAs in cancer from 11 different human tissues with those in their corresponding normal tissues, we identified 18 genes that were robustly elevated across human cancers. Moreover, we found that higher expression levels of a majority of these genes were associated with poor prognosis in many human cancer types. Using DNA copy number and expression data for all 18 genes obtained from The Cancer Genome Atlas project, we discovered that amplification is a major mechanism driving overexpression of these 18 genes in the majority of human cancers. Our integrated analysis suggests that 18 genes on chromosome 20q might serve as novel potential molecular targets for targeted cancer therapy.
Collapse
Affiliation(s)
- Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States
| |
Collapse
|